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Abstract
Most have experienced the impact of vehicular accidents, whether it was in terms of
increased commute time, delays in receiving goods, higher insurance premiums,
elevated costs of services, or simply absorbing the daily tragedies on the evening news.
While accidents are common, the complexity and dynamics of transportation systems
can make it challenging to infer where and when incidents may occur, a critical
component in planning for where to position resources for emergency response. The
use of response resources is critical given that more efficient emergency responses to
accidents can decrease the vulnerability of socio-economic systems to perturbations in
the transportation system and contribute to greater resilience. To explore the resilience
of transportation systems to disruptions due to vehicular accidents, a location modeling
approach is described for identifying the origins of optimal responses (and associated
response time) over time based upon the location of known accidents and response
protocols. The characteristics of the modeled response can then be compared with those
of the observed response to gain insights as to how resilience may change over time for
different portions of the transportation system. The change in the location of the
optimal sites over time or drift, can also be assessed to better understand how changes
in the spatial distribution of accidents can affect the nature of the response and system
resiliency. The developed approach is applied to investigate the dynamics of accident
response and network resiliency over a three year period using vehicular crash infor-
mation from a comprehensive statewide database.
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1 Introduction

Modern society is hugely dependent on the availability of networked infrastructures,
such as those facilitating the movement of people, freight, energy and data, with the
performance of these systems directly associated with an array of social, economic, and
environmental costs. As such, the vulnerability of networks to events that can poten-
tially degrade performance and increase costs is of particular planning concern. In this
respect, greater resiliency to disruptive events is a desirable characteristic of a system.
Resilience has been conceptualized in a variety of ways, but in general refers to the
ability of a system to maintain an acceptable level of performance in light of disruptive
activities, whether by resisting change and/or by returning to a suitable state (either
prior or new) (Modica and Reggiani 2015; Reggiani et al. 2002). While higher system
resiliency is advantageous, providing the mechanisms whereby which resiliency can be
enhanced is a resource intensive task, as is examined in this article with respect to
transportation systems.

Like other complex networks, transportation systems have an array of vulnerabilities
related to factors such as their topology, use, interdependency, physical and operational
condition, and potential threats that can vary greatly over space and time (Grubesic and
Matisziw 2013; Matisziw et al. 2012a; Matisziw et al. 2007). Vehicular crashes are
common sources of disruption to transportation systems, whose impacts often tran-
scend many vulnerabilities, contributing to a range of social and economic costs. As
most vehicular crashes involve damage to personal, private or public property, assis-
tance with navigating legal, medical, safety, traffic, repair, and other issues that can
emerge is often needed. Timely emergency response to such events is therefore
essential to mitigate their impacts, assist with system recovery, foster a greater sense
of social security, and to increase the overall resiliency of the transportation system and
all of the other socio-economic systems to which it is tied (Klimek et al. 2019).
Resilience in this sense depends in part on the way in which resources for responses
are utilized as well as the adaptability of individual responders to changing conditions
(Comes 2016).

Given that provision of emergency response services involves a tremendous invest-
ment in resources, ensuring that resources are used as effectively and efficiently as
possible are priorities of the agencies/entities charged with maintaining those services
as well as the individuals whom they support (Engel and Eck 2015). Though there have
been a variety of metrics proposed for assessing effectiveness and efficiency of
response services, the response time required for emergency personnel to arrive at
the scene for a call for assistance has long been used as a measure of service
performance in this respect (Pate et al. 1976; Stevens et al. 1980). The time involved
in responding to emergencies depends on numerous factors. Given the geographic
difference between the location of an incident and that of the responder, response time
can be directly influenced by the availability of a responder, dispatch time, as well as
travel speed and distance (Pate et al. 1976). Other factors such as such as time of day,
location of the crash with respect to the lanes of traffic, and number of vehicles
involved are also thought to have a notable effect on response times (Lee and Fazio
2005). However, the actual resources available for emergency response and the policies
underlying their use (e.g., policies for response prioritization) are also known to exert a
considerable influence on response times (Levine and McEwen 1985). For instance,
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responses to crashes involving injuries may be prioritized over non-injury crashes (Lee
and Fazio 2005).

As vehicular accidents are relatively commonplace, spatial and temporal patterns of
crash activity often become discernable to those familiar with a region. Therefore,
emergency responders are increasingly able to leverage their experiences with their
regions of responsibility to better position themselves for more effective response to
potential events (e.g., hot spot policing (Braga et al. 2019)). However, the spatial and
temporal distribution of crashes is known to vary considerably as likely do the factors
underlying the events. These instabilities in the spatial and temporal dimensions of
crash incidence can lead to problems in the application of many statistical approaches
to accident prediction (Mannering 2018). Those tasked with planning for and
implementing emergency response are likely affected by these instabilities as well in
their efforts to enhance system resilience. To this end, this research examines the extent
to which resilience of a transportation system changes with respect to geographic
distribution of accidents over time through an analysis of accident responses recorded
by law enforcement. First, background literature related to the spatiotemporal dimen-
sions of vehicular crashes is examined as are analysis techniques that have been applied
to evaluate the dimensions of emergency response. Next, a methodology for assessing
spatiotemporal variations in resilience to accidents in transportation systems is outlined.
Based upon an extensive set of crash records, the analysis methodology is then applied
to evaluate the geospatial dynamics of system resilience to accidents over time.

2 Background

Implementation and maintenance of emergency response services is extremely costly,
especially in applications where demand (emergencies) is distributed over a large
geographic area. Should the need for emergency response arise, the general societal
expectation is that it be provided in a timely fashion to maximize effectiveness. As
such, a common approach for providing emergency services is to partition regions into
beats or zones to which emergency responders are assigned (Levine and McEwen
1985). Responses to calls for service may involve dispatching personnel from their
current location, be it from a central facility (i.e., headquarters) or from another location
in the transportation system. In the case of emergency fire and medical services,
responses typically originate from fixed facilities, with a primary focus on incidents
within a defined service area. Some types of emergency responders, such as law
enforcement personnel, are tasked with a range of responsibilities, often patrolling a
service zone and launching responses from their location at the time a call is received.
Therefore, along with the uncertainties associated with the locations at which a
response will be needed, there is also uncertainty as to where a responder will be
located at any point in time.

The geographical characteristics of emergency response zones can differ consider-
ably over a region and understanding where, when and to what extent the character-
istics of these zones may influence response to accidents is important. To this end, there
have been efforts to explore changes in the geographic distribution of crashes over time
visually (Moellering 1976) as well as analytically (Li et al. 2007) in order to better
understand when and where certain types of crashes may occur. The extent to which
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spatial associations among crashes may exist has also been examined through assess-
ments of spatial autocorrelation (Black and Thomas 2002; Eckley and Curtin 2013;
Flahaut et al. 2003; Kingham et al. 2011) and other measures of spatial dependency and
clustering (Warden et al. 2011; Yamada and Thill 2004, 2007).

There have been some attempts to model how changes in resources could facilitate
responses to vehicular incidents when considering dedicated response services such as
freeway service patrols (Li andWalton 2013; Lou et al. 2011; Sun andWang 2018; Wu
and Lou 2014). However, regular law enforcement activities, such as local and state-
level policing efforts, involve a range of daily duties beyond responding to crashes,
such as monitoring for adherence to laws and regulations, addressing crimes, traffic
management, promoting transportation safety, responding to requests for assistance, as
well as providing many other public services. Responding to vehicular crashes while an
important goal, is therefore not the only consideration in decisions underlying the
positioning of resources within a transportation system at any given point in time (Lee
et al. 1979; Levine and McEwen 1985). Further, unlike other emergency responders,
law enforcement personnel typically respond to crashes of any type, injury or not.
Therefore, the need to prioritize the response to one incident over another may arise,
leading to response times that may not reflect the realities of resource utilization. In
light of all of these issues, inferring the resiliency of the transportation system to
accidents simply based on reported response times is extremely difficult.

Evaluation of the spatiotemporal dynamics of transportation system resiliency to
vehicular crashes has received much less attention in the literature though. One reason
for this is that it is more challenging to interpret the efficiency of law enforcement
response to a crash given the range of duties with which they are charged. Further, it is
difficult to document what proactive measures may have been utilized in planning for
the need to respond to a crash (Lum et al. 2020). However, as mentioned earlier,
resilience relates in part to the effectiveness of resource utilization. One way of
reasoning about the dynamics of a system is to compare its observed form with that
modeled to address specific planning criterion (Matisziw et al. 2012b). For instance,
one could compare the performance of actual emergency responses relative to that of
those modeled from optimally sited locations to assess system resilience. In this respect,
a variety of models have been proposed to assist planners with decisions regarding
where to best locate resources for emergency response provided knowledge about
where the need for service might exist in the future. Three general types of models
that have been used to identify optimal sites for emergency services are the location set
covering problem (LSCP), the maximal covering location problem (MCLP) and the p-
Median Problem. The LSCP minimizes the cost of siting service facilities given that all
demand locations must be within the service area of a sited facility. For example,
Erdemir et al. (2010) describe a LSCP approach for determining the minimum cost
required to site several different types of ambulance response units to ensure crashes are
within the effective service range of each type of response unit. The MCLP seeks to
maximize the amount of demand that is within the service area of a specific number of
sited facilities. For example, Curtin et al. (2010) formulate a MCLP model to site a
specified number dispatch stations from which a known set of incidents are within an
effective response distance. Murray and Tong (2009) describe how both LSCP and
MCLP approaches could be utilized in identifying the number of fire stations that
would be required given other considerations such as thresholds on response times and
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cooperation (or lack thereof) between planning regions. p-median problems seek to
minimize the total cost of serving demand locations from a set of p facilities (ReVelle
and Swain 1970). In the context of emergency response, Zhu et al. (2014) formulate a
p-median type problem to site response units such that expected response time is
minimized. Unlike coverage models, p-median problems allow for demand to be served
from a facility regardless of the cost. This is important in the context of responding to
incidents such as vehicular accidents given that a set service time/distance threshold
may not reflect the realities of the response area. Thus, if responders had perfect
knowledge of where crashes will occur in a particular timeframe, the median(s) would
represent the location(s) from which response times to those incidents would be
minimized, the most efficient location(s) from which responses could be launched.

Response time is one of the more commonly used indicators of performance for
emergency responders (Levine and McEwen 1985). As such, observed response times
are likely reflective of the need to minimize response time. Determining locations from
which response times to incidents are optimal would require knowledge of when and
where incidents will occur, the service zones within which responders will be dispatched,
as well as the characteristics of the transportation system within the service zones.
Provided the locations from which response times to incidents occurring in a time frame
could beminimized, the total (or average) response time from an optimal location(s) could
be compared with the total (or average) observed response time. Thus, in cases where
observed response times are found to be very close to those modeled from an optimal
location, the spatiotemporal dynamics of system resilience could be viewed as exhibiting
greater stability. In cases where the observed and modeled response times are very
different, the spatiotemporal distribution of crashes could be viewed as more dynamic,
less predictable, contributing to lower resilience. Based upon these considerations, a
methodology for comparing characteristics of optimal responses with those of actual
responses to better characterize the resilience of a transportation system to vehicular
accidents is now described. The methodology is then applied to evaluate the dynamics
of law enforcement response to vehicular crashes over a three year period.

3 Methods

As mentioned earlier, one way to approximate the extent to which law enforcement
personnel might adjust to changes in the regional distribution of activities to which they
are tasked, is to compare their actual response times to incidents to response times
modeled from an optimal central location to the same set of incidents. For any service
zone, given knowledge of the response times to incidents occurring in a particular
timeframe, the total observed response time can be easily summarized. For any service
zone, given knowledge of the location of incidents occurring in a particular timeframe,
the network 1-median (referred to as the network median from here on) can be used to
represent an optimal location from which responses to those incidents could have been
launched as is now formalized.

Consider a network Gt with Nt nodes and At arcs (Gt(Nt, At)) in time period t ∈ T in
which the set of incidents i occurring in time t are incorporated as nodes i ∈Nt. Each
node has a weight (ai ≥ 0) representing its relative demand for service. For example,
node weights may be based upon characteristics of incidents at that node such as
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number of incidents, number of vehicles involved, seriousness of the incident, etc.
Likewise, nodes at which no incident is observed could be assigned a weight of 0.0.
Arcs k ∈ At are attributed with travel time (ck) based on presumed network conditions
and responder travel behavior. The network is partitioned into service zones z ∈ Z,
within which each a single response site should be selected. Provided node-based
demand in a network, it is known that the median location will correspond with that of
a network node (Hakimi 1964). Thus, for any service zone z, the network nodes in that
zone i, j ∈ Vzt ∈Nt can be considered as locations in need of a response as well as
candidate sites from which a response could be launched. The minimum response time
involved in serving demand i from any response node j (δij) can then be calculated
based on the modeled network conditions. The network median problem can then be
expressed as follows to illustrate the decision making process for any service zone z in
time period t.

Minimize Ωzt ¼ ∑
i∈Vzt ; j∈Vzt

aiδijxij ð1Þ

∑
j∈Vzt

xij ¼ 1 ∀i∈Vzt ð2Þ

∑
j∈Vzt

xjj ¼ 1 ð3Þ

xjj≥xij ∀i; j∈Vzt ð4Þ

xij∈ 1; 0f g ∀i; j∈Vzt ð5Þ

Objective (1) minimizes the total cost of responding to the incidents at nodes i from
nodes j in a service district z in time period t. The decision to be made (xij) is to either
respond (xij = 1.0) or not respond (xij = 0.0) to demand at i from response site j.
Constraint (2) ensures that incidents at each node are served by a single response site.
Constraint (3) states that one of the nodes be selected as the site from which the
responses are to be launched. Constraints (4) state that a response cannot be launched
from a node unless it has been selected as the response site. Constraints (5) ensure that
the decision variables are binary and integer. Given only one node is to be selected as
the response site, for each node, the total demand weighted cost of responding to all
other nodes can be easily calculated to assess how well it would serve as the response
site. The network median (and total cost of the associated response) can then be
identified as the node with the lowest total demand weighted cost.
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As an example, Fig. 1 illustrates a service zone containing 5363 network nodes, 31
of which represent the reported location of an incident warranting a response. Almost
half of the incidents are located along the major highway traversing the lower portion of
the zone with a majority of the remainder being located to the North/Northeast of the
highway. The network median reflects the node from which the cost of responding to
these incidents would be minimized.

Once the network median is found, the total demand weighted response time
associated with responding to incidents from the median location can be compared
with the actual response times observed for the same set of incidents. If a large relative
difference between the modeled response time to the median and the actual response
time is realized, then the response could be viewed as one in which resilience was in a
degraded state. Larger relative differences between the actual and modeled response
time to the incidents could point to a need for additional resources (e.g., planning,
responders, etc.) for incident response in a region. Likewise, should small relative

Network Median
Crash Locations
Nodes
Roads
Analysis Zone

Fig. 1 Example network median
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differences exist between the modeled response time from the median and the actual
response time, the response could be interpreted as more efficient, offering a greater
level of resilience.

The optimized response times can be compared with the actual response times over a
series of time periods for each service zone to explore how resilience may vary over
space and time. Further, the geographic movement of the median locations for service
zones over time can be evaluated to assess the extent to which an optimal response
location may change over time. This is analogous to the concept of measuring the
“migration drift” of populations by tracking changes in the location of population mean
centers over time (Plane and Rogerson 2015). As in Plane and Rogerson (2015), the
distance between temporally sequential pairs of median locations can be used as a
measure of their movement or drift. For instance, the geographic distance between the
median location for incidents occurring in January and the median location of incidents
in February can be computed. In this sense, for any service zone, a large amount of
geographic drift over a set of time periods could indicate greater uncertainty as to where
and when responders should be positioned to ensure efficient responses. Should the
network medians exhibit less geographic drift over a period of time, a more consistent
pattern of incidents may have been realized, one to which responders were able to
better adapt.

4 State Highway Patrol Response to Vehicular Crashes

In order to explore the resilience of a transportation system to vehicular crashes, crash
locations and associated response times in the state of Missouri (MO), United States
(US) recorded by the Missouri State Highway Patrol (MSHP) are analyzed. The
MSHP is a statewide police force responsible for public safety and law enforcement
activity on Missouri’s highways (Revised Statutes of Missouri 1983). Responding to
events on highways in Missouri is no small task given that there are nearly 64 k miles
of Interstate, US, State and other highways in the state. Responsibility for MSHP
activities is split among nine regional districts, referred to as Troops, each comprised
of a number of smaller patrol zones (Fig. 2) within which officers (troopers) are
assigned to conduct law enforcement and emergency response activities. In most
cases, these zones conform to individual counties or in some cases pairs of adjacent
counties, depending on the distribution of population and vehicular activity. Within
the state, there are 78 patrol zones, which range in size from 283 sq. miles to nearly
1600 sq. miles. In most cases, at least one trooper is assigned to a patrol zone at any
given time.

The MSHP utilizes an electronic crash reporting system called STARS (Statewide
Traffic Accident Records System) (STARS 2019). Information about vehicular inci-
dents, such as response times and incident locations, handled by the MSHP are entered
electronically (and in some cases automatically). In many cases, urban areas having
their own local police forces do not require the assistance of the MSHP in responding to
incidents within their immediate jurisdiction. However, given increasing financial
burdens on law enforcement agencies, the MSHP is increasingly asked to respond to
crashes in areas where the local law enforcement capabilities are insufficient to meet the
local demand. While local emergency responders are most often dispatched to
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vehicular crashes in urban areas, the MSHP responds to over 90% of all accidents on
Interstate, US and State highways/routes in Missouri.

The MSHP documented 104,113 crashes occurring in the years 2015–2017. Ap-
proximately, 24% of the crashes are associated with Interstate highways, 15% with US
highways, and 41% with State routes (numbered and lettered routes). Only a small
proportion of the crashes reported by the MSHP were on smaller county roads (e.g.,
unpaved gravel) or city streets. Crashes were recorded every day in the three year
period. Statewide on a daily basis, an average of 95 crashes were reported, with a
minimum of 37 (some zones not reporting any crashes), and a maximum of 698 crashes
per day (some zones reporting multiple crashes). Over the three years of reported data,
nearly 57% of crashes were associated with clear weather conditions while cloudy
conditions were associated with 23%. Precipitation was only associated with 10% of
the reported crashes. Likewise, road conditions were reported to be dry in 77% of the
crashes with wet road conditions reported in only 16% of the crashes. Top causes of
crashes investigated during this period include vehicle overturning (6%), incidents
involving animals (9%), collision with fixed objects (38%), and incidents involving
other motor vehicles (41%).

The date and time of each crash incident is recorded in the STARS database as are
response times rounded to the nearest minute. The reported response time reflects the
difference between the time at which the crash occurred and the time at which a trooper
arrived at the crash scene. Out of the 104,113 incidents, 8.8% did not have a reported
response time. Unreported response times are largely associated with minor accidents for
which an on-scene investigation was not conducted (e.g., collision with an animal). In
such instances, the crash might have been reported later for insurance purposes, not
necessitating a trooper visiting the scene. Approximately 0.28% of the crashes had
response times greater than 24 h. Reasons for these extremely long response times are
typically due to delayed reporting of a crash. For example, those involved in a crash may
leave the scene, and then return the following day to report the crash. Fortunately, large
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Fig. 2 MSHP regional Troop districts and patrol zones
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response times are not the norm and 90.7% of crashes had a response time of less than or
equal to 250 min (4.1 h). The following analysis first examines crashes occurring within
the 78 patrol zones that were visited by law enforcement with a reported response time of
less than or equal to 250 min given that they could account for the possibility of higher
response times due to periods of congestion, multiple accidents, difficult travel conditions,
etc., but avoid incidents with response times likely due to very anomalous events. 94,144
(90.4%) of the crash records met this criteria, with a mean response time of 17.7 min
(Fig. 3a). Aside from consideration of all crashes in the analysis of response times,
variations in response time may vary for different categories of crashes, such as those
involving injury (Lee and Fazio 2005). As such, a subset of the crash records, those in
which personal injury was reported, are analyzed separately. There were 29,648 such
crashes to which the MSHP responded over the three years, constituted approximately
28.5% of the records in the crash database (Fig. 3b).

A geospatially referenced vector dataset representing roads in the state of Missouri
was used to represent the location of supporting infrastructure. Travel time (in minutes)
was computed for each road segment based upon the posted speed limit and the
assumption that responders could safely travel at slightly higher speeds (e.g., 1.1 times
the posted speed limit). Using travel time as a measure of impedance, a network was
built from the road dataset, consisting of 474,065 nodes and 1,131,647 arcs.

The records for the 94,144 crashes of all types (injury and non-injury), were first
classified into 36, one month analysis periods (e.g., January 2015,…, December 2017).
Over the set of analysis periods, there were an average of 34 crashes per month, per
zone (min = 4, max = 151). For each of the 78 patrol zones, the average reported
response time for crashes occurring in each of the 36 months was then calculated. To
model an idealized average response time for each zone in an analysis period, the
crashes occurring in that time period were added as nodes (with a weight equal to the
number of crashes at the node) to the network, representing the locations needing
assistance and all network nodes within the patrol zone were then considered candidate
sites for the optimal response site. On average, there were 10,347 network nodes in
each patrol zone (min = 3936, max = 45,521) over the 36 analysis periods. The network
median (and associated modeled response time) for crashes of all types occurring in
each of the 36 monthly analysis periods was identified for each of the 78 patrol zones
(i.e., 36 medians for each zone, 2808 network medians in total) through enumeration as
described earlier. The same process described above for all crashes was then repeated
for the 29,648 crashes in which personal injury was reported. There were an average of
11 such crashes per month, per zone (min = 0, max = 47), yielding another 2800
network medians (no crashes involving an injury were investigated in 8 zone/months
analyses). Finally, in order to measure geographic drift among the median sites mt for
each zone z (mt ∈Mz), a polyline was constructed from the temporally ordered set of
median points (e.g., [m1,m2,…,m∣T∣]). The length of the arcs between successive pairs
of medians (e.g., (m1,m2)) can then be used as a measure of geographic drift.

5 Results and Discussion

Figure 4 illustrates the average reported response times for all crashes (injury and non-
injury) in each patrol zone over the 36 analysis periods. 95.5% of the average monthly
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response times were less than 29.64 min. The zones with months in which average
response time was in excess of 29.63 min are for the most part located in less
populated, more rural portions of the state. 40.3% of the average monthly response

Crashes by Year
2015 (9751)
2016 (10285)
2017 (9612)

0 50 100 150 20025
Kilometers ¯

Crashes by Year
2015 (31306)
2016 (32354)
2017 (30484)

0 50 100 150 20025
Kilometers ¯

a)

b)

Fig. 3 Crashes to which the MSHP responded in years 2015–2017: a) all crashes, b) crashes involving
personal injury
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times were less than 16.93 min. In general, months with these lower average response
times tend to be in patrol zones associated with greater quantities of high-capacity
roadway (e.g., Interstate, US, and State highways) and/or are proximate to larger
population centers. For many of these zones, the average monthly response times are
under 16.93 min in a majority of the analysis periods. Approximately 55.2% of the
average monthly response times are between 16.92 and 29.64 min. Average monthly
response times in this range are typically associated with patrol zones in more rural
counties.

The location of the medians computed based on the reported crashes in each time
period exhibit notable clustering, especially those associated with patrol zones having
more months of lower average response times. The monthly medians tend to be
centered along a relatively well-defined corridor in many patrol zones, aligning with
portions of the Interstate, US, and MO highway system. This is reasonable given that
locations along roads of these classes support more traffic (and accidents) in addition to
providing a higher level of accessibility to other locations within a patrol zone. A
greater level of dispersion among monthly medians can be found in many (but not all)
of the more rural patrol zones. Figure 5 depicts the relative difference between the
average modeled and observed response time for each period within each patrol zone.
Approximately 1.9% of the monthly average observed response times were actually
less than or equal to what was modeled. Approximately 50% of monthly average
observed response times represented less than a 60% increase over the average modeled

Avg. Response (min)
     range  count   pct.

≤12.44    206      7.3%
≤16.92    928    33.0%
≤22.07    987    35.1%
≤29.63    565    20.1%
≤41.80    114      4.1%
≤52.00     8         0.3%
Patrol Zones
Interstate Highways
US Highways
MO Highways

¯0 40 80 120 16020
Kilometers

Fig. 4 Average observed response times and monthly medians (all crashes)
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response times. Only 19.2% of the monthly average observed response times were
more than 100% higher than the average modeled response times. This is quite notable
given that the modeled response times were based upon knowledge of where the
crashes occurred and then organizing an optimal response from a single location. Small
relative differences between the observed and modeled response times could be viewed
as periods of increased resilience in the adaptability of resources to respond to
incidents. In some patrol zones, there are multiple periods in which there is a small
relative difference between the observed and modeled response times, which could
indicate more sustained resilience. Of particular interest are the many cases in which the
average observed response times (Fig. 4) are moderate to high (e.g., greater than
22.07 min). In these instances, it could be tempting to attribute the higher response
times to less efficient use of resources. However, when compared relative to the
modeled response times in Fig. 5, many of the moderate to high response time months
exhibit little relative difference from the modeled response times. Thus, it is possible
that the responses could have in fact been very efficient, in light of a more challenging
spatial distribution of crashes to serve. Larger relative differences between observed
and modeled response times could be viewed as periods in which there was a greater
mismatch between available resources and the spatial distribution of accidents, and
hence, lower resilience. Of the instances in which the monthly observed response times
were more than 100% that of the modeled response times, roughly 70% were associ-
ated with counties in which more than 25% of the population is classified as rural. On

Relative Difference (%
≤0.00 (54)
≤30.00 (447)
≤60.00 (946)
≤100.00 (822)
≤300.00 (535)
≤603.36 (4)
Patrol Zones
Interstate Highways
US Highways
MO Highways

¯0 40 80 120 16020
Kilometers

)

Fig. 5 Relative difference between modeled and observed response times (all crashes)
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average over the analysis periods, zones in these portions of the state experienced
approximately 1/3 the number of crashes than those in more urban areas. However,
there is also much more roadway in these zones that the MSHP is responsible for
patrolling than in zones hosting larger urban populations where other law enforcement
agencies are also active.

Figure 6 depicts the 36 monthly network medians and average observed response
times for crashes involving personal injury for each patrol zone. There are many more
analysis periods (52.9%) in which the average observed responses are less than
16.3 min than those for the full set of crashes (injury and non-injury). Lower average
observed response times are again predominately associated with zones hosting por-
tions of high-capacity roadways and/or urban centers. Higher average response times
tend to be associated with more rural portions of the state. The medians for the zones
exhibit much more spatiotemporal variation than those computed for crashes of all
types. Figure 7 illustrates the relative difference between the average modeled and
observed response times for crashes involving an injury. In this case, approximately
10% of the observed average response times were less than or equal to those modeled.
Around 52% of the average observed response times that were higher than those
modeled were still within 60% of the modeled average response times. Most of the
more extreme relative differences between the average observed and modeled response
times tend to be in patrol districts that are more rural and do not host portions of the
Interstate highway system.

Avg. Response (min)
     range  count  pct.

≤12.44    551    19.6%
≤16.92    906    33.3%
≤22.07    717    25.5%
≤29.63    449    16.0%
≤41.08    136    4.8%
≤105.00    41    1.5%
Patrol Zones
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US Highways
MO Highways
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Fig. 6 Average observed response times and monthly median locations (injury only crashes)
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Figure 8 illustrates the geographic drift in the network medians rendered for crashes
of all types in each patrol zone over the 36 analysis periods. In 12 patrol zones, the
median drifts less than 65 km over the 36 periods, approximately 1.8 km per month,
indicating a relatively stable spatial distribution of crashes over time. In these cases, the
drift among the medians tends to be geographically linear, corresponding with stretches
of high capacity roadways central to other high capacity roadway in the zone. These
instances are also mostly associated with lower average response times, suggesting that
greater stability in the spatial distribution correlates with greater predictability of
potential problems and the ability to better position response resources within the
system. In cases where the median drifts between 65 to 127 km, there are still instances
in which the spatiotemporal drift is relatively linear, again corresponding to patrol
zones containing portions of high capacity roadways. This is particularly evident in
areas of the state traversed by Interstate I-70 (East and West-bound movements through
middle of state) and Interstate I-44 (Southwest and Northeast movements through lower
half of state). However, instances also begin to appear in which the spatiotemporal drift
is not completely linear, exhibiting changes in directionality over the analysis periods.
As the monthly drift in the medians begins to move more than 127 km over the three
years of crash data, the movement becomes much less linear, reflecting a more dramatic
change in the distribution of crashes. The instances in which the spatial drift is more
than 210 km or 5.8 km per month appear to be associated with patrol zones that are
mostly rural with less high capacity infrastructure. The lower geographic stability of
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≤100.0 (530)
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Fig. 7 Relative differences between modeled and observed response times (injury crashes)
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crashes in these zones over time is likely attributable in part to traffic in the zones being
less consolidated. Comparison of the geographic drift (Fig. 8) and average reported
response times (Fig. 4) suggest that greater drift of the network median over time
relates to higher average response times while lower median drift over time relates to
lower average response times. Perhaps one explanation for this trend is that the spatial
distribution of crashes is more predictable and/or stable in zones with lower drift and
therefore lower response times are the norm with higher average response times
occurring less frequently. Zones with greater drift may experience less predictable
and/or stable spatial distributions of crashes over time, with higher average response
times being more common and with lower average response times occurring less
frequently. In other words, the need to effectively respond to crashes and to increase
resilience can be thought of a goal-oriented or competitive process, which are known to
give rise to negative spatial autocorrelation (Griffith and Arbia 2010).

The drift among the network median locations over time derived from crashes
involving injury (Fig. 9) increases dramatically over that associated with all crashes
(Fig. 8). On average, the drift associated with each patrol zone increased nearly 200%, a
mean increase of 184 km. The drift for 11 zones even increases 250 to 2691%. This
result suggests that the geographic distribution of crashes involving injury is much
more variable over time in many of the patrol zones. While the distribution of the
medians in Fig. 6 may suggest that the locations are geographically proximate to one
another in some instances, the actual temporal sequence may involve considerable
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Fig. 8 Spatiotemporal drift among patrol zone network median locations (all crashes)
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geographic deviations in location over time. Although higher geographic drift in the
median locations was realized in all zones, again, patrol zones hosting portions of high-
capacity roadway exhibit lower levels of drift over time as well as lower average
response times.

6 Conclusions

This article examined the dynamics in resilience to transportation systems to disruptive
incidents such as vehicular accidents. A quicker response from law enforcement
personnel is an essential part of mitigating the effect of accidents on the operation
and performance of transportation systems. As such, the time required for responders to
arrive at the scene of an incident, can be used to characterize resilience. In many cases,
responses to incidents in a transportation system may not always originate from a fixed
facility, such as is often the case with law enforcement personnel. Therefore, their
ability to effectively respond depends in part on the location of their activities in the
portions of the system to which they are assigned. Given the characteristics of
transportation systems can vary considerably throughout a region as well as over time,
the nature of system resilience could vary as well.

To investigate these issues, the network median location for incidents occurring
within a particular timeframe was used to represent an origin of an optimized response.
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Fig. 9 Spatiotemporal drift among patrol zone network median locations (injury only crashes)

Change of Scene: The Geographic Dynamics of Resilience to Vehicular... 603



The actual time involved in responding to incidents within the timeframe can then be
compared with that modeled from the median location. In cases where the modeled
response time is relatively close to that observed, greater system resilience could exist.
In instances where the modeled response time is much lower than that observed,
resilience might be viewed as degraded. Aside from assessing the efficiencies within
a single time period, changes in resilience among different time periods can be
evaluated as well. Further, changes in the location of the network medians over time
can be analyzed to better understand the level of geographic drift in terms of the need
for resilience (e.g., placement of response resources) that exists in the system.

The developed approach was applied to evaluate resilience to vehicular crashes
in a statewide highway system comprised of multiple traffic patrol zones. Crashes
occurring over a three year period were analyzed by month for every traffic patrol
zone in the state. It was found that the average modeled response times correlated
with the average actual response times rather well for analysis periods in many of
the patrol zones. These cases could indicate situations in which responders were
able to better anticipate the location of incidents and adjust their activities within
the system accordingly. While in some cases, the observed response times may
appear to be large, their relative difference from the modeled response times was
rather low. This corroboration between the observed and modeled response times
indicates that the higher response times are likely attributable to the characteristics
of the transportation system and the spatial distribution of the incidents rather than
an inefficient response. In other words, the geography of the patrol zones can play
a huge role in the time required for a responder to arrive at the scene of an
accident. As such, assessment of response times without some consideration of
local conditions (e.g., as addressed by modeling the network medians) could
easily lead to alternative interpretations.

It was also found that for different patrol zones, the location of the network medians
change over the analysis periods in a variety of ways. When considering all types of
crashes (injury and non-injury), the medians for some patrol zones exhibited very little
movement over time, drifting on average a few km per month. For other patrol zones
though, medians regularly drift over a wide area, moving a dozen km or more per
month. When focusing on a specific subgroup of accidents, the dynamics of geographic
drift can change significantly. For example, when considering only accidents involving
personal injury, the location of the medians over time exhibited much less stability,
with the monthly drift for the medians in most response zones ranging from 8 to 26 km.

Evaluating resource utilization with respect to resilience in a large networked system
certainly has its limitations. That is, in determining how to best respond to an incident,
there are many factors that can come into play. For instance, responders could be driven
to minimize total demand weighted travel cost as was investigated here. However, other
objectives and constraints are certainly involved in the complex decisions made by
emergency responders. In other words, resource utilization in contexts such as emer-
gency response is inherently multiobjective. Further, the underlying network conditions
(e.g., congestion, construction, weather, etc.) that can influence both accidents as well
as the responses can be very dynamic and difficult to incorporate in evaluations of
resource utilization. While the network median was used here to provide comparative
context to the characteristics of an observed response, other optimization methods
could also be applied in a similar spirit. Should the number of responders assigned to
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each service zone be known for a particular time, a multi-facility location model could
possibly be employed versus a single facility version like the one used here. While a
multi-facility approach would illustrate the value of strategic location for responders,
zone-based allocation policies are the reality for many response services, especially
those also charged with law enforcement. Further, in cases where multiple responders
may be assigned to a response zone, they are likely to be assigned to either a sub-zone
or to be closely deployed per safety/backup protocols.
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