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Abstract
The popularization of electric vehicles (EVs) is limited by their driving range and 
long charging times. To address this, in-motion wireless power transfer systems 
(WPTSs) are currently attracting attention as a new power supply system. In-motion 
WPTSs have coils embedded under the road to transfer power from the WPTSs to 
EVs while driving. However, the main drawback of WPTSs is their large invest-
ment, especially in supporting the long-distance trips of EVs on expressways. There-
fore, this study proposes a new mixed-integer programming model (MIP) to deter-
mine the optimal location of WPTSs for maximized total feasible flow demand. By 
focusing on long-distance trips on expressways, we propose the first flow-capturing 
model for WPTS locations that can (i) solve for the distance of WPTS installed as 
continuous variables, and (ii) solve problems based on real-scale data using a gen-
eral MIP solver. Our method is extended to a discussion of WPTS installations on 
expressways in Japan. We observe that WPTS has strong potential as an EV power 
supply system in terms of coverage and economic rationality. In particular, WPTS 
has economic rationality not only in busy networks but also in sparsely populated 
networks that connect urban and rural areas. Thus, this study clarifies the important 
insights of WPTSs in improving their effectivity to narrow down the demand and 
ensure the flexibility in the locations of WPTS.

Keywords  Electric vehicle · Charging infrastructure · In-motion wireless power 
transfer · Mixed integer programing · Intelligent transportation system

 *	 Yudai Honma 
	 yudai@iis.u-tokyo.ac.jp

1	 Institute of Industrial Science, The University of Tokyo, Komaba 4‑6‑1, Meguro‑ku, 
Tokyo 153‑8505, Japan

2	 Center for Real Estate Innovation, The University of Tokyo, Hongo 7‑3‑1, Bunkyo‑ku, 
Tokyo 113‑0033, Japan

http://orcid.org/0000-0002-6458-0767
http://crossmark.crossref.org/dialog/?doi=10.1007/s11067-023-09608-w&domain=pdf


262	 Y. Honma et al.

1 3

1  Introduction

Automobiles are the most common means of ground transportation. However, for 
the past 100 years, automobiles have been powered by fossil fuels, which poses neg-
ative environmental impacts. In recent years, there has been an increasing demand 
for low-carbon alternative-fuel vehicles, and several countries have pledged to ban 
the sale of new fossil-fuel-powered vehicles by 2040 (Vaughn 2018). Therefore, the 
use of electric vehicles (EVs) is expected to become widespread.

To popularize the use of EVs, their convenience needs to be improved, specifically 
by developing appropriate charging infrastructures. Therefore, several studies have 
discussed the appropriate locations of EV charging stations (Coffman et  al. 2017; 
Fúnez Guerra et al. 2016; Demir et al. 2014; Rahman et al. 2016). There are several 
variations in facility location models, such as the popular classical p-median prob-
lem, which determines the location of p facilities to minimize the total travel distance 
(ReVelle and Swain 2010). In the context of transportation, Hodgson’s (1990) flow 
capturing location model (FCLM) has garnered widespread attention. FCLM pro-
poses optimal p facility locations to maximize the flow volume on the path of the 
facility. Several developmental studies have also been conducted (Berman et  al. 
1995). For the optimal location of EV charging stations, the flow refueling loca-
tion model (FRLM) by Kuby and Lim (2005) is regarded as a milestone study. In 
the FRLM, the driving range constraints of EVs are considered, and the model is 
extended with the assumption of multiple instances of charging. Numerous mixed-
integer programming (MIP) models have been developed to address more realistic 
situations and to overcome the associated computational challenges (Yıldız et  al. 
2016), such as considering the deviation of paths (Kim and Kuby 2012), introducing 
tank-level tracking (Wang and Lin 2009), multi-level covering (Capar et  al. 2013), 
and heuristics (Lim and Kuby 2010).

The capacity of EV charging stations is a critical issue (Upchurch et al. 2009). 
In the early stages of EV diffusion, the capacity constraints of the stations can be 
ignored. However, as EV penetration progresses, the number of EVs that can be 
handled by stations is expected to pose a significant issue (Bruglieri et al. 2019). 
From this perspective, studies on the location of EV stations considering capac-
ity constraints have also been conducted. This problem is rooted in another defi-
ciency of EVs, which is their long charging times (Honma and Toriumi 2014). 
As presented by the queuing theory, unless the issue of charging time is resolved, 
the number of required stations will increase considerably with the spread of EVs 
(Honma and Toriumi 2017).

In-motion wireless power transfer systems (WPTSs) have garnered attention as 
a new power supply system that can solve the problems of EVs (Lukic and Pan-
tic 2013; Miller et al. 2015). Under in-motion WPTSs, EVs receive power while 
being driven through coils embedded under the road, as shown in Fig.  1 (Hata 
et al. 2019). This allows EVs to charge their batteries without waiting at a charg-
ing station, thereby achieving an unlimited driving range. Thus, WPTSs have the 
potential to simultaneously solve the limitations of the driving range and long 
charging time of EVs.



263

1 3

Locational Analysis of WPTS for Long-distance Trip in Japan

Though there are limited optimal location models for in-motion WPTS, com-
pared to those for EV charging stations, the number of WPTS researches focusing 
on locational analysis and economic rationalities is steadily increasing over the 
last decade. Jang (2018) provided a comprehensive review of WPTSs related to 
infrastructure planning, costs, and benefit analysis. One of the theoretical main-
streams of location models for WPTS is analysis of equilibrium flows considering 
traffic congestions (Riemann et al. 2015; Chen et al. 2016; Manshadi et al. 2018; 
Liu et al. 2021). In their models, multiple routes are considered, and system opti-
mizations are discussed. For example, Riemann et  al. (2015) formulate a flow-
capturing location model with stochastic user equilibrium. Chen et  al. (2016) 
develop a user equilibrium model considering the relationship between speed, 
charge amount, and travel time. Manshadi et al. (2018) consider the interdepend-
ence between the electricity network and the transportation network whereas Liu 
et al. (2021) incorporate electricity prices.

In addition to the user equilibrium technique, efforts are being made to deepen 
the mathematical model from various perspectives. Ko et al. (2015) propose the 
optimal economic design using Genetic Algorithms. Chen et al. (2017) theoreti-
cally discuss the deployment balance between EV stations and WPTS. Liu and 
Song (2017) and Alwesabi et  al. (2022) construct their models from the view-
point of robust optimization. It should be noted, however, that the above studies 
have focused on mathematical developments, and thus the applied transportation 
networks are rather primitive.

There are several previous studies from the viewpoint of application to the real 
world. The research group of Y.J. Jang has conducted a series of studies that focuses 
on the real EV bus system with WPTS in Korea (Ko and Jang 2013; Jang et  al. 
2015, 2016; Hwang et al. 2018). Based on tests with actual equipment, they develop 
sophisticated system architectures for EV buses with WPTS. Further, Alwesabi et al. 
2021 develop the model for scheduling optimization of EV buses with WPTS.

Fig. 1   In-motion wireless charging system for electric vehicles from Hata et al. (2019)
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WTPS location studies using real-world networks also exist at both the metro-
politan and interstate scales. From the metropolitan-scale perspective, Mubarak 
et al. (2021) focuses on the Chicago area network and derives the complete flow 
coverage solution. Yan et  al. (2021) uses a mobility dataset collected in Shen-
zhen, China, and applied kernel density estimation to converge their data. From 
the interstate-scale perspective, Fuller (2016) formulates an optimization model to 
minimize the total cost of WPTS and applied it to the California roadway network. 
Similarly, Trinko et al. (2022) discuss the economic feasibility of WPTS in a high-
density traffic corridor in Los Angeles, California, United States. Such economic 
evaluation is an essential aspect of WPTS, previously studied by He et al. (2013) 
and Jeong et al. (2015).

As discussed in the above studies, EV stations and WPTSs have opposing char-
acteristics in terms of economy and convenience (Fig. 2), and the main drawback 
of WPTSs is their large investment. It is unneglectable especially when designed to 
support the long-distance trips of EVs on expressways. In particular, WPTSs must 
be laid for tens of kilometers because vehicles pass over them in only a few seconds; 
therefore, there are doubts on their economic feasibility.

This study aims to propose a new MIP model to determine the optimal locations of 
WPTSs to maximize the total feasible flow volume. By focusing on long-distance trips 
on expressways, we propose the first flow-capturing model for WPTS locations that 
can (i) determine the suitability for the installation of WPTSs as continuous variables 
instead of binary variables and (ii) solve problems based on actual data with a general 
MIP solver. In our formulation, we assume realistic travel based on the shortest path 
because the study focuses on the flow demands on the expressway. We also present a 
faster formulation that focuses on the shortestpath trees. In the optimization phase, the 
power supply pattern is determined only to confirm the feasibility of the flow demand. 
In addition, the probable charging behaviors of EVs are simulated using a separate 
algorithm. The combination of the WPTS locational optimization and algorithm repre-
senting the EV power management achieves a fast and accurate analysis. Furthermore, 
the proposed method is extended to a discussion of the economic rationality of the 

Fig. 2   Characteristics of electric vehicle charging stations and wireless power transfer systems
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WPTS installations on the expressways in Japan. As the popularization of EVs is lim-
ited by their driving range and long charging times, the economic rationality of WPTS 
installations should be examined for long-distance travel. Particularly, the biggest con-
cern with installing WPTSs on expressways is the high construction costs. To estimate 
the economic rationality under realistic assumptions, we consider the expressway net-
work and flow demands based on the geographic information system (GIS) data. The 
energy consumption of the EVs is carefully prepared based on previous studies, and a 
sensitivity analysis is conducted.

Our study contributes to this growing literature from the theoretical/methodologi-
cal, application, and policymaking aspects. First, from the theoretical and methodo-
logical viewpoints, our most important contribution is to define the decision vari-
ables for the WPTS installation as continuous variables representing the length of 
each segment. Most previous studies use binary variables to represent whether to 
install WPTS on a link or not (Jang 2018), echoing location models for EV charging 
stations that are points on the network. For analyzing long-distance road networks, 
however, links tend to be much longer and assuming WPTS is installed over the 
entire link reduces the precision and limits the flexibility of the analysis. Conversely, 
if longer links are more segmented to increase resolution, computational complexity 
explodes. In our model, the above problem is avoided by allowing the length of the 
WPTS in each link to be determined endogenously using continuous variables. Ko 
and Jang (2013) and a series of consecutive studies (Jang et al. 2015, 2016; Hwang 
et al. 2018) are the only studies to express WPTS locations as continuous variables, 
but their model solves for both a start point and an end point, which is rather too 
detailed and increased the number of variables. In representing the WPTS location, 
our representation is necessary and sufficient, because it is not sensitive to network 
resolution and does not increase the number of variables. Moreover, this strategy 
contributes to solving even large-size problems using a general MIP solver.

Second, an important contribution from the application aspect is that we con-
ducted an analysis focusing on expressways with “low demand”. For WPTS loca-
tion analysis, research based on real networks concentrates on the analysis at the 
urban scale. Hence, relatively few studies have focused on long-distance motorways. 
As previously mentioned, Trinko et al. (2022) demonstrate that WPTS has certain 
economic rationality in high-density traffic corridor. Fuller (2016) also focuses on 
California highways, which is a mix of high-demand and low-demand networks. No 
previous research discussed economic rationality in low-density expressways.

Finally, a valuable contribution to policymaking is that our model provides 
policymakers with much-needed flexibility in planning WPTS networks. First, our 
analysis highlights the existence of multiple optimal solutions for the location of 
the WPTS. This finding allows policymakers to adjust WPTS locations while con-
sidering a variety of factors, without sacrificing optimality. Second, our model is 
formulated as a flow maximization problem, unlike many other previous studies 
that require complete coverage. This enables decision-makers to explore the rela-
tionship between the distance of the WPTS installation, demand coverage ratio, and 
net revenue.

In this study, we assume the operation of WPTS only, and we do not consider 
the combined use of WPTS and EV recharging stations for the following reasons. 
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First, we discuss a future scenario in which EVs comprise over 30% of all vehicles. 
Our previous studies (Honma and Toriumi 2014, 2017) have pointed out the insuffi-
cient quantity of charging stations to supply in a society dominated by EVs because 
each station has only a few slots for charging. For example, a study by Honma and 
Toriumi (2014) estimates the requirement of 200 slots when EVs become suffi-
ciently widespread, assuming travel on the same expressways as in this study. As of 
2021, there have been no changes in the limited slots per station in Japan (Yamada 
and Fukao 2021). Second, to properly evaluate the potential of WPTS, it must be 
analyzed under the assumption that only WPTS is deployed in our society. Our pre-
vious studies (Honma and Toriumi 2014, 2017) have indicated that it is unrealistic 
to cover huge EV demand only by charging stations. Therefore, we aim to evalu-
ate the potential of WPTSs to support EVs. Should WPTS prove to be a positive 
contributor to EV mobility infrastructure, we can envision a future where WPTS 
and EV stations complement the strengths of each other. In this study, the realistic 
parameters ensure that the numerical results can directly be applied for policy analy-
sis. This study demonstrates the positive potential of WPTS as an EV infrastructure, 
thereby depicting the difficulty of covering all demands with WPTS alone.

2 � Methods

2.1 � Frameworks

In this section, we assume an in-motion WPTS to be an energy-supply infrastructure 
for EVs and propose a new flow-capturing model to optimize WPTS locations. First, 
we summarize the role of EVs in completing their flow demands using WPTS. In 
this paper, “flow demand” is defined as the requirement to travel from an origin to 
a destination. Specifically, because we are focusing on expressways in this study, 
we define flow demand as a request to travel from one highway ramp (for example, 
Tokyo ramp) to a different highway ramp (for example, Osaka ramp). Because a 
large number of EVs is expected to share the same demand, the number of EVs 
making the same travel is defined as the “flow volume” for that flow demand. The 
unit of flow volume is the “number of EVs”. Unlike previous studies on EV station 
locations, our study regarded flow demand as a one-way trip rather than a round 
trip. The tools that EVs can use for energy management are their battery capacity 
and WPTS charging on the way to the destination. The batteries of EVs can be full 
at the origin but their energy is consumed as they travel. Thus, EVs can charge when 
they pass through the WPTS. In this study, the flow demand is regarded as “feasi-
ble” when EVs can complete their travel from their origin to their destination with-
out experiencing any energy shortage at any point along the route, which is facili-
tated by the installed WPTS. In this study, no EV charging stations are considered.

The route of the flow demand is assumed to be exogenously determined and 
is not affected by the location of the WPTS. In particular, we assume that all 
flow demands use the shortest path for the sake of simplicity. We consider this 
assumption to be realistic because our study focuses on long-distance trips on an 
expressway, and many EV drivers tend to choose the shortest route. The EVs are 
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assumed to move at a constant speed throughout the network; thus, acceleration 
and deceleration are not considered. The amount of energy consumed is known 
for each link based on the travel speed and gradient. For a steep descent, regen-
erative energy can be expected, resulting in the negative power consumption of 
the link. Finally, this study assumed that the WPTS installation costs are propor-
tional to their installation distance. We focus on the total installation distance as 
the infrastructure cost. In other words, the fixed cost of the WPTS installation is 
not specifically assumed in the discussion of economic rationality.

The optimization problem for each flow demand is proposed and reformulated 
for each origin to enhance the solution time. Subsequently, a simulation algo-
rithm to calculate the probable energy consumption is discussed for economic 
rationality. All notations for the models are defined below.

Indices:

q	� Index of flow demands
i, j	� Index of the nodes; indicate the directed links from node i to j.
o	� Index of the origins; o(q) indicates the origin of flow demand q.
d      �Index of the destinations; d(q) indicates the destination of flow demand q.

Sets:

Q	� Set of flow demands
N	� Set of nodes in the entire network
E	� Set of links in the entire network
O	� Set of origins
D	� Set of destinations
Nq	� Set of nodes that flow demand q passes through
Eq	� Set of links that flow demand q passes through
To	� Set of links in the shortest path tree whose origin is o

Parameters:

s	� Total length of WPTS to be installed [km]
fq	� Flow volume of flow demand q
u	� Battery capacity of EV [kWh]
lij	� Length of link (i,j) [km]
cij	� Required electric power to pass through link (i,j) [kWh]
rij	� Electric power transfer per unit distance on link (i,j) [kWh/km]
mq	� Large negative number to check the feasibility of flow demand q

Decision Variables:

xij	� Length of WPTS to be installed on link (i,j) [km]
yq	� 1 if the flow demand q is feasible, 0 otherwise
b
q

i
	� Remaining power when flow demand q reaches node i [kWh]
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g
q

ij
	� Electric power to be transferred for flow demand q on link (i,j) [kWh]

bo
i
	� Remaining power when the flow whose origin is o reaches node i [kWh]

go
ij
	� Electric power to be transferred for the flow whose origin is o on link (i,j) 

[kWh]

2.2 � Optimal Location Problem for In‑motion WPTS

2.2.1 � Flow Demand‑Based Formulation

First, we formulate a flow-capturing location problem for in-motion WPTSs. A flow 
demand is captured when an EV with a certain battery capacity can reach its destina-
tion using its battery capacity and energy transferred via WPTS.

subject to:

Objective function (1) maximizes the total flow that can complete the trip with-
out a power shortage. Constraint (2) is a power-conservation equation. On each link 
(i, j) , an EV that departs from node i with remaining power bq

i
 would consume cij and 

recharge gq
ij
 ; thus, its energy should be equal to bq

j
 when arriving at node j . Con-

straint (3) checks the feasibility of flow demand q , which is a key expression for our 
formulation. Note that the left-hand side is zero when yq = 1, and a large negative 

(1)Max.
∑

q∈Q
fq yq,

(2)b
q

i
− cij + g

q

ij
= b

q

j
∀q ∈ Q, (i, j) ∈ Eq

(3)mq

(
1 − yq

)
≤ b

q

i
∀q ∈ Q, i ∈ Nq

(4)b
q

i
≤ u ∀q ∈ Q, i ∈ Nq

(5)g
q

ij
≤ rij xij ∀q ∈ Q, (i, j) ∈ Eq

(6)
∑

(i,j)∈E
xij = s

(7)yq ∈ {0,1} ∀q ∈ Q

(8)0 ≤ xij ≤ lij ∀(i, j) ∈ E

(9)b
q

i
≥ 0 ∀q ∈ Q, i ∈ Nq

(10)g
q

ij
≥ 0 ∀q ∈ Q, (i, j) ∈ Eq
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number mq when yq = 0. That is, the remaining power bq
i
 for flow demand q should 

always be positive if yq = 1; meanwhile, it can be negative if yq = 0. Although a uni-
formly large value of mq is acceptable, it is preferable to set it individually as small 
as possible to improve the solution performance. For example, we can use 
mq = u −

∑
(i,j)∈Eq

cij . Constraint (4) aims to restrict the remaining power bq
i
 under 

battery capacity u . Constraint (5) ensures the installation of the WPTS to transfer 
electric power. Constraint (6) specifies the total length of the installed WPTS; this 
corresponds to the budget constraints. If it is possible to install as many WPTSs as 
possible, all flows will be feasible. However, the budget will be insufficient if too 
many WPTSs are installed. Therefore, this constraint limits the total length of the 
WPTS that can be installed. Even if the total length of WPTSs is constant, the num-
ber of feasible flows varies greatly depending on how WPTSs are scattered over the 
network. We aim to determine the optimal solution to this problem. Finally, con-
straint (7) is for binary variables, and constraints (8) and (9) are for continuous vari-
ables. Figure  3 illustrates the variables that describe the power supply pattern of 
flow q to understand the equations of constraints (2)–(4), and mq.

2.2.2 � Origin‑Based Formulation

Although mathematical problems (1)–(10) are straightforward, they require time to 
be solved because both the decision variables bq

i
 and gq

ij
, and constraints (2) and (4) 

are prepared per flow demand per link. As we assume a simplified situation in which 
each flow demand uses the shortest path, we propose an origin-based formulation 
that reduces the number of variables and constraints and enables us to derive the 
optimal solution faster. In particular, we focus on the shortest-path tree and com-
bined some of the decision variables and constraints per origin.

Based on Fig.  4, let us consider a situation to analyze the feasibility of flow 
demands A → B and A →(B)→ C. Here, A →(B)→ C indicates that the origin is A, the 
destination is C, and B is a waypoint passing through the way to C. Because we 
assume that every flow demand uses the shortest path, A → B and A →(B)→ C share 
the route of A → B. Thus, the two demands have the same origin and overlapping 
paths. This allows us to discuss the feasibility of A → B and A →(B)→ C in relation 
to each other. If A → B is not feasible, then A →(B)→ C must also not be feasible 
(as shown in Fig.  4a). In contrast, if A →(B)→ C is feasible, then A → B must be 
feasible (as shown in Fig. 4b). In other words, if there is an energy supply pattern 
that makes A →(B)→ C feasible, then A → B is feasible with the same power sup-
ply pattern. However, the energy supply patterns analyzed using this approach are 
constructed for the longest paths, resulting in extra energy supplied for short dis-
tances. In fact, as shown in Fig. 4b, A → B can be reached without a power supply, 
but its energy supply pattern is designed to use the WPTS along the way to match 
A →(B)→ C. Therefore, we will formulate a separate algorithm in the next section 
to calculate the necessary and sufficient amounts of energy supply.
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The proposed problem, which is an origin-based formulation, is as follows:

subject to:

(11)Max.
∑

q∈Q
fq yq,

(12)bo
i
− cij + go

ij
= bo

j
∀o ∈ O, (i, j) ∈ To

(13)mq

(
1 − yq

)
≤ b

o(q)

i
∀q ∈ Q, i ∈ Nq

(14)bo
i
≤ u ∀o ∈ O, i ∈ N

(15)go
ij
≤ rijxij ∀o ∈ O, (i, j) ∈ To

Fig. 3   Basic concepts of the variables related to energy consumption

Fig. 4   Feasibility of flow demands A→B and A→(B)→C
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Objective function (11) is similar to demand-based formulation (1); that is, 
it maximizes the total flow that can complete the trip without a power short-
age. Constraint (12) is a power-conservation equation, in which the variables are 
related to the electric power per origin. We only prepare the constraints on the 
shortest-path tree because all flows must use the shortest tree. We check the fea-
sibility of each flow demand, and separately calculated the necessary and suffi-
cient amounts of power supply to summarize each origin. Constraint (13) checks 
the feasibility of flow demand q , which should be prepared for each demand. 
Constraint (14) restricts remaining power bo

i
 under battery capacity u . Other con-

straints are the same as those of the flow demand-based formulations.

2.3 � Algorithm for Recharging Behaviors of EVs

From the formulation, we calculate the actual amount of power that an EV charges 
via the WPTS at each demand given a certain WPTS arrangement. In the optimiza-
tion problem, the amount charged using the WPTS for each q  can be calculated by ∑

(i,j)∈Eq
g
o(q)

ij
 . However, this charging amount is clearly greater than the amount 

needed to ensure the feasibility of the flow demand. Under a pay-as-you-go system, 
economically rational drivers of EVs will want to use WPTS charging as little as 
possible (because it is more expensive than home or work charging), and they have 
the control to bypass WPTS charging when desired (by driving in the non-WPTS 
lane); thus, we determine the required charge for a user.

The following algorithm simulates the driver’s recharging behaviors and deter-
mines the recharging amount for each feasible flow demand q . Given the optimal 
locations 

{
x∗
ij

}
 for WPTSs, we determine the necessary recharging amount hq for 

flow demand q . A pseudocode of the algorithm is presented as follows, and this 
pseudocode is individually applied for all feasible flow demands q whose yq = 1. 
Step 1 calculates aq

j
 , which represents the required power at node j for demand q in 

the reverse direction. In step 2, we determine the necessary recharging amount hq for 
flow demand q , simulating the charging and discharging of the battery in the for-
ward order. 

(16)
∑

(i,j)∈E
xij = s

(17)yq ∈ {0,1} ∀q ∈ Q

(18)0 ≤ xij ≤ lij ∀(i, j) ∈ E

(19)bo
i
≥ 0 ∀o ∈ O, i ∈ N

(20)go
ij
≥ 0 ∀o ∈ O, (i, j) ∈ To
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###Step1. calculate the required power 

##initialization

;  # required power at the destination is 0

; # back from the destination

##calculate for all nodes of 

while #until reaching the origin 

derive node ;  #let be the node immediately before 

; #calculate the required power at node 

;  #move to next upstream nodes

###Step2. calculate the necessary recharging amount 

##initialization

remained ;  #remaining power at the origin is (battery capacity)

; #start from the origin

; #initialization of the necessary recharging amount

##scanning the route of 

while #until reaching the destination 

derive node ;  #let be the node immediately after 

if 

recharge ;  #recharging amount at 

remained remained recharge; #update remained

recharge; #add the recharging amount to 

else

remained ;

; #move to next downstream nodes
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3 � Numerical Analysis of a Japanese Expressway Network

3.1 � Networks and Flow Volumes

Using the methods presented in Section  2, we apply our model to the Japanese 
expressway network. After identifying the optimal WPTS locations, we examine the 
economic rationality of the WPTS for the Japanese expressway network.

First, we summarize the network data. To analyze the Japanese expressway net-
work, we extract each ramp and junction from OpenStreetMap and regard them as 
nodes of the road network. The actual distances between the nodes are calculated 
from the data. In addition, the elevation data of each node and average gradient of 
each link are calculated. The gradient data are used to calculate the energy consump-
tion of the EVs more accurately.

Japan’s expressways have a total length of approximately 9,000  km. Two rep-
resentative networks are selected from these expressways, as shown in Fig. 5 and 
Table  1. These representative networks differ in terms of the scale of the metro-
politan areas through which they pass. Specifically, the Tokyo–Osaka expressway, 
denoted by [N1], is the busiest network because it connects the top three metro-
politan areas in Japan: Tokyo, Aichi, and Osaka. Meanwhile, the Tokyo–Aomori 
expressway, denoted by [N2], has Tokyo on one side and extends to the rural Aomori 
area. Therefore, these expressway networks have different flow-demand characteris-
tics. Figure  6 shows the visualization of the flow demand for [N1] Tokyo–Osaka 
and [N2] Tokyo–Aomori.

Fig. 5   Japanese expressway networks
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3.2 � Parameter Settings

We summarize the parameter settings for the energy consumption. In this study, we 
use Eq. (21) to calculate the motor power [kW], based on the studies by Tanaka et al. 
(2008), Wu et al. (2015), and Fiori et al. (2016).

In this study, we uniformly assume a constant speed of v =80 km/h = 22.22 m/s, 
which is determined based on the Japanese law concerning speed limits, and no 
acceleration/deceleration ( a =0 m/s2) is considered across all the networks. There-
fore, Eq.  (21) expresses the motor power P when road gradient is � [°]. For � , we 
assign the average gradient of each link. The parameters used in this study, based 
on Tanaka et al. (2008), Wu et al. (2015), Fiori et al. (2016), and The Engineering 
ToolBox (2008), are summarized in Table 2. In these parameters, we assumed a Nis-
san Leaf as the EV [P2]. In addition, we prepared patterns with a good [P1] and poor 
[P3] energy consumption, because the cost of electricity is highly dependent on the 
aerodynamic drag coefficient. [P1] assumes a car with a modern design, whereas 
[P3] assumes a car with a traditional design (The Engineering ToolBox 2004).

Next, we assume the transfer power of the WPTS. Although there is no global 
standard amount of power to be transferred by an in-motion WPTS, existing 

(21)P(�) =
1

�
v
(
ma + mg cos � frl +

1

2
�AfCDv

2 + mg sin �

)

Table 1   Summary of the Japanese Expressways analyzed in this study

Entries [N1] Tokyo–Osaka [N2] Tokyo–Aomori

Total distance (round-trip length) [km] 965.05 1,359.90
Total number of ramps 45 57
Total number of links 166 244
Total flow volume [×103 vehicles] 127,177 121,184
Total number of flow demands (between ramps) 1,397 2,547
Affected metropolitan areas Tokyo, Aichi, Osaka Tokyo

Fig. 6   Visualization of the flow demand on the chosen networks
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studies assume a power output of 20–25 kW (Hata et al. 2019). In addition, when 
a vehicle is stationary, a wireless power transfer, such as that of WPT4, has been 
proposed (SAE J2954 Standard 2020). In this study, the transfer capacity is set to 
22 kW with a transfer efficiency of 85%, resulting in a power output of 18.7 kW.

For the economic rationality, we used 108 yen, which is approximately [one 
million USD], considering the overall difference in exchange rates and prices, 
as the unit for calculating the revenue and cost (WSJ Markets 2022). The cost of 
installing 1 km of a WPTS is estimated to be 2.5 × 108 yen, as per previous stud-
ies (Fuller 2016) and Japanese domestic data (Shoki 2021). Regarding the cost of 
WPTS, this study follows these previous studies and considers only variable costs. 
Although considering fixed costs is undoubtedly preferable, fixed costs are largely 
dependent on substation facilities, which are often shared with other pre-existing 
power facilities. This implies that no additional fixed costs are associated with 
the installation of WPTSs, or if there are, no singular price can be determined. 
For the economic calculation, we compare the income and expenditures per year. 
We derive the annual value of 0.168 × 108 yen, assuming a 3% interest rate and 
20-year depreciation period based on the distance of the WPTS installation.

The revenue is assumed to follow a pay-as-you-go system based on the amount 
of energy supplied. Using the algorithm proposed in Section  2, the amount of 
electricity that EVs require to recharge their batteries can be determined. By 
multiplying this amount by the cost of electricity, the operator’s revenue can 
be calculated. Here, we assume an additional price of 50 yen/kWh, which is 
approximately equal to that of gasoline used by fuel vehicles, and assume that the 
diffusion rate of EVs is 30%.

Finally, for the battery capacity, we assume [U1] 40 kWh and [U2] 30 kWh. 
The former assumption is equivalent to that of the current Nissan Leaf. However, 
when WPTS becomes a major infrastructure, a decrease in the battery capacity is 
expected. Therefore, [U2] 30 kWh is considered in this study for a more realistic 
assumption of the WPTS usage.

Table 2   Parameters for calculating the motor power

Parameters [P1] Modern [P2] Normal [P3] Traditional

Speed of vehicle v [m/s] 22.22
Acceleration/deceleration of vehicle a [m/s2] 0
Efficiency of the electric motor � [%] 90
Vehicle weight (including the driver) m [kg] 1640
Gravitational acceleration g [m/s2] 9.8066
Rolling resistance coefficient frl 0.015
Air mass density � [kg/m3] 1.2256
Frontal area of the vehicle Af  [m2] 2.34
Aerodynamic drag coefficient CD 0.20 0.32 0.50
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3.3 � Computational Experiments

The above network conditions and parameter settings can be summarized into two 
networks ([N1] and [N2]), three power-cost patterns ([P1], [P2], and [P3]), and two 
battery capacities ([U1] and [U2]), achieving a total of 12 scenarios. For all these 
scenarios, the optimal solution is calculated by iterating the total length of WPTS 
to be installed, increasing it by 20 km at each iteration until the entire demand is 
covered. We employ flow-based and origin-based formulations and address all the 
above scenarios. Gurobi 9.0 is used as the general MIP solver on a PC having four 
3.1 GHz cores and 64 GB RAM.

Here, let us summarize the size of both the flow-based and origin-based formula-
tions. The flow-based formulation has a total number of variables given by 
|E| + |Q| + |Q| × |||Nq

||| + |Q| × |||Eq
||| (corresponding to xij , yq , b

q

i
 , and gq

ij
 , respec-

tively), and the total number of constraints is |Q| × |||Eq

||| + |Q| × |||Nq

||| + |Q| × |||Nq

|||
+|Q| × |||Eq

||| + 1 + |Q| + |E| + |Q| × |||Nq

||| + |Q| × |||Eq

||| (corresponding to Eqs.  (2)– 
(10), respectively). For the [N1] network, the number of variables is 112741 and the 
number of constraints is 280033. Similarly, for the [N2] network, the number of var-
iables is 279515 and the number of constraints is 695575.

In contrast, for the origin-based formulation has a total number of variables given 
by |E| + |Q| + |O| × |N| + |O| × ||To|| (corresponding to xij , yq , boi  , and go

ij
 , respec-

tively), and the total number of constraints is |O| × ||To|| + |Q| × |||Nq

||| + |O| × |N|

+|O| × ||To|| + 1 + |Q| + |E| + |O| × |N| + |O| × ||To|| (corresponding to Eqs.  (12)– 
(20), respectively). For the [N1] networks, the number of variables is 16593 and the 
number of constraints is 40491. Similarly, for the [N2] network, the number of vari-
ables is 30721 and the number of constraints is 75107.

These calculations confirm that the origin-based formulation significantly 
reduces the size of the problem compared with the flow-based formulation.

4 � Numerical Results

4.1 � Computation Time

Table  3 presents the time taken to obtain the solution and the percentage of the 
exact solutions for each WPTS installation distance. For example, in scenario [N1]
[P1][U1], the coverage reaches 100% at 180 km; therefore, we calculate nine pat-
terns for the total length of the WPTS: 20 km, 40 km, 180 km, and so on. Table 3 
shows the minimum, average, and maximum values of such patterns in the same 
scenario. Because we set an upper limit of 2 h for the solution, the exact solution is 
not obtained in some cases if the computational load is too high. Therefore, we also 
summarize how many times out of all distance patterns the optimal solution with 
a gap of 0.00% is obtained. The objective function values are confirmed to be the 
same between the flow-based and origin-based models.
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For [N1] Tokyo-Osaka, any [P] and [U], the exact solutions are obtained using both 
models. The origin-based model achieves the solution faster, consuming less than a 
quarter of the time for the flow-based model. In particular, for [N1][U1], any [P], the 
calculation is completed within 30 s, and exact solutions are obtained for all scenarios. 
Meanwhile, for [N2] Tokyo-Aomori, any [P] and [U], the computation time is longer 
for both models because of the increased number of origin–destination pairs, and 
the exact solution cannot be derived in some patterns. However, the exact solution is 
obtained for more cases with the origin-based model than with the flow-based model, 
which indicates the effectiveness of the former model. Because this study aims to 
maximize the coverage, the obtained solution guaranteed the low limit of the demand 
coverage and economic rationality.

Table 3   Computation time to solve the problem in each scenario

Entries Origin-based model Flow-based model

[P1] Modern [P2] Normal [P3] 
Traditional

[P1] 
Modern

[P2] 
Normal

[P3] 
Traditional

(a) [N1] Tokyo–Osaka, [U1] 40 kWh

Min. [s] 0.17 0.45 0.59 2.14 11.58 11.32
Average [s] 1.13 3.46 7.97 3.53 14.03 33.72
Max [s] 1.79 6.15 27.7 5.55 19.92 96.91
Rate of the
exact solution

100.00%
 (8/8)

100.00%
 (13/13)

100.00%
 (21/21)

100.00%
 (8/8)

100.00%
 (13/13)

100.00%
 (21/21)

(b) [N1] Tokyo–Osaka, [U2] 30 kWh

Min. [s] 0.59 0.64 0.69 13.59 16.62 28.69
Average [s] 4.25 9.89 131.26 20.51 46.16 574.58
Max [s] 9.02 33.14 1894.1 35.63 129.68 6757.28
Rate of the
exact solution

100.00%
 (12/12)

100.00%
 (17/17)

100.00%
 (26/26)

100.00%
 (12/12)

100.00%
 (17/17)

100.00%
 (26/26)

(c) [N2] Tokyo–Aomori, [U1] 40 kWh

Min. [s] 1.30 1.65 2.56 33.37 100.90 138.42
Average [s] 17.28 64.31 706.91 115.75 316.67 1797.4
Max [s] 54.33 588.97 7200.00 300.48 815.71 7200.00
Rate of the
exact solution

100.00%
(18/18)

100.00%
(25/25)

94.44%
(34/36)

100.00%
(18/18)

100.00%
(25/25)

91.57%
(33/36)

(d) [N1] Tokyo–Aomori, [U2] 30 kWh

Min. [s] 1.78 2.08 2.17 161.87 147.36 151.55
Average [s] 88.13 1127.18 3349.68 527.02 2374.92 4172.69
Max [s] 515.01 7200.00 7200.00 2256.95 7200.00 7200.00
Rate of the
exact solution

100.00%
(22/22)

93.33%
(28/30)

60.98%
(25/41)

100.00%
(22/22)

86.67%
(26/30)

51.22%
(21/41)
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4.2 � Coverage of the Flow Demands

Figure 7 shows the coverage of flow demand as a function of the WPTS installa-
tion distance for all 12 scenarios. The coverage followed the order of [P1] Mod-
ern > [P2] Normal > [P3] Traditional, for any [N] and [U]. To clarify the influ-
ence of each assumption, Tables  4 and 5 summarize the results, which show 
different coverages at the same WPTS installation distance and different WPTS 
installation distances to achieve the same coverage, respectively.

Based on Table  4, the coverage ratio is approximately 5% lower for [U1] 
40kWh than that for [U2] 30kWh, regardless of [N] and [P], under the same 
WPTS installation distance in any scenario. For example, the coverage ratio is 
89.89% in scenario [N1][P2][U2] of 100  km, but the WPTS can cover 95.01% 
upon switching to 40 kWh, [N1][P2][U1] of 100 km. The difference in the drag 
coefficient has a considerable effect on the coverage, that is, the drag coefficient 
of [P3] Traditional is more than 10% lower than that of [P1] Modern, regard-
less of [N] and [U]. In scenario [N1] [P1] [U2] of 100 km, the coverage ratio is 
94.94%; however, it reduces to 82.07% when [N1][P3][U2] of 100 km.

Fig. 7   Relationships between the wireless power transfer systems installation distance and coverage of 
flow demands
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Based on Table 5, the difference in battery capacity of 10 kWh is reflected in 
the difference in the required installation distance of 100 km or more. For exam-
ple, the required WPTS distance to achieve 95% coverage is 100  km in scenario 
40kWh [N1][P2][U1], but it increases to 200 km upon switching to 30kWh, [N1]
[P2] [U2]. Similarly, the difference in the drag coefficient has a considerable effect 
on the WPTS installation distance; that is, [P3] requires an installation distance that 
is more than 100 km worse than that of [P1], regardless of [N] and [U]. To achieve 
95% coverage, the required WPTS distance is 120 km in scenario [N1][P1][U2] and 
220 km in scenario [N1][P3][U2].

Finally, we examine the WPTS installation distance where 100% coverage is 
achieved with the combination of [P2] Normal and [U2] 30 kWh, which yields the 
most realistic assumption. The WPTS installation distance is 340 km for [N1][P2]
[U2] and 600 km for [N2][P2][U2]. This corresponds to approximately 40% of the 
total network extensions in both cases.

Table 4   Difference in coverage at the equal WPTS installation distance

[U1] 40 kWh [U2] 30 kWh

[P1] Modern [P2] Normal [P3] 
Traditional

[P1] Modern [P2] Normal [P3] 
Traditional

(a) [N1] Tokyo–Osaka

0 km 93.78% 88.74% 84.42% 86.6% 81.99% 73.54%
100 km 97.96% 95.01% 89.44% 94.94% 89.89% 82.07%
200 km 100.00% 98.07% 94.5% 98.25% 95.32% 88.81%
300 km 100.00% 100.00% 97.43% 100.00% 98.25% 94.92%
400 km 100.00% 100.00% 98.9% 100.00% 100.00% 97.64%
500 km 100.00% 100.00% 100.00% 100.00% 100.00% 99.57%
600 km 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

(b) [N2] Tokyo-Aomori

0 km 95.16% 91.19% 86.28% 89.36% 84.02% 70.61%
100 km 98.00% 95.58% 90.70% 95.20% 90.89% 83.25%
200 km 99.25% 98.00% 94.22% 98.22% 94.98% 88.16%
300 km 99.80% 99.18% 96.68% 99.31% 97.51% 92.59%
400 km 100.00% 99.67% 98.61% 99.84% 99.22% 95.32%
500 km 100.00% 100.00% 99.24% 100.00% 99.70% 97.62%
600 km 100.00% 100.00% 99.67% 100.00% 100.00% 99.29%
700 km 100.00% 100.00% 99.88% 100.00% 100.00% 99.69%
800 km 100.00% 100.00% 100.00% 100.00% 100.00% 99.90%
900 km 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
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4.3 � Economic Rationality

Figure 8 shows a comparison of the economic revenue and costs for all 12 scenarios 
with different parameter settings. The WPTS installation cost is given as a straight 
line because it is assumed to be constant and proportional to the installation dis-
tance, regardless of the scenario. If the revenue based on the user’s charging power 
exceeds the projected WPTS installation cost, the project is deemed economically 
viable. As the revenue curve exhibits an upward convex, there is an appropriate 
WPTS installation distance that is economically viable in most scenarios.

Contrary to the coverage results, economic rationality is satisfied in the order 
of [P3] Traditional > [P2] Normal > [P1] Modern, regardless of [N] and [U]. This 
is because the revenue is assumed to be based on the amount of power provided 
to the EVs, and EVs with lower efficiency need to charge more. To demonstrate 
this difference clearly, Table 6 summarizes the distance ranges where the net rev-
enue is positive for each scenario. The achieved coverage ratio at that distance is 
also described. For [P1] Modern, economic rationality requires [U2] for both [N1] 
and [N2]. For [P3] Traditional, a broad range of WPTS installation distances satis-
fies the economic rationality for any [D] and [U]. These results indicate that WPTS 
should be combined with other approaches to reduce the battery capacity of EVs.

4.4 � Optimal Locations

Figure 9 shows the WPTS locations that achieved the coverages of 100% and 95% 
under the most realistic combination of [P2] Normal and [U2]30 kWh, for both [N1] 
and [N2]. Note that the flow demand here is based on the direction, and Japan is 

Table 5   Difference in the WPTS installation distance to achieve the same coverage

[U1] 40 kWh [U2] 30 kWh

[P1] Modern [P2] Normal [P3] 
Traditional

[P1] Modern [P2] Normal [P3] Traditional

(a) [N1] Tokyo–Osaka

80% 0 km 0 km 0 km 0 km 0 km 80 km
85% 0 km 0 km 20 km 0 km 40 km 140 km
90% 0 km 20 km 120 km 40 km 120 km 220 km
95% 20 km 100 km 220 km 120 km 200 km 320 km
100% 160 km 260 km 420 km 240 km 340 km 520 km

(b) [N2] Tokyo–Aomori

80% 0 km 0 km 0 km 0 km 0 km 80 km
85% 0 km 0 km 0 km 0 km 20 km 140 km
90% 0 km 0 km 100 km 20 km 100 km 240 km
95% 0 km 100 km 240 km 100 km 220 km 400 km
100% 360 km 500 km 720 km 440 km 600 km 820 km
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a left-hand drive traffic area. The upstream and downstream traffic have different 
optimal locations. In long-distance travel, while traveling from one end of the high-
way to the other, the latter part of the travel will coincide with the latter part of the 
highway. In such cases, WPTS will be used during the latter part of the travel, when 
the onboard battery capacity will be insufficient. Therefore, it is optimal to install 
WPTSs continuously with a coverage of 100%, mainly in the latter part of the net-
work. However, for shorter trips, the latter part of the trip will not necessarily be 
the latter part of the highway. Therefore, the WPTSs will need to be scattered all 
over the highway, not necessarily in its latter part, for a coverage of 95%. Figure 6 
describes that these flows account for most of the demand. The results indicate that 
the optimal configuration greatly differs depending on the direction and percentage 
of demand to be covered.

5 � Discussion

5.1 � Potential of WPTS

Based on the results of the numerical experiments, coverage and economic ration-
ality vary reasonably depending on the scenario, as shown in Tables 4 and 5. In 
particular, the EV performance (battery capacity and/or drag coefficient) has a 

Fig. 8   Economic rationalities under various scenarios
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significant effect, causing the WPTS installation distance to fluctuate by more 
than 100 km. For example, 520 km is needed for complete coverage in scenario 
[N1][P3][U2], whereas only 340 km is required if switched to [N1][P2][U2] and 
420 km if we switched to [N1][P3][U1]. Overall, WPTS exhibits sufficient poten-
tial as an EV power-supply system. Particularly, WPTS demonstrates economic 
rationality not only in busy networks, such as [N1] Tokyo–Osaka, but also in 
relatively sparsely populated networks connecting urban and rural areas, such as 
[N2] Tokyo–Aomori.

The numerical results indicate that [P1] Modern and [P2] Normal do not pay 
off financially because the WPTS assumes that the user is charged only for the 
amount of recharging. However, if the system collects the basic usage fee, there 
is a good possibility that economic rationality can be established even for [P2] 
Normal. Consequently, these results indicate that the WPTS has the potential to 
become a major infrastructure catalyst for the large-scale diffusion of EVs.

Nonetheless, the sole use of WPTSs as EV infrastructures imparts limited poten-
tial. In particular, it is more realistic to use WPTS in combination with EV recharg-
ing stations. This is clearly confirmed by the length of the new WPTS installation 
distance with a positive net revenue. Table 6 shows that economic rationality was 
not achieved with 100% coverage in most scenarios. Thus, the use of WPTS to cover 
100% demand is not an economical approach. It is important to determine a good 
balance between the demand that should be covered by the WPTS and that by EV 
recharging station infrastructures. We also describe the variations of the optimal 
locations when the required coverage changes using our model, which is formulated 
as a flow-capturing location problem. These discussions highlight the importance of 
appropriately setting the coverage target of WPTS.

5.2 � Multiple Optimal Solutions of the WPTS Locations

In this study, we formulate a mathematical model to derive the optimal locations 
with flexibility. Figure 10 illustrates a simplified example to demonstrate the flex-
ibility of the WPTS locations, considering an EV with a battery capacity less than 
that needed to complete the trip. In this case, they can charge either in the early or 

Table 6   Distance ranges and coverages with positive net revenue

[U1] 40 kWh [U2] 30 kWh

[P1] 
Modern

[P2] 
Normal

[P3] 
Traditional

[P1] 
Modern

[P2] 
Normal

[P3] Traditional

[N1] Tokyo–
Osaka

- 20–120 km
(90.08–

95.39%)

20–380 km
(85.18–98.60%)

20–140 km
(88.61–

95.91%)

20–340 km
(84.72–

100%)

20–520 km
(76.33–100%)

[N1] Tokyo–
Aomori

- - 20–180 km
(87.55–93.53%)

20–20 km
(90.89–

90.89%)

20–180 km
(86.79– 

94.43%)

40–500 km
(76.82–97.62%)
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late parts of the trip. In reality, the locations of the WPTSs should be common for 
all feasible flows q , resulting in a limited flexibility but lenient conditions that allow 
more than one unique location to be determined. This characteristic is not limited 
to our mathematical model and is similar to earlier models of the charging station 
locations of alternative fuel vehicles (Kuby and Lim 2005; Struben 2006). However, 
unlike earlier models, such as FRLM, our mathematical model controls the locations 
of WPTSs using continuous variables and assumes the feasibility of demands as a 
one-way trip, resulting in multiple optimal solutions.

In this study, it is not possible to uniquely determine which of these possible 
locations is preferable because various factors need to be considered. For example, 

Fig. 9   Optimal Locations of the wireless power transfer systems for [P2] Normal and [U2] 30 kWh
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considering two possible WPTS locations: one with more overlap in the upper and 
lower lines, whereas the other has less overlap, it is difficult to determine which 
of these configurations is preferable. In the construction phase, it may be easier to 
work if the WTPS on the upper and lower lines are close to each other. However, 
the WTPS overlapping of the upper and lower lines indicates the convergence of the 
power supply in spatial aspects. As the WPTS supplies a large amount of power to 
the vehicles, excessive convergence of power supply may overload the power net-
work. Therefore, in terms of the power supply, it may be preferable to distribute 
them. In terms of the vehicle, it may be more convenient to have WPTSs near the 
end of their trip, rather than having them immediately after their origin. In any case, 
it is not easy to determine which of these scenarios is preferable.

Fig. 10   Simplified example to demonstrate the flexibility of the wireless power transfer systems locations

Fig. 11   Flexibility of the wireless power transfer systems locations
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The flexible installation of the WPTS provides implications for its future integra-
tion with intelligent transportation systems (ITS). As an example, Fig. 11 illustrates 
the optimal locations of WPTS based on the flow-based and origin-based models. 
The models achieve different locations owing to the locational flexibility; however, 
we confirm that both approaches obtained equal optimal values (demand coverage), 
suggesting an equal set of feasible flows. The heat map, and location and mode of 
charging obtained based on the algorithm in Section 2.3, are visualized. The power 
supply has clearly different spatial distributions. This spatial distribution of the power 
heat map also has some flexibility. In particular, there are two flexibilities: WTPS 
location and recharging pattern. As the WPTSs are installed over long distances, each 
EV does not have to be recharged at all WPTSs along the trip. If the battery capacity 
and power management condition of avoiding power shortage are satisfied, they can 
recharge at any location with the WPTSs. As the algorithm in Section 2.3 is based 
on the assumption that the EV charges as early as possible, the results of the heat 
map are expected to be different if the EV charges as late as possible. These results 
demonstrate favorable characteristics for ITS systems by allowing significant control 
on the impact on the power system through the flexibility in the WPTS locations and 
power supply pattern of EVs. These discussions should be considered for the design 
of WPTS infrastructures to achieve an ITS society focused on EVs.

6 � Conclusions

In this study, we propose a new flow-capturing location problem for charging EVs 
in-motion using inductive wireless power transfer systems. The model makes impor-
tant theoretical and methodological contributions by formulating it using continuous 
decision variables to represent the length of WPTS to be built on each link. This 
enables the model to find lower cost solutions than are possible when WPTS must 
be built on an entire link or none of the link while making it possible to solve the 
problem using a general MIP solver. Assuming long-distance trips following their 
shortest paths, we convert the problem to an origin-based, maximum cover formu-
lation, which enables faster computation than original flow-based formulation and 
greater flexibility than a complete coverage formulation. An algorithm to calculate 
the amount of energy required for each flow demand is also designed.

Using the model, we analyze the effectiveness of the WPTS in Japan’s express-
way network. We demonstrate that WPTS has economic rationality not only in busy 
networks but also in sparsely populated networks that connect urban and rural areas, 
which contributes to the first finding in WPTS location analyses. Given the complex 
tradeoffs among the distance of the WPTS installation, demand coverage ratio, and 
net revenue, WPTS has a positive potential as an EV infrastructure under certain 
scenarios. It is cost-effective to narrow down the demand to be covered, but full cov-
erage of the entire expressway system by WPTS is not economically advisable. The 
analysis highlights the limitations of relying on WPTS alone for EV infrastructures, 
thereby providing useful insights for stimulating the mixed use of WPTS and plug-
in charging stations. The results here also highlighted the flexibilities for the optimal 
location of WPTS and the resulting heat map of the amount of electricity supplied 
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to EVs, which can aid decision-makers in developing an effective WPTS network 
design for widespread use of EVs with uneven distribution of electricity supply.

In the future, an analysis assuming the mixed use of WPTSs and EV recharg-
ing stations is essential. As shown in Fig.  2, each infrastructure has complemen-
tary characteristics; thus, it is favorable to determine the best mix strategy accord-
ing to demand and network geometry. EV recharging stations are less expensive to 
install but cannot handle high demand; WPTSs are more expensive to install but can 
handle higher demand. Such integration of EV charging stations will influence the 
economic rationality of WPTSs. While the availability of EV stations could reduce 
WPTS usage by providing an alternative charging solution, they could paradoxi-
cally enhance the number of WPTS users by making long-distance EV trips more 
feasible. Detailed analyses based on the combined use of both WPTS and EV sta-
tions will yield a more accurate understanding of the economic rationalities for both 
WPTS and EV stations. In that case, more perspectives on electricity capital invest-
ment must be included, such as fixed costs due to substation facilities, which are not 
considered in this study.

Further, focus also should be placed on the long-term time series of gradual 
increases in EV penetration. Our study underscores the formulation concept, 
data structure, and basic properties of the optimal WPTS location, as outlined 
above. Note that the resulting model is static and deterministic, lacking explicit 
consideration of the time horizon concept. In the real world, over the depreci-
ation period of 20  years for the WPTS, both EV penetration and demand will 
invariably evolve. Modifying the proposed model to account for these medium 
and long-term temporal aspects presents an appealing avenue for future research. 
In such a development, creating a spectrum of future scenarios and conducting 
Monte–Carlo simulations would be beneficial.

The accurate prediction of the power consumption while moving is also an 
important issue that should be addressed. Our model assumes no uncertainty in 
power consumption. This is synonymous with the assumption that the EV driver 
can perfectly predict power consumption and power requirements. Thus, EV driv-
ers can opt to charge earlier, which can be achieved considering the flexibility of 
the locations of the WPTS. However, in practice, power consumption fluctuates 
depending on the acceleration/deceleration, road conditions, weather, and other 
factors. Moreover, it is difficult to determine when the drivers want to charge the 
batteries. These uncertainties in the power charging behavior should be consid-
ered as an extension of the proposed model. In terms of economic rationality, it is 
important to incorporate a structure with a demand that fluctuates with the price 
of electricity. In this study, the demand is fixed regardless of the amount of power 
needed to be supplied by the WPTS, whereby a higher power requirement for a 
smaller battery capacity and higher aerodynamic drag is found to be more profit-
able. However, in reality, the demand for mobility in this scenario can be reduced 
if more power is supplied, and its cost can be higher. As the price of electricity 
also varies depending on the location and time of day, it will be interesting to 
elaborate on these assumptions in future works.
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We foresee the application of WPTS extending to freight trucks in the future, 
potentially providing a low-carbon solution for the logistics sector. While this 
study focused on passenger EVs, we acknowledge the potential for analyses that 
concurrently consider a variety of vehicle types, including electrically powered 
freight trucks. This study has the potential to serve as a foundation for more in-
depth discussions on the social implementation of WPTS.
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