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Abstract
Understanding the structure of communities in a network has a great importance in
the economic analysis. Communities are indeed characterized by specific properties,
that are different from those of both the individual nodes and the whole network,
and they can affect various processes on the network. In the International Trade Net-
work, community detection aims to search sets of countries (or of trade sectors)
which have a high intra-cluster connectivity and a low inter-cluster connectivity.
In general, exchanges among countries occur according to preferential economic
relationships ranging over different sectors. In this paper, we combine community
detection with specific topological indicators, such as centrality measures. As a
result, a new weighted network is constructed from the original one, in which weights
are determined taking into account all the topological indicators in a multi-criteria
approach. To solve the resulting Clique Partitioning Problem and find homogeneous
group of nations, we use a new fast algorithm, based on quick descents to a local opti-
mal solution. The analysis allows to cluster countries by interconnections, economic
power and intensity of trade, giving an important overview on the international trade
patterns.
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1 Introduction

In network theory, a specific way to detect vertices having a peculiar common feature
is termed clustering or community detection. Formally, a cluster, or a community, is
a subgraph whose similarity or internal connections are stronger than the ones with
the rest of the graph (Fortunato 2010). In recent years there was a surge of interest
on the community structure in economic networks (Hajdu et al. 2019) and, specifi-
cally, in international trade (Barigozzi et al. 2011; Garlaschelli and Loffredo 2004;
2005; Li et al. 2003; Piccardi 2011; Serrano and Boguñá 2003; Serrano et al. 2007).
The classical approach consists in finding sets of countries which are densely con-
nected, through preferential economic relationships. A typical representation of this
phenomenon is through a directed and weighted network, where nodes are countries
and weighted links represent the aggregate trade flows. This representation is named
in the literature as the International Trade Network (ITN).

Under this perspective, it becomes important to map the input-output interrelations
among the countries through an inspection of the communities, where two countries
share the same community if they have a comparable intensity in the trade flows or
if they have preferential trade flows.

International trade has been widely studied in the literature showing that main
characteristics have changed over time, with an acceleration of modifications occur-
ring in the last decades. In particular, over the years, the composition of trade flows
changed making countries even more deeply interconnected. The geographical dis-
tribution of trade also varied, with an increasing role of the emerging countries,
especially in Asia.1

To detect the network structure, a key function is played by the vertex centrality.
The idea of centrality is quite simple to grasp: a numerical score is assigned to each
node of the network so that the higher the score, the more central the node in the
network. The literature has highlighted the importance to be central in an economic
network (see Varela et al. (2015), Blöchl et al. (2011), and Barbero and Zofı́o (2016)).
In particular, centrality may be associated with countries that are the most important
hub of the ITN, even though they are not leading import or export countries ((Blöchl
et al. 2011; De Benedictis and Tajoli 2011)). There are different metrics describing
centrality, but it has been shown that different measures (degree, coreness, etc.) iden-
tify different influential nodes (Ferraz de Arruda et al. 2014). For instance, a node
could be central if it is directly connected with many other nodes, if it has an interme-
diary role in communication, and so on. Indeed, there is no consensus on a univocal
definition of network centrality, because each measure considers only one specific
concept (see, e.g., Newman (2010)). But, resorting to only one of them is discarding a
large amount of the whole information available. Related to centrality, the clustering
coefficient is also an important index to measure the interconnections within a com-
munity. This coefficient has been developed in all the cases of weighted, unweighted,
directed and undirected networks (see Wasserman and Faust (1994), Watts and Stro-
gatz (1998), Barrat et al. (2004), Onnela et al. (2005), Clemente and Grassi (2018),

1https://www.wto.org/english/res e/publications e/anrep10 e.htm
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and Fagiolo (2007)). In particular, Rotundo and Ausloos (2010) discusses the cluster-
ing coefficient in presence of already established communities for directed networks
and Cerqueti et al. (2018) presents a concept of clustering coefficient which also
includes the presence of missing indirect links in the construction of triangles. The
association between communities and clustering coefficients is quite natural. Trian-
gles are the easiest geometric visualization of communities, providing a picture of
non-exclusive interactions among different agents. The relevance of this coefficient
has been investigated also in the context of ITN (see, e.g., De Benedictis and Tajoli
(2011), De Benedictis and Tajoli (2016), Fagiolo et al. (2010), and Cepeda-López
et al. (2019)).

As stressed in Barigozzi et al. (2011), detecting the community structure of
the ITN and how it correlates with country-specific variables and geography (e.g.,
distances between countries) is crucial from an international-trade perspective.
Indeed, finding communities in the ITN means identifying clusters of countries that
carry tightly interrelated trade linkages among them, while being relatively less
interconnected with countries outside the cluster.

In this work, we provide a new methodology for clustering countries based on a
multi-criteria assessment of several topological indicators of centrality. The method
consists of two steps. In the first step, we rank countries in ITN, according to various
centrality measures. In the second one, based on those rankings, we compute the
similarities between countries and then we apply the clustering algorithm based on
the Clique Partition model.

More specifically, in the first step, and unlike classical methodologies, we con-
sider all the most prominent centrality definitions proposed in the literature that are
relevant to international trade. Rather than advocate the superiority of one of them,
we aggregate this rich multi-criteria assessment by defining a proper measure of sim-
ilarity/dissimilarity between nations using their ranking positions. Next, we group
together countries that have common structural features in terms of those rankings.
The main advantage of our proposal is that we do not focus on a single and specific
indicator of centrality, nor we come out with a detailed countries ranking. Rather,
we are able to identify groups of countries that have similar structural properties
in the ITN. A specific tool developed for our project is a new heuristic algorithm
to find clusters, based on the Clique Partition model (Grötschel and Wakabayashi
1989; 1990; de Amorim et al. 1992). The Clique Partition model consists of parti-
tioning the vertices of a graph into the smallest number of cliques. First, a measure
of similarity/dissimilarity between units must be established. This measure can take
both positive and negative values, respectively if two units are similar or dissimilar.
Then units must be partitioned in subsets, in such a way to maximize the similarity
between them. This model has some advantages over the classical k-means or hier-
archical models. First of all, the clique partition model does not require either that
the number of clusters were fixed in advance, e.g. the parameter k, or that the user
should arbitrarily analyse the chart of the hierarchical clusters. Rather, the number
of clusters results by the optimization of an objective function. Moreover, outliers
are not forced to be in a cluster, but they can form peculiar groups of a single ele-
ment. Finally, the principle of the method is that clusters are composed of mutually
homogeneous data, while the k-means models first try to establish cluster’s centres
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and then groups are composed by units that are similar to centres. Conversely, the
clique partitioning forms groups of similar units. Experimental comparison between
the clique partition and other clustering methods can be found in Wang et al. (2008).
The paper is organized as follows. In Section 2, we recall main literature related to
network theory, analysis of ITN and main solution methods for clique partitioning
problems. In Section 3, we describe the methodological framework and the integer
linear programming problem. In Section 3.2, we define the maximum clique parti-
tion problem as well as the algorithm applied for identifying the optimal solution. In
Section 4, a numerical application is developed by using the paradigmatic case of the
ITN. Conclusions follow in Section 5.

1.1 Novelty and Advantages of the ProposedMethodology

The classical meaning of community refers to the clustering of nodes on the basis of
the intensity of the connections between them: the community structure maximizes
the density or the intensity of the connections between nodes inside each cluster,
while members of different clusters are as weakly connected as possible (Newman
and Girvan 2004; Fortunato and Hric 2016). The efforts of the literature have focused
on finding new methodologies to detect communities under specific conditions (i.e.
large or overlapping data, node attributed graphs, multilayer networks, and so on).
Some methods are algorithm-based, such as hierarchical clustering or edge removal
(Clauset et al. 2008). Others are based on the optimization of specific criteria over
all possible network partitions. In this context, it is well-known the optimization of a
modularity function according to Newman’s definition (2004).

We go one step beyond this idea, applying a graph partitioning methods, e.g. the
clique partitioning, to the graph in which arcs are weighted by node similarities. For
instance, in term of centrality, nodes can be grouped together if they have strategic
importance in transmitting information, or if they have similar power or control in the
network. Moreover, our method is not limited to grouping nodes based on a single
characteristic, but it is able to consider simultaneously more than one feature. This
aggregation is general enough to be applied to various frameworks.

We show an application to the ITN. In this context, the identification of com-
munities of countries has been addressed, among others, by Piccardi and Tajoli
(2012), Barigozzi et al. (2011) and Bartesaghi et al. (2020). In Piccardi and Tajoli
(2012), the authors apply the classical maximum modularity criterion showing that
the recognition of the mesoscale structure is increasingly difficult due to the growing
complexity and globalization of the international economic interactions. The corre-
lation between the world partition in communities obtained by a modularity criterion
and geographical distances has been investigated also in Barigozzi et al. (2011). The
authors, both at an aggregate level and at a number of commodity-specific levels,
compare the two maximum modularity partitions of the input-output network and
of the weighted network of the geographical closenesses. They find a high simi-
larity between aggregate trade and geography-based communities, greater than, for
instance, communities determined by regional trade agreements. They conclude that
geographically-related factors explain the patterns of global trade more than polit-
ical determinants. In Bartesaghi et al. (2020), the authors interpret the ITN as a
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metric space by using two different distance measures that overcome the limita-
tions of the shortest-path distance. They highlight strong interconnections between
countries and identify communities as clusters of close countries in terms of such
distances, according to a varying threshold.

Our approach is instead aimed at applying a modularity criterion not to the imme-
diate network of economic exchanges between countries but to a network in which
the connection between countries is represented by a measure of similarity in the
role they play within the global framework. This similarity measure exploits indi-
cators of different nature and, as a consequence, our results will be less dependent
on immediate factors which can affect a stronger or weaker relationship between
pairs of countries, such as geographical proximity, trade agreements, common lan-
guage or traditional partnerships. Taking into account the relevance of countries in
the network, the methodology proposed in this paper provides a different approach
for identifying clusters. Indeed, results here obtained may be used to highlight differ-
ent aspects of the hidden structure of the ITN with respect to traditional community
detection approaches. In particular, we aim at merging in the same community coun-
tries that have an analogous role in the network. Indeed, as emphasized in the
literature (see Cingolani et al. (2017)) to shed light on a country’s participation in
global trade, it is therefore important to understand where the country is positioned in
the network. Although there is a growing literature concerned with measures for asse-
ssing countries’ position, typically main results show that rankings of countries vary
according to the measures of centrality that are used. Our proposal instead aims at
detecting communities of countries with similar relevance by aggregating several indi-
cators and taking into account peculiarities and heterogeneity of different measures.

2 Related literature

In this section we briefly remind the main literature related to network theory and
International Trade, as well as clique partitioning problems and the main solution
methods.

Network theory has been traditionally used in sociology and political science in
order to investigate international trade relations, being an effective tool in revealing
the core-periphery structure of the countries or in studying the impact of the global-
ization on the international trade structure (Snyder and Kick 1979; Smith and White
1992; Kim and Shin 2002). The topological and statistical properties of the interna-
tional trades, also in a time perspective, have been deeply studied in several works
(see for instance, Serrano and Boguñá (2003), Garlaschelli et al. (2007), and Fagiolo
et al. (2008)). More recently, complex networks have also been used to investigate
economic and financial implications of the world trade. For instance, Kali and Reyes
(Kali and Reyes 2007; 2010) study the country’s role in the ITN deducing impor-
tant implications in terms of economic growth and explaining the phenomenon of
financial contagion. Both international trade and financial integration patterns are
investigated by Fagiolo et al. (Schiavo et al. 2010). Another important issue is the
identification of communities in the trade network. Barigozzi et al. (2011) deeply
study the topology of the international trade multi-network, aiming at discovering

711Multi-Attribute Community Detection...



its community structure. In Tzekina et al. (2008), the authors analyse the evolu-
tion of communities (“islands”): from two large trading communities, centred on
UK and US, to a fairly heterogeneous “archipelago” of trade, that seems to reflect a
phenomenon of globalization. Finally, dissimilarities between different layers of an
international trade multiplex network have been studied in Zhang et al. (2017). The
authors characterize each layer as a commodity network in a specific time period.

The definition of communities can be naturally associated with a partition in clus-
ters, and one of the most important model of community detection is the clique
partition. The presence of communities inside the network is revealed by the mod-
ularity index (see Newman and Girvan (2004) and Santiago and Lamb (2017)), that
corresponds to the objective function of a clique partition model. By maximizing
the partition modularity, one can determine the community structure of the net-
work (Newman 2004; Clauset et al. 2004; Blondel et al. 2008; Danon et al. 2006;
Aloise et al. 2010). The clique partition model, as a combinatorial approach to clus-
ter qualitative data, had a methodological development independent of the problem
of community detection, as it has been introduced in Grötschel and Wakabayashi
(1989), Grötschel and Wakabayashi (1990), de Amorim et al. (1992), and Pattillo
et al. (2013) and its applications range in many different fields (see, for instance,
Butenko and Wilhelm (2006)). It has been recognized that it is a NP-hard prob-
lem, implying that the exact solution cannot be computed in polynomial time, unless
P=NP. In practice, exact methods can solve instances that do not exceed one hun-
dred nodes (Mehrotra and Trick 1998; Aloise et al. 2010), so that the use of heuristic
procedure is necessary in our applications (Santiago and Lamb 2017; Chelouah and
Siarry 2000).

3 Themodel

In this section, we describe our methodology for clustering countries on the basis of
the similarity attributes.

A network is described by a graph G = (V , E) where V and E are respectively the
set of n vertices and m links (or edges). Two nodes are adjacent if there is a link (i, j)

connecting them. The degree di of a node i is the number of links incident to it. If a
weight wij > 0 is associated with each link (i, j), a weighted graph G = (V , E, W)

is obtained, being W the set of weights. In general, both adjacency relationships
between vertices of G and weights on the links are described by a nonnegative, real
n-square matrix W. In the unweighted case, matrix W is simply the classical binary
adjacency matrix A, of entries aij , where aij = 1 if (i, j) ∈ E, 0 otherwise. Since
we consider network without loops, aii = 0 (or wii = 0). The (i, j)−element of the
k−power of A is the number of walks of length k from i to j . The Laplacian matrix
is defined as L = D − A, where D is the diagonal matrix having the vertex degrees
on the diagonal entries.

A network is directed if each link is directed, that is an arc (i, j) ∈ E means that
there is a link starting from i and ending in j . The in-degree din

i (out-degree dout
i ) of

a node i is the number of arcs pointing towards (starting from) i. The degree dtot
i of
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a vertex is then the sum of the in and out-degree. In the directed case, matrices A, for
a binary network, and W, for a weighted network, are not symmetric.

3.1 Network attributes and rankings

We are interested in specific characteristics of the nodes, such as their centrality
or their level of interconnection within the network. Since the network is weighted
and directed, we need appropriate measures that take into account both weights and
directions. Thus, according to the four dimensions classification of centrality indices
in Brandes and Erlebach (2005), we focus on four class of network indicators, each
one computed using both incoming and outgoing links. These are in and out-strength,
in and out-clustering, hub and authority and Laplacian centrality.

The strength (in and out) is the natural extension to the weighted and directed case
of the degree centrality. It counts both the number of ties and their intensity. Formally,
for a node i, we have:

sin
i = (AT W)ii = WT

i 1 (1)

sout
i = (AWT )ii = Wi1 (2)

where Wi corresponds to the i − th row of the matrix W.
In particular, in our application, the in-strength sin

i measures the total trade flows
incoming to the country i, that is the import. The out-strength sout

i measures the total
trade flows outgoing from the country i, that is the export.

Clustering coefficient measures the tendency of a node to be well interconnected
with its neighbours. Local clustering coefficient of a node i counts the number
of observed weighted directed triangles connected to i, divided by all its potential
unweighted directed triangles:

ci(W̃) =
1
2

[
(W̃

[
1
3

]
+ (W̃T )

[
1
3

]]3

ii

dtot
i

(
dtot
i − 1

) − 2d↔
i

, (3)

where W̃ = [w̃ij ]i,j∈V is the normalized weighted matrix whose elements are
defined as w̃ij = wij

max(wij )
and d↔

i = ∑
j �=i aij aji is the degree of bilateral arcs

between the node i and its adjacent nodes.
As pointed out in Clemente and Grassi (2018) and Fagiolo (2007), we have four

types of directed triangles to which i could belong. They generate four types of
clustering coefficients, that can be separately computed.

Formula (3) includes all the four coefficients described in Fagiolo (2007). Nev-
ertheless, the country i is part of the in-type and out-type triangles, highlighting
the presence/role of the node i in import/export between its neighbouring coun-
tries. Thus, in our analysis, in-clustering and out-clustering coefficients seem more
appropriate in capturing the role of the node i in the exchanges between the closest
countries, distinguishing between import and export:

cin
i (W̃) =

1
2 (W̃T W̃2)ii

din
i

(
din
i − 1

) , (4)
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cout
i (W̃) =

1
2 (W̃2W̃T )ii

dout
i

(
dout
i − 1

) . (5)

In order to model the influence, or the prominence, of a country in a global sce-
nario of trade flows, the eigenvector centrality is the most suitable measure. The
generalization of this measure to directed networks allows to associate with a node
two status: authority and hubness. The idea arises in the context of web page search
to rank the importance of a page (Kleinberg 1999). A web page is an authority if
it is pointed by many other pages. Hubs are pages that link to many authoritative
pages. Formally, let ai and hi be the authority and hub scores respectively. Then, the
following relations hold:

ai = (WT h)i (6)

and
hi = (Wa)i (7)

where the vectors a and h collect respectively authority and hub scores of all nodes.
By formulas (6) and (7), definitions of hubs and authorities are characterized by

a mutually reinforcing relationship: essentially, a good hub is a page that points to
many good authorities; a good authority is a page that is pointed to by many good
hubs. The use of these measures is motivated by their interpretation: on one hand,
authorities are central countries as they import in turn from central countries. On the
other hand, hubs are central as they export towards central countries. To compute the
scores (6) and (7), an iterative algorithm (HITS - Hyperlink Induced Topic Search) is
proposed in Kleinberg (1999). Starting with initial score vectors a0 and h0, through
the power iteration method on AAT and AT A, the process converges to the principal
eigenvectors a* and h* of the matrices AAT and AT A.

The idea behind the Laplacian centrality is that the importance of a vertex i is
related to the network ability to adapt itself to the deletion of the vertex, i.e. its
resilience. The Laplacian centrality of a vertex i is reflected by the drop of the Lapla-
cian energy of the network deriving by the deletion of i from the network. According
to Lazić (2006), the definition 2 of the Laplacian energy is:

EL(G) =
∑

k

λ2
k (8)

where λk are the eigenvalues of the Laplacian L.
Therefore, let Gi the graph obtained by deleting the node i from G, the Laplacian

centrality is (see Qi et al. (2012)):

li = EL(G) − EL(Gi)

EL(G)
= (�E)i

EL(G)
. (9)

where EL(G) and EL(Gi) are the Laplacian centralities computed on G and Gi ,
respectively and (�E)i measures the effect on the Laplacian energy of the network

2It is noteworthy that an alternative definition of Laplacian energy has been provided in the literature (see
Gutman and Zhou (2006)). Although this alternative definition has been widely explored in the literature,
we focus on the original version defined in Lazić (2006) because it is related to the Laplacian centrality
measure.
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of the removal of i. Since the denominator EL(G) has the same value for all vertices,
we focus on the numerator (�E)i , that is always nonnegative for the interlacing prop-
erty of the eigenvalues of the Laplacian matrix (see (Haemers 1995)). The Laplacian
energy can be re-expressed in terms of strength3 (see (Qi et al. 2012), Th. 1):

EL(G) =
∑

k

s2
k + 2

∑
k<j

w2
kj . (10)

Hence, the difference (�E)i is:

(�E)i = s2
i +

∑
k∈N(i)

(w2
ki + 2skwki) (11)

where N(i) is the set of neighbours of the node i. This expression allows the
following interpretation of the Laplacian centrality of i. This centrality depends
(in a quadratic way) on the strength and on the weights of the neighbours of i.
As stressed in Qi et al. (2012) and Baruah and Bharali (2017), compared with
other standard centrality measures proposed for weighted networks (e.g. strength or
betweenness centrality), the Laplacian centrality is an intermediate measure between
global and local characterization of the importance of a vertex. The generalization to
directed and weighted case follows,4 giving an expression for weighted and directed
Laplacian centrality (in and out) lini and lout

i derived by formula (11).
In our analysis, we intend to aggregate different indicators. Indeed, as already

stressed, each measure has peculiarities and characteristics that highlight various
aspects of the exchange relations between countries.

This heterogeneity requires an approach that cannot be simply based on the direct
comparison among extremely different measures.

Given that each index has specific unit measures and range of variations, we will
focus on the various country centrality rankings rather than their absolute values.
More specifically, first we calculate the country rankings according to all the indices,
then we cluster countries according to their positions on those rankings. Indeed, each
indicator induces a ranking which represents the structural importance of a single
node in the network. Rankings analysis allows us to compare more than one centrality
simultaneously. The comparison will be developed by computing a distance function
between rankings. In particular in this work we refer to the Minkowski distance, also
known as Lp-norm distance.

Let us order the scores of each node obtained for each centrality measure k and let
rk
i be the position of the node i with respect to k. The Minkowski distance d(ri , rj ) is

d(ri , rj ) = ||ri − rj ||p =
(

K∑
k=1

∣∣∣rk
i − rk

j

∣∣∣p
)1/p

(12)

3In case of unweighted graphs, formula (10) gives the result provided in Lazić (2006): EL(G) =∑
k dk (dk + 1) = ∑

k d2
k + 2m. The use of entries of the Laplacian matrix, instead of eigenvalues, is

meaningful especially for large networks.
4See Adiga and Smitha (2009) and Kissani and Mizoguchi (2010) for two definitions of Laplacian energy
for directed graphs.
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being ri the rankings vector of node i, K the number of considered centrality
measures and p any real value such that5 p ≥ 1.

This distance measure is commonly used in the literature for computing the dis-
similarity of objects described by numeric attributes. It is a generalized distance
metric that includes others as special cases. In fact, although theoretically infinite
measures exist by varying the value of p, just three have gained importance (Man-
hattan distance for p = 1, Euclidean distance for p = 2 and Chebyshev distance for
p → ∞).

A remarkable feature of this distance consists in grouping more than one object,
namely it allows to consider all the network indicators simultaneously, producing a
global fictitious distance between couple of nodes ranking. Furthermore, this distance
allows to exploit several values of p in order to better highlight the general features
of the analysed data (see de Amorim and Mirkin (2012) and Rudin (2009)). For
instance, Rudin (2009) highlights how different configurations of data concentration
can be caught varying p, so that Minkowski distance can be used for effectively
tackling data analysis problems.

In our context, we use this distance to construct a complete network Kn having
the same nodes set and weighted adjacency matrix �, whose entries are defined as:

ωij =
{

1
1+d(ri ,rj )

for i �= j

0 for i = j
. (13)

These weights range in [0, 1] and turn out to be effective in describing the similari-
ties between countries. Indeed, the more two countries have a similar behaviour, the
smaller is the distance and the higher is the weight.

3.2 TheMaximum Clique Partition Problem

The Clique Partition (CP) problem, as applied to our model, is defined as follows.
The complete undirected graph G = (V , E) is given, with V = {1, . . . , n}. For
each (i, j) ∈ E, gains/costs gij are defined, which can take both positive and nega-
tive values. In our application, positive values of gij are similarities, negative values
are dissimilarities. Let P = {V1, V2, . . . , Vq} be a feasible partition of V and let
π(Vk) = ∑

i,j∈Vk
gij be the gains/costs sum of subset Vk , for 1 ≤ k ≤ q. The

CP problem consists of finding the node partition P that maximizes the objective
function f (P ) = ∑q

k=1 π(Vk).
It is important to note that values gij must be both positive and negative, otherwise

there is no incentive to discard negative values and the best partition would be the
total set P = {V }. Therefore, we calculate gij as the difference between ωij (that
are positive and bounded between 0 and 1) and benchmark values ω∗

ij , representing
a neutral threshold. Neutral thresholds are calculated as follows. Let ω = ∑

ij ωij be
the total network similarities and let ωi = ∑

j ωij the sum of similarities appointed to
unit i. The probability that a unit x of network similarity would be allocated to node i

5Although p can be any real number, when p < 1 the formula does not define a metric, being the triangle
inequality not satisfied.
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is Pr[x incident to i] = ωi/ω. If similarity has no structure, that is, it is independent
of pairs (i, j) because data do not have clusters, then:

Pr[x incident to i ∩ x incident to j ]
= Pr[x incident to i] × Pr[x incident to j ] = 2ωiωj/ω

2.

Then, if similarities are independent, the expected similarity between i and j

should be: ω∗
i,j = ωiωj

ω
. So, we can calculate gain/cost gij as the difference between

the actual and the hypothetical similarity: gij = ωij − ω∗
ij . In this way we obtain

values gij that are both positive and negative. The integer linear programming
formulation of the Clique Partition is then:

max
∑
i>j

gij xij (14)

subject to ⎧⎪⎪⎨
⎪⎪⎩

−xij + xik + xjk ≤ 1, ∀i < j < k, i, j, k ∈ V

−xik + xjk + xij ≤ 1, ∀i < j < k, i, j, k ∈ V

−xjk + xij + xik ≤ 1, ∀i < j < k, i, j, k ∈ V

xij ∈ {0, 1}, i < j, i, j ∈ V

where xij is equal to 1 if two nodes are in the same cluster and 0 otherwise.
We experimented very long computational times when we tried to solve it through

Integer Linear Programming. Therefore, we implemented a heuristic procedure based
on shrinking the vertices of the graph. Shrink is the subroutine by which we take
two vertices, representing single units or clusters, and we merge them together to
obtain a single cluster. Shrink is described in Algorithm 1. Input is a data structure
Gh =< V h, gh, πh >, in which V h is the active node set, each node representing a
set of the partition, gh are the shrunken costs, defined for every pair i, j ∈ V h, πh

are the clique costs, defined for every active node i ∈ V h. Output is a data structure
Gq =< V q, gq, πq > in which |V q | = |V h| − 1. When we shrink i, j ∈ V q , we
delete j from the active nodes, see Line 1, and the clique profit πh

i of i increases by
the arc profit gh

ij , while all others remain the same, see Lines 2 and 3. In the next
steps, the profit of i inherits the profits of j ’s connections, see Lines 5–7.
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Subroutine Shrink is used to join nodes or clusters every time we find an improve-
ment of the objective function, that is, when we find a pair (i, j) such that gh

ij > 0.
The procedure is described in Algorithm 2. At the beginning, Lines 1 and 2, the par-
tition V q is composed of subsets of one element and the profits π associated to them
are null. Then, in the loop 3-9, the greatest profit gij is selected and, if positive, ver-
tices (i, j) are shrunken. Otherwise, the algorithm stops. The objective function is
calculated in Line 10.

We found that Algorithm 2 calculates quickly good quality solution. However,
it can be the case that the selected partition is suboptimal. Therefore, we imple-
mented a version of the Neighborhood Search procedure proposed in Brusco and
Köhn (2009). The procedure starts with a feasible partition P , in our case the one
calculated through Algorithm 2. Then we select at random k vertices of V and try
to relocate them to different clusters, searching for an improvement of the objective
function. The procedure is repeated several time and for different values of k, until
no improvement are found for many consecutive attempts. But in our data, we found
that most of the times the results of Algorithm 2 were not improved.

3.3 An Overview of the Ranking Aggregation/Clique Partitioning Procedure

The next pseudo-code (see Algorithm 3) summarizes the methodology that we are
proposing:
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In Step 1, we have K centrality measures, as defined in Section 3.1. For every
measure k, (k = 1, ..., K), we obtain the ranking rk , whose element rk

i is the position
of country i in the ranking according to the measure k. In Step 2, we calculate values
ωij according to Formula (13). In Step 3, we calculate the gains/costs needed to
define the Clique Partition model explained in Section 3.2. Lastly, in Step 4, we apply
the Algorithm 2.

4 Numerical Application

4.1 International Trade Network

In this section, we apply the model previously described in order to study the structure
of the ITN. We focus on a World Trade dataset, made available by the Observatory of
Economic Complexity.6 In particular, data regard the world trade database developed
by the research and expertise centre on the world economy (CEPII) at a high level
of product disaggregation. Original data are provided by the United Nations Statis-
tical Division (UN Comtrade) and then the dataset is constructed by CEPII using an
original procedure that reconciles the declarations of the exporter and the importer.
This harmonization procedure enables to extend considerably the number of coun-
tries for which trade data are available, as compared to the original dataset (see
Gaulier and Zignago (2010)). In particular, we consider the last version published
in 2017, based on the Harmonized Commodity Description and Coding System, and
that provides aggregated bilateral values of exports for each couple of origin and des-
tination countries. We focus on the aggregated data of the last available year, namely,
2014.

Hence, we construct a directed and weighted network (see Fig. 1), where each
node is a country and weighted links represent the amount of product trades between
couple of countries expressed in US dollars. This network is characterized by 220
countries and 26034 links. Its arc density is approximatively 0.54, because on average
each country has a large number of trade partners and the entire system is intensely
connected. However, the network is far from being complete or, in other words, most
countries do not trade with all other countries, but they rather select their partners.
Furthermore, world trade tends to be concentrated among a sub-group of countries
and a small percentage of the total number of flows accounts for a disproportionally
large share of world trade. We have indeed that, on average, each country has trades
with more than an half of the other countries in the world, but the top 10 countries
export more than 50% of the total flow. To highlight most relevant trades, we report
in Fig. 2 directed links whose weight is higher than 10 billion of US dollars. The net-

6See https://atlas.media.mit.edu/en/
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Fig. 1 World Trade Network of imports and exports at the end of 2014. Each node is a country and
weighted directed links represent the amount of product trades between couple of countries. Opacity of
the link is proportional to the amount exchanged between countries

work is, in this case, characterized by 61 countries and 330 links. Additionally, key
importers and exporters, classified in terms of strength, are displayed in Fig. 3. Dif-
ferences between import and export rankings are remarkable. United States, China,
Japan, South Korea and some European countries (namely, France, Germany, Italy,
Netherlands and United Kingdom) are world largest importers and exporters. Rus-
sia and Canada display instead a top ranking in terms of volume of exports. In
particular, Russia is characterized by a significant positive trade balance, equal to
approximatively 30% of its total exportations.

Furthermore, as expected, greater countries have more partners and they account
for a generally larger share of world trade. However, the relationship between the
economic size and the number of partners is far from perfect, as indicated by the
correlation, around 0.5, between the total value of (in or out) flows and the number
of partners for each country.
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Fig. 2 World Trade Network of imports and exports at the end of 2014. To highlight most relevant
trades, we report only directed links whose weights are higher than 10 billion of US dollars. This amount
approximatively corresponds to the quantile at level 99.3% of the distribution of weights

4.2 Numerical Results and Discussion

As described in Section 3, we aggregate the centrality indexes through a community
detection method. As a result, communities are determined by the Clique Partition
model, whose input is a weighted network constructed by the original one, in which
weights are determined taking into account all the topological indicators in a multi-
criteria approach. Four classes of network indicators are initially computed by using
the network depicted in Fig. 1. We report in Fig. 4 the scatter plots of each couple of
centrality measures and the Spearman’s rank-order correlation, in order to assess the
strength and the direction of association between different ranked indicators. All the
correlation coefficients are positive, because a country with a high volume of exports
is also highly interconnected in the network. However, there are not fully correlated
couples and, in many cases, the correlation is far from one. It is also noteworthy the
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Fig. 3 In and out-strength of countries in world trade network. Categories are based on the following
classes [0 − q50], (q50 − q75], (q75 − q95], (q95 − q100] where qp is the p-quantile of the in-strength and
out-strength distribution, respectively

strong dependence between in and out versions of the same indicator. This is mainly
explained by the similar patterns of imports and exports for several countries. Only
hubs and authorities seem to emphasize the presence of specific exceptions. Table 1
reports the top ten countries according to the rankings of the four used indicators. The
rankings reflect the results about the correlations and they exemplify the differences
in the role of each country as importer or exporter.

By applying the methodology7 described in Section 3, we obtain at the first step
three communities, characterized by 69, 87 and 64 countries, respectively. We display

7In the application we set p = 2 for the computation of the Minkoski distance. Similar results have been
obtained by using other values of p.
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Fig. 4 On the left-hand side, spearman correlation between each couple of measures. On the right-hand
side, matrix of scatter plots between different indicators

in Fig. 5 the communities initially identified by the algorithm. These three clusters
are also well separated in terms of countries’ centrality. We have indeed that coun-
tries belonging to community 1 have an average ranking of 38, the second community
has an average ranking of 113, while countries that belong to the lowest community
have an average ranking around 185. In other words, the most central countries are
all included in the top community. We also notice that the three clusters are charac-
terized by a very different intra-group density. We have indeed that the density of the
subgraphs (of the original ITN) induced by the countries belonging to the three clus-
ters is 0.97, 0.53, 0.05, respectively. This behaviour can be partially explained by the

Table 1 The top ten countries for each network indicator.

Laplacian Laplacian In-Strength Out-Strength In-Clustering Out-Clustering Hubs Authority

In Our

FRA THA USA CHN USA CHN CHN USA

SGP BLX CHN USA CHN DEU CAN HKG

CZE NLD DEU DEU DEU USA MEX JPN

USA FRA JPN JPN ARE JPN DEU CHN

GBR GBR GBR KOR GBR SAU JPN DEU

POL DEU FRA FRA JPN RUS USA GBR

BLX USA NLD NLD SAU FRA KOR KOR

NLD SGP HKG ITA NLD ITA FRA FRA

THA ITA KOR GBR ITA KOR GBR CAN

CAN CAN ITA RUS FRA GBR ITA MEX
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Fig. 5 Clusters of countries identified at the first step by the community detection algorithm. The
communities are ordered in terms of average ranking

fact that central countries tend to concentrate a high number of transactions between
them.

Since in several contexts this initial division could be too raw, we can refine the
procedure in order to reduce the heterogeneity in each group. To this end, at the sub-
sequent step, we separately consider the ranking of centralities of countries, applying
the proposed method for community detection to the single group. Specifically, at
step 2 we apply the proposed algorithm within each community detected at the previ-
ous step. In other words, at this step the algorithm takes into account how a specific
country is ranked with respect to other countries of the same subgroup on the basis
of the centrality indicators computed on the whole network. The ranking position
of each country may change, but the global ranking remains the original one. For
instance, the community 1, characterized by 69 countries, splits into two groups of 32
and 37 countries, respectively. The two groups obtained have an average ranking of
19 and 55. The procedure is repeated in a similar way also for the other two commu-
nities identified at the step 1, resulting in 8 communities at step 2 (see dendrogram in
Fig. 6 and top left-hand side in Fig. 7).

Further reductions of the heterogeneity in each cluster are possible of course,
repeating again this process at the next steps and, in general, a stopping criterion is
needed. A possible one consists in looking at the volatility of the ranking inside each
cluster. If we focus on community with larger standard deviation, we tend to produce
a more refined breakdown between low-ranking countries. Vice versa, looking at a
measure of relative volatility (as the coefficient of variation (CV)), we deal with a
higher decomposition of top-ranking clusters. Here we follow this second approach
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Fig. 6 Dendrogram that illustrates the arrangement of clusters by applying the algorithm at four different
levels. Communities are ordered in terms of average ranking

and, at each step, we further divide a community only if the CV of countries’ average
rankings is higher than 7.5%.

The complete structure representing the various division steps is represented by
the dendrogram in Fig. 6. We notice that the number of communities increases at each
step, leading to 22 communities at step 4. As expected, the criterion based on CV
leads to a more granular breakdown for clusters characterized by a higher average
ranking. In this way, we are able to classify key countries in different clusters. In
Fig. 7 we report the subnetworks induced by the clusters. The analysis confirms a
tendency of top communities in showing a higher intra-group density. For instance,
the top community at step 3 and the three higher ranking communities at step 4
are complete, that is all central countries trade each other. However, there is not
a monotonic behaviour between ranking and intra-density. For instance, at step 2
community 4 has a higher average ranking than community 5 (124 against 128), but
a significant lower intra density (0.05 against 0.58). This peculiar behaviour can be
justified by the composition of the groups.8 Indeed, we are grouping countries on
the basis of similarity in terms of their central role in the network instead of using
preferential economic relationships.

It is worth to compare our results with a well-known country-classification method
based on the Economic Complexity Index (ECI). This index, introduced by Haus-
mann et al. (2014), allows to rank countries in the ITN according to the diversification
of their export flows, which reflects the amount of knowledge that drives their growth.

8Community 5 at step 2 is indeed characterized by various groups of countries that trade each other. For
instance, in this group, we have several countries, originated after the breakup of Jugoslavia and Russia.
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Fig. 7 Clusters of countries identified at the second, third and fourth step, respectively, by the community
detection algorithm. The communities are ordered in terms of average ranking

The higher is the ECI, the more advanced and diversified is an economy. In partic-
ular, countries whose economic complexity is greater than expected (on the basis of
their global income), tend to grow faster than rich countries with a low ECI. In this
perspective, ECI represents a suitable tool for comparing countries in the ITN inde-
pendently of their total output and it provides an independent measure of similarity.
For instance, in Table 2, we list the values of the ECI for the countries in the top four
clusters detected. As shown in Table 3, the mean value of such an index for each clus-
ter is positively correlated with their ranking in the final partition we found at step 4.
However, some exceptions are noticeable. For instance, China, in cluster 1, is char-
acterised by a lower ECI than some countries in cluster 2 (e.g. UK and Italy) because
of a lower diversification of exported commodities. Indeed, its wealth comes from a
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Table 2 Composition of top four clusters (in terms of average ranking) derived at step 4. Last column
displays the ECI for each country

Country Step 1 Step 2 Step 3 Step 4 ECI

CHN 1 1 1 1 1.16379

DEU 1 1 1 1 1.81367

JPN 1 1 1 1 2.31842

USA 1 1 1 1 1.30167

BLX 1 1 1 2 0.90581

CAN 1 1 1 2 0.411362

FRA 1 1 1 2 1.15748

GBR 1 1 1 2 1.40296

IND 1 1 1 2 −0.014696

ITA 1 1 1 2 1.24155

KOR 1 1 1 2 1.90646

MEX 1 1 1 2 0.953003

NLD 1 1 1 2 0.756212

AUS 1 1 2 3 −0.846322

BRA 1 1 2 3 −0.151225

CHE 1 1 2 3 1.99456

ESP 1 1 2 3 0.701443

MYS 1 1 2 3 0.828817

SGP 1 1 2 3 1.71171

THA 1 1 2 3 0.955651

AUT 1 1 2 4 1.64981

CZE 1 1 2 4 1.52129

IDN 1 1 2 4 −0.014696

POL 1 1 2 4 0.839266

SWE 1 1 2 4 1.6459

TUR 1 1 2 4 0.378481

ARE 1 1 2 4 −0.502072

HKG 1 1 2 4 1.35236

RUS 1 1 2 4 0.008439

SAU 1 1 2 4 −0.369927

VNM 1 1 2 4 −0.129961

XXB 1 1 2 4 NA

more homogeneous set of assets than UK and Italy, which can express a wider diver-
sification in their total output. This could explain why the Standard Deviation inside
each one of our communities is significantly high.
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Table 3 Mean and standard deviation of ECI inside each of the four top clusters

Community Mean ECI SD ECI

1 1.6493875 0.526404666

2 0.968904556 0.559587598

3 0.742090571 0.990344256

4 0.579899091 0.844314087

Now, we focus on the countries’ role within the network. As shown in Fig. 8, the
initial breakdown in communities gives a general feeling of the relevance of differ-
ent macro-regions in the whole trade network. We have indeed that the top cluster,
characterized by 69 countries at step 1, includes all the most developed European
countries,9 largest economies in Asia and Middle East, several countries in South
America, Canada, Mexico, USA, Australia and New Zealand. Furthermore, Algeria,
Angola, Egypt, Morocco, Nigeria and South Africa are included for the African con-
tinent. Except for some small countries, this community includes all the advanced
economies identified in the World Economic Outlook (WEO) by the International
Monetary Fund (IMF)10 and the emerging economies identified by IMF and by other
analysts11.

At the end of the procedure, we obtain that the most central group is composed
by China, Germany, Japan and United States. Higher volumes of trades are indeed
moved by these countries (e.g., see ranking of in and out-strength in Table 1) and, at
the same time, they also show the highest levels of interconnections.

In the second group, we have countries which either are positioned at a slightly
lower level (as GBR, FRA, ITA and NLD) or are outstanding for one specific indi-
cator, but, on average, they show a less relevant role in the network. For instance,
Canada has the second position in terms of hubs centrality (see Table 1), but shows
an average ranking around 14, because of a lower clustering. This is in line with its
low value of the ECI.

It is worth briefly comparing our results with those obtained by other commu-
nity detection methods on the same network (see Barigozzi et al. (2011), Piccardi
and Tajoli (2012) and Bartesaghi et al. (2020)). In particular, in Piccardi and Tajoli
(2012), both directed and undirected networks have been tested without significant
differences. In Bartesaghi et al. (2020), the authors follow an approach based on
the maximisation of a specific quality function defined for general metric spaces. A
quantitative correlation between the world partition in communities obtained by a

928 European Countries are included in community 1. Gibraltar, San Marino and Andorra and some
countries originated after the breakup of Jugoslavia and Russia are not included.
10List of advanced countries according to WEO are available at: https://www.imf.org/external/pubs/ft/
weo/2019/01/weodata/groups.htm#ea
11Various sources list countries as “emerging economies” exist. A few countries appear in every list
(BRICS, Mexico, Turkey). While there are no commonly agreed upon parameters on which the coun-
tries can be classified as “Emerging Economies”, several firms have developed detailed methodologies to
identify the top performing emerging economies every year.
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Fig. 8 Structure of communities at different steps. Darker colours are associated to communities with an
higher average ranking. The number of communities is respectively equal to 3, 8, 16, 22

modularity criterion and geographical distances has been investigated in Barigozzi
et al. (2011). A common point of these alternative approaches is that the applied
methodologies focus on the strength of countries’ relationship in order to group
together countries that trade each other. As a consequence, a common result is that
geographical proximity still matters for international trade, jointly with trade agree-
ments, common language or religion, and traditional partnerships. In all cases, a large
relevant community including China and North America is observed.

As described in Section 1.1, the methodology proposed in this paper follows a dif-
ferent path for identifying clusters based on the relevance of countries in the network.
Results display indeed in the same community countries that have an analogous role
in the network. Hence, it could be interesting to compare them with papers that study
how countries are positioned in the ITN. In this field, main approaches in the litera-
ture are based on the application of alternative centrality measures and main results
show how different centrality measures, catching alternative aspects of the network
structure, can provide a different ranking (see, e.g., Cingolani et al. (2017)). In this
context, the main advantage of our approach is that we take jointly into account
several indicators considering the peculiarities and the heterogeneity of different
measures and we group togheter countries with a similar role according to the con-
sidered features. Comparing the results, we observe that the four countries (China,
Germany, Japan and United States) that belong to the most central group, are on
average also in the top positions of the economic sectors explored in Cingolani et al.
(2017). Similarly we found, in our second group, countries (as Mexico, Canada and
South Korea) that in Cingolani et al. (2017) appear to follow an intermediary role,
having connections with both focal countries and less central ones. To conclude, it
seems that the proposed approach is able to catch different elements of the network
structure, providing, at the same time, a univocal classification of countries in terms
of their relevance.
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5 Conclusions

Community detection is a widely discussed topic in network theory. The analysis of
the mesoscale structure of a real network throws light on its inner structure. This plays
an even more significant role when applied to ITN, in view of its multiple implica-
tions. This work aimed at clustering countries according to similarities in their role
in the global market, rather than using only the preferential channels of exchange
between them. Centrality measures have represented, by now, a classical tool to rank
such a role in the network. In particular, each centrality measure expresses a different
information about the nodes position. We proposed a way to collect all the informa-
tion content, represented by suitable centrality measures, through a distance measure
between countries.

Among all possible similarity-dissimilarity distances, the Minkowski distance
allows to grasp different data distributions, depending on a specific parameter p. In
this way, we constructed a weighted complete network where nodes are countries and
weighted links are related to similarities between them. By means of this similarity-
network, we set up a classical Clique Partitioning problem to identify the community
structure that maximizes the modularity. We proposed here a new algorithm which,
loosely speaking, merges different nodes or clusters and shrinks the network in such
a way to get polynomial times for its solution.

When applied to the ITN in the year 2014, the optimal solution shows three big
clusters, more or less equivalent in size but very different in terms of intra-cluster
density. This has been easily interpreted since the rate of exchanges between top
countries is far more intense than for poor ones. We iterated the same methodology
to each cluster, in order to reduce the internal heterogeneity. This allows to build a
dendrogram tree stemming at each step.

The top leader economies in the world result to be those of China, Japan, USA
and Germany. This is not unexpected but our proposal shows that these countries
also play a very similar role in the world economy on the basis of the set of selected
indicators, making our approach suitable for other network applications.
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