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Abstract
This paper extends the discussion about the bus network design in face of the
mobility patterns associated with different degrees of urban dispersion. Based on
an analytical approach, a comparison of total costs among different network
structures is made for a ring-radial city, which is the other most common regular
city layout. The results clarify what structure is the best solution for different
scenarios of dispersion and city and transport characteristics. Simultaneously, the
effect of the street pattern on the applicability of each structure is evaluated
comparing these results to a previous research for a grid city. Three basic structures
are analyzed: a radial scheme, a direct-trip-based network, and a hybrid structure as
a transfer-based alternative. Each structure is dominant for a specific range of
dispersion: radial networks for scenarios of high concentration, direct-trip-based
systems for intermediate degrees of dispersion, and transfer-based structures when
the activities are decentralized. However, constraints on stop capacity modify these
ranges. Each structure presents a different distribution of travel time in the transit
chain and agency costs that determine the most competitive alternative. In addi-
tion, the behavior of the structures and the evolution of costs regarding urban
decentralization are practically the same for both street patterns: system costs grow
with increasing mobility dispersion, the range of applicability for each structure is
the same, and changes in their applicability when main input parameters vary are
very similar. Therefore, these results make it possible to generalize about the
conclusions obtained independently of the street layout.
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1 Introduction

A transit system is the key transport mode for urban mobility when faced with
congestion, pollution, space degradation, or inefficient energy consumption derived
from the excessive use of automobiles. However, the development of efficient transit
systems—in order to compete with private vehicles—has to face the process of increas-
ing urban sprawl, which generates complex mobility patterns due to changes in urban
land use (Sun et al. 2007). This aspect reduces the successful implementation of this
transport mode and opens a discussion about how transit networks should be designed to
overcome this handicap (Dodson et al. 2011). Focusing on that discussion, this research
connects the transit network design problem with the evolution of the urban form.

Some authors such as Anas et al. (1998) and Rodrigue et al. (2006) have summa-
rized the evolution of urban forms in three basic phases. At the beginning, a city is
highly centralized, with most of activities being concentrated in the central city core.
This core is surrounded by residential areas, shaping a centripetal vector of displace-
ments. In a second phase, activities are progressively relocated to areas adjacent to the
initial center. The city core is expanded and new trips that do not depend on the initial
center appear. Finally, the last stage is a dispersed urban form where new activities are
located in external areas far from the city center. Although cities tend toward disper-
sion, each of them is in a particular stage of this process. Some of them retain a strong
center, while at the other extreme, others are completely dispersed with no centrality.
Different studies such as Bontje and Burdack (2005), Riguelle et al. (2007), and Lee
(2007) show this evolution and disparity of the degree of urban sprawl in European and
American cities.

There is a connection between urban form and mobility patterns (Aguilera 2005).
Therefore, the previous urban sprawl process changes the initial centripetal pattern,
where destinations are in the city center, to complex scenarios, where peripheral trips
out of the traditional center account for a higher percentage of journeys. This evolution
of the mobility pattern evinces that an initial radial scheme for transit networks cannot
be a competitive alternative to satisfy the increasing number of peripheral trips. As a
consequence, an alternative network design approach is needed if transit systems are to
be an attractive choice among transport modes. In the literature, authors like Mees
(2000) and Nielsen et al. (2005) compare two main design approaches called, in this
paper, the direct-trip-based structure and the transfer-based structure, which is also
named hybrid network.

In the former, the original radial network remains and additional lines are introduced
to connect the new required displacements through direct services. This approach is
based on the fact that planners assume that transfers are perceived negatively and
therefore seek to limit their number. In this line, some design models of transit networks
seek to minimize the number of transfers (Zhao 2006) or restrict the number to a certain
maximum (Baaj and Mahmassami 1995). The resultant networks following this ap-
proach are diffuse systems consisting of the sum of many lines that operate indepen-
dently from each other without working as a real network and have a low understand-
ability that makes their usage difficult. For that reason, the previous authors (Mees
2000; Nielsen et al. 2005) question whether this is the best alternative, especially with
the increasing mobility disparity, which emphasizes the weaknesses of this kind of
structure.
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Mees (2000) and Nielsen et al. (2005) defend the transfer-based design approach in a
qualitative way. The main characteristic of this structure is a simple scheme composed
of a small number of lines adapted to the street pattern. This design makes the operation
more efficient and users can take advantage of its high understandability. The main
change with regard to the direct-trip-based design approach is the role of transfers. In
the transfer-based structure, transfers are an essential step in completing most trips. The
direct-trip-based structure has been the most widely used in cities, but some of these
cities (Vancouver, Copenhagen, Stockholm, Barcelona, etc.) have completely or par-
tially redesigned their bus networks using a transfer-based structure in the last decades.

Reviewing the literature on transit network design, we find recent analytical models
that are suitable tools for the design of transfer-based structures. Daganzo (2010)
proposed a hybrid structure composed of a central grid in the city core and a hub-
and-spoke scheme in the periphery. By means of this model, we can define the general
layout of a simple bus network that is adjusted to a grid street pattern. One example of
this is Estrada et al. (2011), where the model was used for the design of a new bus
network in Barcelona. On the other hand, Badia et al. (2014) extended the application
of the hybrid scheme on a ring-radial street pattern, and Chen et al. (2015) compared
the design of the hybrid structure for both street layouts. However, these contributions
do not discuss the advantages and weaknesses of the design approach behind the hybrid
network, that is, a transfer-based structure, in comparison to the direct-trip-based
strategy. Therefore, a quantitative comparison is lacking.

Authors like Thompson (1977) and Newell (1979) compared alternative design
approaches in extreme scenarios of complete dispersion or high concentration. The
former defended transfer-based structures due to the increasing urban sprawl, while the
latter considered that the most suitable solution was still a network focused on the
traditional center since that center remained as the main focus of demand. Recently,
more complete formulations have been developed in Badia et al. (2016) and Fielbaum
et al. (2016) to answer the same question. Although they work with different method-
ologies, their final objective is the same: to create a tool to help make strategic decisions
about the most efficient network structure depending on the evolution of the urban
form.

These last two papers (Badia et al. 2016; Fielbaum et al. 2016) work with general
outlines of the urban form where different degrees of demand dispersion are represent-
ed. For their simplified cities, different network structures are compared to determine
the most suitable solution in a city with a specific degree of dispersion. On the one
hand, Fielbaum et al. (2016) use a hierarchical description of the city by means of a
graph. This description is introduced in Fielbaum et al. (2017). How the demand is
distributed among the different nodes defines the level of decentralization. On the other
hand, Badia et al. (2016) work with a city as a continuous area where the size of a
central attractant zone, which is the zone where all the destinations are located,
determines the mobility pattern for a specific degree of dispersion. With this city
representation, the model includes the access cost in the comparison of network
structures, which is omitted in Fielbaum et al. (2016).

Focusing on Badia et al. (2016), the design of network structures is adapted to a
specific street pattern, namely a grid. This factor opens the question of what happens if
that street layout changes. To answer this question, in the current paper, a comparison
among network structures is made considering a circular city characterized by a ring-
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radial street pattern. This is the other regular pattern widely found in urban areas
(Dickinson 1961; Lynch 1962) and studied in transit networks (Vaughan 1986; Badia
et al. 2014; Chen et al. 2015; Chen and Nie 2018). In order to make this alternative
comparison, we adapt the pre-existing models to describe the operation of the different
structures on that ring-radial street pattern: radial, direct-trip-based and transfer-based
structures. For this last network, the starting model is the ring-radial hybrid model
presented in Badia et al. (2014), although the original model is modified to represent
different scenarios of demand dispersion. Following the same approach, new formula-
tions are derived for the other two structures. In this way, the formulations presented in
this paper extend the applicability of this tool at the strategic level of bus system
planning to most regular cities. At the same time, to determine the effects of the street
layout, the new results are matched with the previous results obtained on a grid. Finally,
we consider the effects on the applicability of these networks if we include a constraint
on the service headway, a factor that is not examined in Badia et al. (2016).

The exposition of this paper is as follows. Section 2 presents the analytical model
used for the transit network design. The results of the comparison among network
structures are compiled in Section 3, where the area of applicability of each structure is
identified. Then, Section 4 compares the behaviors in the two street patterns: ring-radial
and grid. Finally, Section 5 summarizes the most important conclusions and Section 6
proposes future research lines.

2 Transit Network Design Model

In this paper, an analytical model is used for the design of the network structures
compared. The advantages that justify the appropriateness of this kind of model
were emphasized in Daganzo et al. (2012): fewer data requirements, reduced
computational complexity, improved system representation, transparency, and
insightfulness. These models are useful tools to obtain general insights about the
behavior of transport systems. This approach is widely used and recently new
formulations have been proposed. Moccia and Laporte (2016) make a comparison
of transit modes to identify the best choice in different scenarios of fixed demand.
The comparison is extended to scenarios with elastic demand in Moccia et al.
(2017). Rahimi et al. (2018) propose a model for the design of demand-
responsive services. Chen and Nie (2018) present an alternative feeder service to
complement a network composed by fixed routes. In Fan et al. (2018), the authors
propose a model for the design of bimodal transit networks. Li and Wang (2018)
make a combined design of cordon tolls for private vehicles and the bus service.
Other authors include the effects of different aspects on the transit network design:
urban congestion (Amirgholy et al. 2017), operating strategies (Chen et al. 2018)
and greenhouse gas emissions (Cheng et al. 2018). Finally, Leurent et al. (2019)
propose a comprehensive model for the design of multimodal networks integrating
modal choice, traffic congestion and environmental impacts. All of these contribu-
tions reinforce the applicability of analytical models for the study of transit systems.

The starting point for the model developed in this study is Badia et al. (2014), in
which the ring-radial hybrid network scheme is presented. However, this is modified in
order to distinguish different degrees of demand dispersion and to design alternative
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transit network structures. The next subsections define the model in detail: city and
demand representations, the geometry of the network structures, the objective function
and optimization, and finally, the partial costs and user transit chains.

2.1 City and Demand Representations

The urban area that the transit system serves is assumed to be a circular city whose size
is defined by a radius R and whose street pattern is a homogeneous and infinite ring-
radial mesh. Regarding transit demand, the model works with an average hourly
demand λ that has a maximum peak during the rush hour with a value of Ʌ. It is
assumed that these values do not vary with the level of service or other factors related to
the transit supply. The spatial distribution of demand follows the same approximation
as in Badia et al. (2016); that is, all the demand is attracted to a central area but is
generated over the whole city. Parameter ϕ determines the extension of the central
attractant area, which is a circle of radius ϕR, as shown by Figs. 1 and 2. In this central
area, destinations are uniformly distributed. On the other hand, there are origins in the
central area and in the rest of the city. They are uniformly distributed again, although
with different densities in each area. The central density is higher than the peripheral
one by a factor of fd. The parameter ϕ varies from 0 to 1, representing high centrali-
zation or high dispersion of mobility respectively. The parameter fd is 1 when the
density of origins is the same in the whole city or greater when that density is higher in
the central circle of radius ϕR. Given this distribution, trips are classified into two
categories with regard to the locations of their origins: (i) trips with origins inside the
central attractant area, that is, central trips whose probability is ρ = fdϕ2/[1 + ϕ2(fd − 1)],
and (ii) trips with origins in the periphery, that is, centripetal trips whose probability is
(1 − ρ) = (1 − ϕ2)/[1 + ϕ2(fd − 1)].1

This spatial distribution of demand is also assumed in other papers such as Smeed
(1965), Tan (1966), and more recently Tsekeris and Geroliminis (2013) and Li et al.
(2014). It is simple enough to take advantage of the clarity of analytical models. Only
two parameters represent different degrees of dispersion for a monocentric mobility
pattern. This assumption improves the uniform distribution over the whole city for
generation and attraction accepted in the previous contributions about the hybrid model
(Daganzo 2010; Badia et al. 2014; Chen et al. 2015). The distribution studied of those
papers does not allow different scenarios of demand dispersion to be considered.

The monocentric approach is assumed since it is the predominant urban structure. In
spite of the urban sprawl process and the existence of new centers, the traditional
centers remain as the predominant focus of demand. Bertaud (2004) proposes a model
of the mono-polycentric city, where the central district is still the most relevant although
the initial monocentrism progressively evolves to polycentrism. Similar results are

1 The total number of origins is λ, some of them λc are in the central area and the rest of them λp in the
periphery, then λ = λc + λp. According to the spatial distribution of demand, we assume that the central density
λc/ϕ2R2 is fd times higher than the peripheral density λp/(1 − ϕ2)R2, that is, λc/ϕ2R2 = fdλp/(1 − ϕ2)R2. Knowing
these two relationships, we can obtain the number of origins in the central area and in the periphery:
λc = λfdϕ2/[1 + ϕ2(fd − 1)] and λp = λ(1 − ϕ2)/[1 + ϕ2(fd − 1)] respectively. The probability of central trips is
the number of origins in the central area λc divided by the total number of origins in the city λ: ρ = λc/λ = fdϕ2/
[1 + ϕ2(fd − 1)]. The probability of centripetal trips is the number of origins in the periphery λp divided by the
total number of origins in the city λ, this is the complementary of ρ: (1 − ρ) = λp/λ = (1 − ϕ2)/[1 + ϕ2(fd − 1)].
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shown in Giuliano and Small (1991), Craig and Ng (2001), Baumont et al. (2004),
Griffith and Wong (2007), and Pereira et al. (2013), reinforcing the idea that
monocentrism is still predominant; that is, the clusters of high demand are located
around the traditional city center. However, the deconcentration process is a general
tendency since new centralities have appeared. Their densities are higher in comparison
with their surroundings but not in comparison with the whole city.

For all of the above reasons, the model used in this paper considers an idealized
monocentric city whose center tends to expand, following a process that gradually
increases the degree of urban dispersion. Activities are initially concentrated in a small
center and progressively occupy larger extensions due to the spread of that center; the
parameter ϕ controls this process. On the other hand, the parameter fd balances the
weights of central and peripheral areas on the mobility.

2.2 Geometry of Transit Network Structures

Three basic structures found in the literature (Vuchic 2005) are compared in this study:
a radial network, a direct-trip-based one, and a transfer-based system represented by the
hybrid scheme. Figure 1 shows the geometry of this hybrid network, which is explained
in detail in Badia et al. (2014). This is composed of a ring-radial mesh (radial and
circular lines) in the central part of the network and a hub and spoke scheme (only
radial lines) in the external area. Four decision variables define its configuration: the
angle between radial lines in the central area θ, which is coincident with the angular
spacing between stops of circular lines; the circular line spacing s, which is equal to the
stop spacing in radial lines; the central area size defined by the variable α, where αR is
the radius of the central ring-radial mesh; and the service headwayH for the lines in that
central area. At the same time, the decision variable s fixes the branching of radial lines
in the periphery. These lines branch after every s units of distance in the radial direction.
In this way, the angle between radial lines decreases with the distance from the city
center. At a distance r, this angle is θαR/r.

Fig. 1 Network scheme, geometric decision variables, and parameters of the ring-radial hybrid model (Badia
et al. 2014)
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The central region from a supply point of view, whose area is π(αR)2, covers an area
equal to or smaller than the central attractant region from a demand point of view, whose
area is π(ϕR)2, that is, α ≤ϕ. It does not make sense to have circular lines outside the
attractant area since nobody would use them. When one radial and one circular line are
combined, users use themost central circular line between the origin and destination because
this path is always the shortest. Any trip whose origin is out of the attractant area has a more
central destination because all the destinations are in that attractant area. Therefore, the
circular line chosen in this case is always that one that serves the destination.

In the central area, a simple structure and service headway prevail over spatial
coverage. Headway is constant in the central mesh while the stop spacing increases in
the angular direction. On the other hand, spatial coverage prevails in the periphery. Line
branching guarantees a constant spatial coverage equal to the boundary αR, but
headway increases progressively with distance from that boundary. The other two
structures always follow this second criterion; that is, spatial coverage is constant
across the whole city.

Figure 2a shows the radial scheme, which is a particular case of the hybrid structure
for α = 0. Therefore, it follows the same behavior as the peripheral section of that
previous structure. In this case, only radial lines serve the city and these start to branch
out from its center. There are no circular lines, an important factor that differentiates this
structure from a hybrid network, which has at least one circular line even for small
values of α. The decision variables are s, θ, and H. Variables s and θ define the network
geometry and the branching of the radial lines that guarantees the same spatial coverage
across the city. H is the headway of one corridor at the central point of the network, and
this headway increases with distance from that center.

At the same time, that radial network is the starting point for the direct-trip-based
structure (Fig. 2b). The objective of this third structure is to satisfy all trips through
direct connections without transfers. To achieve this goal, we follow the same strategy
as in a grid street layout (Badia et al. 2016); that is, the central attractant area is divided
into concentric circular swaths. The radial network serves the central one and additional
groups of lines are gathered in the rest. Every stop is served by one line of the radial

(a) (b)

Fig. 2 Network scheme, decision variables, and parameters of the radial and direct-trip-based structures on a
ring-radial street pattern
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network and two lines of each inner swath-corridor with regard to the own stop. As Fig.
2b shows, one stop located between the first and the second swath-corridor is served by
three lines: one line belongs to the radial scheme that serves the central point of the city
and two lines that come from the first swath-corridor. On the other hand, if the stop is
located beyond the second swath-corridor, five lines serve the stop: one line that comes
from the central point, two from the first swath-corridor and other two from the second
swath-corridor.

To complement the previous explanation, Fig. 3 shows the route layout of some
lines that connect one swath to two external sectors. One of these lines crosses the
external area between the city boundary and the connected swath following the same
path as the radial network. Once the line arrives at the swath, it runs along the swath-
corridor longitudinally, approximately defining a semicircle. After that, the line crosses
the external area again but on the opposite side of the city. In this way, this line connects
half of the swath with its zone of influence in the external area. A symmetrical line that
runs over the other semicircle connects the other half of the swath to the same two
external sectors. For example, Fig. 3 shows three of these pairs of lines, L1–L4, L2–L5,
and L3–L6, which go into the second swath at the same point. If this process is repeated
for all the lines that arrive at the swath at the remaining entrance points to the swath-
corridor, this swath will be connected with the whole of the city by direct services. The
entrance points are coincident with the stops in the swath-corridor. The connection with
the inner area of the swath is already achieved by means of the lines that serve inner
swaths.

Four decision variables determine the configuration of this structure: three from the
previous radial network (s, θ, and H) and an additional one that defines the swath width
d. Focusing on the initial radial network, H is the headway for each corridor in the city
center and increases due to the line branching. To maintain the vehicle flow, at a
distance r, the headway is (r/s)H. In the rest of the swaths, it is assumed that the same
level of service is supplied from the point of view of the headway. That is, a line that
serves a swath located at a distance r has, on average, a headway of (r/s)H. In the

Half of 2nd swath 
connected

External sectors 
connected

L1
L2

L3

L2
L1

L3

Swath-corridor

Entrance point

Entrance point

External sectors 
connectedHalf of 2nd swath 

connected

L4
L5

L6

L5
L4

L6

Swath-corridor

Entrance point

Entrance point

Fig. 3 Detail of a direct-trip-based network structure: how lines are arranged to connect the second swath to its
external area
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swath-corridor, the headway results from the addition of the different overlapping lines.
From Fig. 3, it is possible to deduce that the number of overlapping lines is π/θr, where
θr is the angle between radial lines at a distance r from the city center. Knowing that
θr = θs/r, the resultant headway in each swath corridor is Hθ/π. On the other hand, the
stops are served in the radial direction by different lines of the inner swath-corridors as
explained above and shown in Fig. 2b. The number of overlapping lines per stop at a
distance r is 1 + 2(r-d/2)/d. That is one line from the center and two lines per each inner
swath-corridor, being (r-d/2)/d the number of inner swath-corridors. As the headway
per line is (r/s)H, the total headway at stops is Hd/2s.

2.3 Model Optimization

The goal of this paper is to obtain the cheapest network structure with regard to the total
system cost to serve a specific city with a certain mobility pattern. First, we need to
determine the optimal network configuration for each structure, and then the cheapest
one is the best alternative to serve a specific study scenario. Therefore, the model
minimizes the total cost Z, which is the sum of the agency cost CA and user cost CU.
The objective function (1) includes the infrastructure length2 L, kilometers travelled V,
and fleet M from the agency investment and the access time A, waiting time W, in-
vehicle time T, and transferring time that users spend on their trips. Regarding transfers,
two types of costs are considered: a waiting time included in the total waiting time W
and a walking distance understood to mean the transfer cost derived from the interrup-
tion of the trip (Daganzo 2010). This second component depends on the average
number of transfers per trip eT, a fixed walking distance δ per transfer and the pedestrian
speed w. To add all these costs, agency costs are translated into units of time and
prorated per user by a factor €i/λμ. €i is the unit cost of each component of the agency
cost (where i = L, V, M) and μ is the value of time. Finally, user costs are penalized by
the respective perception factor wj (where j = A, W, T, t).

min Z ¼ CA þ CU ¼ €LLþ €VV þ €MM½ �=λμþ wAAþ wWW þ wTT þ wt δ=wð ÞeT½ �f g ð1Þ

subject to:

s > 0; 0 < θ≤π=2; H ≥Hmin > 0; s=R≤ϕ;O≤C; for a radial network
d≥s > 0; 0 < θ≤π; min θ=π; d=2sf gH ≥Hmin > 0; s=R≤ϕ; d=R≤ϕ;O≤C;

for a direct−trip−based network
s > 0; 0 < θ≤π;H ≥Hmin > 0; s=R≤α≤ϕ;O≤C; for a hybrid network

ð2Þ

The minimization is conditioned by geometrical (due to the derivation of the formula-
tion), physical, operating (minimum service headway Hmin) and vehicle capacity

2 The infrastructure cost per bus stop is neglected since this cost is small in comparison with the lane cost. This
is acceptable in bus systems such as TRB (2003) emphasizes: “most bus stops are located along streets and
consist of a waiting area integrated with the public sidewalk, signage to mark the bus stop, and, in some cases,
a bench or small shelter”. However, this cost would be relevant for tram or metro systems. In these other cases,
the construction of stations is expensive especially when the station is underground. To add this cost, we
should multiply the unit cost per station by the number of stations in the network. The number of stations is the
total infrastructure length L divided by the infrastructure length per stop ls, which are defined in Table 1. This
value is considering unidirectional stations, that is, we assume a different station per direction.

Comparison of Bus Network Structures in Face of Urban Dispersion... 241



(vehicle occupancy O lower than capacity C) constraints (2). Regarding the minimum
headway constraint, we check the most congested stops of the network. For the radial
scheme, these stops are at the central point where the headway per direction is H. For
the hybrid network, the most congested section is each central corridor whose headway
is H. In the direct-trip-based structure, the greatest flow of buses is on the swath-
corridors in the circular direction, where the headway is Hθ/π, or at any stop in the
radial direction, whose headway is Hd/2s.

The objective function for all network structures is convex, as can be seen in
Appendix 3 and in detail in Badia (2016), which include a sensitivity analysis of this
model; that is, the local optimum found is the global solution. This characteristic and
the small number of decision variables make its minimization trivial. Therefore, its
optimization is performed easily by means of a grid search. The optimal network
configuration is defined from the combination of values of the decision variables that
gives the lowest total cost. However, this solution is only accepted under the condition
that it meets all the constraints. If the global optimum breaches some of them, the final
configuration will be the cheapest among the feasible range of alternatives with regard
to those constraints.

2.4 Partial Costs Formulation

The formulation of the different agency and user costs included in the objective
function is shown in this section. In addition, Appendix 1 includes a detailed explana-
tion of the derivations of the partial costs. All of them are expressed in a compact form
as a function of the decision variables.

2.4.1 Agency Costs

Table 1 summarizes the agency partial costs. The network structure geometry and
service headway are the factors that determine these costs. The same table also includes
other relevant network properties such as the average commercial speed of transit
vehicles vc and the average infrastructure length per stop ls.

2.4.2 User Costs

The paths followed by users determine the estimations of partial user costs. The same
criteria for route choice as in Badia et al. (2016) are assumed in this case; a user
generally chooses: (i) the closest stop to his or her origin and destination, (ii) the
shortest-distance path, and (iii) the path with the minimum number of transfers.
Although all these criteria are coincident in most of the trips, this is not the case in a
minority of them. In these last trips, it is assumed that one criterion prevails over the
others, depending on the main goal of each network structure. The purpose is to obtain
a simple formulation without a comparison among different possible alternative routes
in every possible network configuration. Therefore, the routing strategy of users is
simplified. In a transfer-based network, the criterion that prevails is the shortest-
distance path versus the minimum number of transfers, as discussed by Badia et al.
(2014) and also assumed by Chen et al. (2015). However, this discrepancy only exists
when α and ϕ are not coincident. If α is equal to ϕ, there is always a route that
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accomplishes all the criteria for all trips. In a direct-trip-based network, the criterion that
prevails is the minimum numbers of transfers; that is, users always choose the direct
trip. In this structure, this criterion is the best choice for users since direct trips are the
alternative with the shortest total travel time. Therefore, users take advantage in the best
possible way of the service that this structure supplies. A comparison between these
alternative criteria is included in Appendix 2.

The preferential criterion in each case is also in line with the user behavior in real
networks. Currie and Loader (2010) explore the relationship between network design
and bus transfer behavior through an analysis of the Melbourne transit system. They
conclude that transfer-based structures promote the combination of lines due to lower
transfer penalties. These lower values are a consequence of the characteristics of this
design approach: simple routes with high understandability and high frequencies. Badia
et al. (2017) compare the percentage of transfer trips between the old bus network and
the new redesign in Barcelona (Spain). The former was a typical direct-trip-based
structure where users made transfers during only 11% of trips. The latter is a transfer-
based scheme that is currently in the process of gradual implementation. In this new
design, that percentage reached 26% when only half of the new network was imple-
mented. It is predicted that during the final implementation stage, 44% of trips will
involve transfers. All these results suggest that the design approach conditions the
user’s path choice.

Figure 4 shows the different types of trips that we can find in each network structure.
In the radial network, all the criteria are coincident since there is only one path that
connects any origin–destination pair. This trip can be direct (O1–D1) or can include one
transfer made in the city center (O2–D2,1). In the latter case, this network presents
circuitous trips whose lengths are considerably longer than the real distance between
origin and destination, for example the case of O2–D2,2.

In a direct-trip-based network, the trip O3–D3 is an example of most of the trips
where the criteria of minimum number of transfers and shortest-distance path are
coincident. However, when the origin and destination are separated by an angle of at
least 2 + θ/2 rad, the shortest-distance path goes through the city center, but the path
with fewer transfers goes through the respective swath-corridor. As mentioned above,
users are supposed to choose this second option, that is, trip O4–D4. Finally, users get
off the bus at stops located along the swath-corridor, although this decision implies a
longer egress time. To reach the closest stop to the destination, the trip would imply a
transfer.

On the other hand, in the hybrid network, the different criteria are not coincident
on the same path if trips have two characteristics: the origin and destination belong
to the branched section of the radial lines and the angular distance between them is
smaller than 2 rad. In this case, the prevailing criterion is the shortest-distance path;
the trip O5–D5 in Fig. 4c is one instance of this. As two transfers are required during
these trips, they are composed of three sections: from the origin to the first transfer
point located at the most external circular line, from that point to the second transfer
stop by means of that circular line, and from that last stop to the destination using a
radial line. However, the first condition required can only be fulfilled when α is
smaller than ϕ. This kind of trips does not exist if α is equal to ϕ. For the remainder
of the trips, the route choice criteria are coincident. If the angular distance is smaller
than 2 rad and at least one of the extremes is located in the central ring-radial mesh,
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the trip combines one radial and one circular line (trip O6–D6). However, when that
angular distance is greater, regardless of the locations of the origin and destination,
the trip only uses radial lines passing through the city center, where users make the
single transfer required (trip O7–D7).

With regard to waiting costs, the system could operate according to headways or
schedules. However, it is assumed that operating according to schedules is only
possible in direct connections. Therefore, radial and transfer-based structures
always operate according to headways in the whole city. On the other hand,
direct-trip-based networks can operate in a mixed way. In a central area, where
the service headways are lower than a threshold Hs, the system operates according
to headways, and in the rest of the city, it operates according to schedules. An
additional parameter εH defines that central area as a circle of radius εHR. The
average waiting time in this network structure depends on the relationship between
εH and ϕ. Equation (3) computes the waiting time according to a service headway
Hl as used in Tirachini et al. (2010) and Badia et al. (2016). Operating according to

(a) (b)

(c)

Fig. 4 Paths and critical loaded points of the structures studied on a ring-radial street pattern
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headways implies that users arrive randomly at a stop, and on average, the waiting
time is half of the headway. On the contrary, users arrive some minutes hs before
the bus’s arrival, that is, the safety waiting time to avoid the loss of the bus, and an
opportunity cost is added to penalize the worse level of service. This last cost is
proportional to the service headway by means of a factor fs, which is called home
waiting time factor and its value is smaller than 0.5 since waiting at home/work is
less negative than waiting at stop.

ws ¼ Hl=2; if Hl < Hs

hs þ f sHl; if Hl ≥Hs

�
ð3Þ

Based on the previous assumptions and the resultant chosen paths, we are able to
estimate the formulation of the user costs, as summarized in Table 2.

2.4.3 Vehicle occupancy

Finally, we estimate one property of the network, its highest occupancy, as a result
of the comparison of the most loaded points. Figure 4 shows the locations of these
points in the different structures. The maximum load is at the central point in a
radial scheme (CPR). For a direct-trip-based network, the critical point belongs to
one swath, which can be the most external one when the attractant area is small or
an intermediate swath when this area is larger. In the hybrid network, two types of
critical points are identified on the radial lines and two on the circular lines. In both
cases, one critical point is located at the central ring-radial mesh boundary: CPH,rp

for the radial lines and CPH,cp for the most external circular line. Depending on the
size of that mesh, the other two critical points are located in the middle position of
a radial line (CPH,rc) and on an intermediate circular line (CPH,cc). Table 3 includes
these occupancies.

3 Comparison of Network Structures

First of all, we define the input parameters of the analytical model for the base case study
in which we make the comparison. Table 4 summarizes all these parameters, which are
the same as in Badia et al. (2016). The transit technology considered is a high-
performance bus with a homogeneous fleet composed of standard buses only or artic-
ulated buses only. Mixed fleets are not accepted. Moreover, due to an irregular allocation
of passengers among the vehicles, a vehicle occupancy safety factor (SF) is considered.

Then, an exhaustive analysis is carried out to find out how the dispersion affects the
performance of the different transit network structures and how the characteristics of
the city, demand, or transport technology change their ranges of applicability. This
analysis considers two different situations with regard to the headway constraint: (i)
unconstrained case where H > 0, and (ii) constrained case where Hmin = 0.5 min. In the
former, we assume that operating measures satisfy any requirement on stop capacity,
while in the latter the stops have limitations to serve great flows of buses. In this second
case, the stop capacity is 120 buses/h.
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3.1 Effects of Urban Dispersion on Transit Network Structures

This analysis is divided into two parts. In the first one, only the parameter ϕ defines the
degree of dispersion. The value of fd is 1 and is constant; that is, the generated demand
is always uniformly distributed over the whole city. Then, we introduce the parameter fd
in the discussion to evaluate what happens if central trips represent a greater percentage
of journeys.

3.1.1 Parameter ϕ. Uniform Density of Generated Demand Over the Whole City

Figure 5 shows the evolution of costs and vehicle occupancy for the three network
structures: the radial network (Ra), the direct-trip-based network (DT), and the
hybrid scheme (Hy) as a transfer-based structure. The behavior of the structures
compared shows that the most competitive network varies in dependence on the
dispersion parameter ϕ. As Fig. 5a reveals, there are cut-off points in the total
system cost curves of these structures. If we focus on the unconstrained headway
case, the transition is the same as in the case of the grid street pattern: a radial
scheme for concentrated demands, direct trips in intermediate scenarios, and a
hybrid structure when the decentralization is higher. The intersection between the
curves of the two first structures occurs when ϕ = 0.11, that is, when the central
attractant area is less than 2% of the city. The hybrid scheme offers the best
solution when ϕ ≥ 0.60, that is, when the central attractant area covers an extension
larger than 36% of the city. However, the direct-trip-based network reduces its
range of applicability in favor of the other two structures when operating limita-
tions at stops constrain the optimal headway. If Hmin = 0.5, its total cost curve
intersects with the total cost curves of the radial scheme and the hybrid network
when ϕ is 0.15 and 0.58 respectively. The direct-trip-based structure undergoes the
most important changes due to the overlapping lines in the swath-corridors.

Table 3 Maximum occupancies

Network structure Occupancy O

Radial network O = (SF)HΛθ[3πϕR − θs(3 + ρ)]/6π2ϕR
Direct-trip-based
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The reasons for these evolutions are related to how structures perform in each urban
dispersion scenario. Although a radial network is a cheap solution from the point of
view of the agency, the dispersion generates longer length trips and a greater number of
transfers for users. On the other hand, to satisfy mobility needs by direct trips, the
system counteracts the higher investment required through the loss of spatial coverage
and frequency. The alternative of a hybrid network has a large number of transfers;
however, this allows the system to maintain a more balanced time distribution among
the different steps of the user transit chain. Shorter access and waiting times compen-
sate for the additional transfer time.

It is important to clarify that the total cost of the hybrid scheme does not tend to the
total cost of the radial network when the demand is concentrated, although α tends to
small values for high degrees of concentration. As explained in Section 2.2, these two
structures never coincide. The reason is that the hybrid scheme has at least one circular
line, but this type of line does not exist in a radial network. This fact changes the
estimation of some agency and user costs.

Agency and user costs show similar tendencies to the total cost, although break
points appear in their curves due to constraints on capacity or spacing variables and the

Table 4 Characteristics of the base case study

Input parameter Variable Units Value

Demand during rush hour Λ p/rh 50,000

Average hourly demand λ p/h 20,000

Radius of circular city R km 4

Value of time μ €/h 15

Equivalent penalty distance per transfer δ km 0.3

Cruising speed v km/h 30

Walking speed w km/h 4.5

Unit infrastructure cost €L €/km-h 76

Unit distance cost €V €/veh-km 0.85 or 1.1*a

Unit vehicle cost €M €/veh-h 35 or 36*a

Vehicle capacity C p/veh 80 or 150*a

Occupancy safety factor SF – 1.2

Dwell time τ s 35

Boarding (and alighting) time τ’ s 3

Time perception weight of access wA – 2.2

Time perception weight of waiting wW – 2.1

Time perception weight of travelling wT – 1.0

Time perception weight of transferring wt – 2.5

Minimum service headway constraint Hmin min - or 0.5*b

Cut-off headway between types of services Hs min 12

Safety waiting time hs min 5

Home waiting time factor fs – 1/12

*a The first value corresponds to a standard bus and the second to an articulated bus

*b There is no minimum headway in an unconstrained situation
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type of service operation, which change the tendencies of the curves. First, the vehicle
occupancy has an impact on the hybrid scheme. Figure 5d shows high occupancies up
to ϕ = 0.43, which force the system to operate with articulated buses. From that degree
of dispersion up to ϕ = 0.70, the system operates with standard buses but at capacity,
preventing the hybrid network from reaching a better configuration. The same capacity
problems happen for the direct-trip-based structure when there is a constraint on the
minimum headway. In that situation, this structure operates with articulated buses for ϕ
< 0.3, and with standard buses at capacity for 0.3 < ϕ < 0.44. Secondly, under high
demand centralization, the spacing variables are constrained in the three structures due
to the relation between spacings and the radius of the central attractant area (s, d ≤ ϕR).
For low values of ϕ, Fig. 6c shows the shorter spacings, which lead to greater agency
costs and a reduction of user costs. Thirdly, the last break point occurs in the direct-trip-
based structure at ϕ = 0.89 when the service operation changes from headways to
schedules as Fig. 6a shows, with a jump in the value of the service headway.3

Figure 6 shows the evolution of the decision variables with regard to urban
dispersion. First we describe this evolution when headways are unconstrained. For

3 The small jumps in the curves in Figure 5 (except for Figure 5a, showing the total cost) and Figure 6 are a
consequence of the optimization process. In the grid search, the different values of decision variables tested
cover a large range, where each variable is varied with a specific step size. In this study, these step sizes are
ΔH = 0.05 min, Δθ = 2 °, Δs = Δd = 0.02 km, and Δα = 0.005. They are sufficiently small with regard to
their applicability in real cities due to geometrical and operating constraints. Smaller step sizes would reduce
these small jumps but longer computational times would be required. However, this change would not yield
different results and the conclusions would be the same.

(a)  Total cost (b)  Agency cost

(c)  User cost (d)  Vehicle occupancy
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high levels of concentration, the spacing in the radial direction s (and the swath-corridor
spacing d in a direct-trip-based structure) is too short, which necessitates the use of
greater angular spacings θ to compensate for the growth in agency costs. Once this
constraint is overcome, variable s grows progressively in the radial and hybrid net-
works to reduce the branching of radial lines that scatters the fleet while the angular
spacing decreases to guarantee the spatial coverage. On the other hand, these variables
show the opposite behavior for direct trips. In this last structure, the variable s is almost
constant as the angular spacing increases. In order to satisfy all the trips using direct
connections, the area of influence of the bus lines becomes progressively wider. That is,
the greater the number of swaths, the smaller the number of lines per swath. At the
same time, the value of d grows to reduce the swath density for larger attractant areas.

Other important aspect of the direct-trip-based structure is the change in the type of
service operation from headways to schedules. This increases the spatial coverage and
the number of lines at the expense of higher headways. Besides this sudden change in
the direct-trip-based network configuration, the most relevant variation of headway
happens in the hybrid network, where its value grows with a more pronounced slope in
scenarios under capacity constraint. The last comment is related to the size of the
central ring-radial mesh of the hybrid scheme. This is completely extended over the
central attractant area; that is, variable α is always coincident with the parameter ϕ.

Finally, in case that there is a constraint on the minimum possible headway,
the radial and hybrid networks distribute the buses over more lines, which have
higher headways. Figure 6c shows the reduction in the angular line spacing.
Additionally, we observe longer stop spacings for the radial scheme to avoid line
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branching and the associated increase of service headway with the distance from
the center. On the other hand, the direct-trip-based structure increases the angular
spacing to reduce the number of lines per swath-corridor; and at the same time,
the distance between those corridors is reduced to increase their number for a
better demand distribution.

3.1.2 Parameter fd. Different Generated Demand Densities Between the Central
and Peripheral Areas

Figure 7 shows what happens if the analysis includes the parameter fd, which varies from
1 to 30 (i.e., the central density of origins is the same as the peripheral density or thirty
times higher). The results reveal, just as in the grid street pattern scenario, that the
parameter ϕ is more decisive than the parameter fd for determining which network
structure is the best solution. We are able to identify the most competitive structure
knowing only the parameter ϕ in practically all the cases. However, there is a certain
variation in the value of ϕ that justify the change of structure between the direct-trip-
based network and the hybrid scheme, especially for low values of fd. This dispersion
degree of change of structure decreases by 30% (Δϕ = −0.181) from the scenario of
uniform generated demand (fd = 1) to the analyzed scenario where the central area has
the greatest weight in the mobility (fd = 30). Capacity constraints are the reason for that
variation. For low degrees of dispersion, the critical point of the hybrid network is on the
radial lines at the boundary of the ring-radial mesh. All the demand generated in the
periphery crosses this point. However, when the generated demand tends to be concen-
trated in the center, that critical point moves to an inner location of that mesh. The
demand is distributed less well among the lines in the periphery than in the mesh due to
the line branching. For that reason, the greater the peripheral demand, the higher the
maximum occupancy. Therefore, the hybrid network configuration is further from the
non-constrained optimum solution. In addition, the circular lines participate more in the
central trips than in the peripheral ones; as a consequence, fewer users take radial lines
when a higher percentage of generated demand is central. The other significant bound-
ary, between radial and direct-trip-based networks, grows by only 11.8% (Δϕ = 0.013).

A comparison of the total system costs of the different structures under the
scenarios included in Fig. 7 shows the superiority of one structure in those
scenarios where it is the dominant alternative over the other two strategies. In
case of unconstrained headway, the radial network dominates for values of ϕ
smaller than 0.1, achieving a design 10% cheaper than the direct-trip-based

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 4 7 10 13 16 19 22 25 28

fd

Hybrid

Radial

Direct trips

Direct trips (unconst. H) Hybrid (const. H ≥ 0.5 min) 

Direct trips (unconst. H) Radial (const. H ≥ 0.5 min) 

Fig. 7 Area of applicability for the different network structures with regard to the parameters ϕ and fd

Badia H.252



structure and 13–14% cheaper than the hybrid scheme. Direct trips present the
maximum difference compared to the radial network for values of ϕ = 0.2–0.4,
where this alternative achieves a reduction of the total system cost of around 8–
10%. In comparison with the hybrid structure, the most significant savings are
between 7 and 12% for scenarios of dispersion [ϕ, fd] = [0.15–0.25, < 7]. Finally,
the hybrid network is more competitive than a radial scheme in scenarios [ϕ,
fd] = [0.4–0.6, > 10], being 8–9% cheaper. Compared to the direct-trip-based
structure, the hybrid network shows a maximum decrease in cost of 5–6% for
high degrees of dispersion, that is, ϕ > 0.85. In short, the degree of dominance of
one structure over the others varies from 5 to 14% of the total system cost
reduction in this base study scenario.

In case that we introduce a constraint on the minimum headway, the boundary
between the direct-trip-based structure and the hybrid network practically remains
unchanged. However, the applicability of the radial network grows around Δϕ =
0.024–0.044; the effects of the headway constraint on the direct-trip-based structure
are more significant for high degrees of demand concentration (i.e., low values of ϕ).

3.2 Effects of Input Parameters on the Area of Applicability of Network Structures

This section studies the changes in the areas of applicability for the different structures
when the main input parameters of the model, namely the demand (where Ʌ/λ is always
2.5), the city size, symbolized by the circular dimension R, the transfer penalty, and the
unit costs, vary from the above base scenario. The work only focuses on the most
relevant dispersion parameter ϕ. Figure 8 exhibits the evolution of each area of
applicability with regard to input parameters, which are independently analyzed with
regard to the others.

In summary, three areas of applicability are identified, the same as in Section 3.1: (i) a
high degree of concentration, where a radial network is the most reasonable solution, (ii)
intermediate levels of dispersion, where direct connections satisfy the mobility require-
ments in the best possible way, and (iii) high levels of dispersion, where the most
efficient alternative is a transfer-based network. However, these areas are not constant;
they evolve with the variation of the input parameters. The radial scheme gains
applicability in small cities and under conditions of low levels of demand, high agency
costs, or low transfer penalties. The usage of direct services is promoted in small cities,
at high levels of demand (or too low levels working according to schedules) and costly
transfers. In opposite scenarios, the applicability of the hybrid structure increases.

However, the previous areas of applicability change if bus stops have a maximum
capacity of vehicles per hour. These variations confirm that the direct-trip-based network
is the most sensitive, losing competitiveness in comparison with the other two strategies
of design. The negative effects on the performance of the direct-trip-based structure are
more pronounced for high levels of demand. For values ofΛ > 90,000 p/rh, this structure
is replaced by the hybrid scheme even for scenarios of certain centralization, where there
is a high number of destinations concentrated in a small central area.

To evaluate the difference of costs between the structures compared, we focus on the
unconstrained case with regard to the minimum service headway. In scenarios of high
concentration, the radial network reduces the total system cost by 8–10% at most
compared to the direct-trip-based structure for intermediate values of the ranges of
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demand and city radius, low transfer penalties, and high agency unit costs. When the
comparison is made with a hybrid network, this reduction is greater than 25% for high
levels of demand, small cities, and expensive transfers and agency costs. The direct-
trip-based structure achieves the maximum savings in those scenarios where its appli-
cability is greater. Compared to the radial network, the saving is between 10 and 20% in
general for ϕ ϵ [0.15, 0.4], and compared to the hybrid scheme, the saving is greater
than 20% for small cities, between 15 and 20% for high demand and expensive
transfers, and around 10–15% with regard to unit costs, especially when ϕ < 0.25 for
the four input parameters. Finally, the hybrid network reduces the costs by 5–10%
compared to the other two alternatives for high dispersion in those ranges of input
values where this structure gains relevance. There is only one exception: for transfer
penalties δ < 0.1, the hybrid network achieves savings of 20–25% compared to direct
trips. This last input parameter is the most relevant factor for the competitiveness of a
network design based on transfers.

4 Comparison of Results for Grid and Ring-Radial Street Patterns

The analysis for a ring-radial street pattern follows the same approach as the case of
the grid street pattern in Badia et al. (2016). The assumptions and criteria regarding
the choice of user path and derivation of formulations are coincident in both types
of cities, allowing us to make a proper comparison between the previous results for
the unconstrained headway scenario and the results of Badia et al. (2016). This
comparison shows how the street pattern, on which we define the network struc-
tures, conditions the guidelines about the transit network design. The main conclu-
sion is that the evolution of the best transit network structure with regard to urban
mobility dispersion has the same behavior independently of the street pattern where
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the network is designed. The area of applicability of each structure varies in a
similar way in dependence on changes in the main input parameters of the analytical
model. However, the degree of dispersion from which a change between two
structures is justified does not have to be coincident in both street patterns. This
occurs especially at the boundary between the areas of applicability of direct-trip-
based systems and hybrid networks.

Figure 9 compares the value of ϕ of the change between direct-trip-based and
transfer-based structures for each street layout analyzed. The results are obtained in
different scenarios of demand, city size, transfer penalty, and ratio between unit
agency costs and value of time. In Fig. 9a, the generated demand is uniformly
distributed across the city; that is, fd = 1. On the other hand, Fig. 9b assumes a
higher generated demand density in the central area than in the periphery, where fd
is 30. Most of the points are above the bisecting line in Fig. 9a and below that line in
Fig. 9b. This is a consequence of the worse allocation of resources in ring-radial
hybrid networks for more decentralized generated demand. As mentioned in
Section 3.2, the peripheral demand in those networks is only supported by radial
lines while the circular lines only carry a portion of passengers from the central
area. For that reason, the more centralized the generated demand, the better the
distribution of users among radial and circular lines. On the other hand, for a grid
street pattern, horizontal and vertical lines serve the periphery. Therefore, they
always present a good balance of resources invested among them.

Figure 10 makes the same comparison but between a radial scheme and a direct-trip-
based network. In this case, we find points above and below the bisecting line in the
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same proportion, and this does not significantly change among different scenarios of
generated demand centralization.

5 Conclusions

In this study, an analytical model is proposed for the comparison of basic transit
network structures when they are designed on a ring-radial street pattern. The main
conclusions obtained are in line with the results of Badia et al. (2016): (i) each
network structure has its own area of applicability where it is the alternative with
the minimum total system cost; (ii) the evolution of the lowest total cost solution
with regard to urban dispersion starts with a radial network for low values of
dispersion, continues with a direct-trip-based system for intermediate scenarios,
and finishes with a hybrid scheme (as a transfer-based structure) where dispersion
reaches a higher degree; (iii) between the two parameters related to demand
distribution ϕ and fd, the former is the most determinant in order to discern the
optimal structure; and (iv) areas of applicability for each structure are not constant
but depend on the characteristics of the city, transport, and demand. Regarding this
last point, high levels of demand favor operation using a strategy of direct trips,
large cities need synergies among lines by making transfers to achieve a more
competitive transit system, and the transfer penalty plays a relevant role in the
successful implementation of transfer-based structures. In addition, the radial
scheme gains applicability in situations of low demand, small cities, low transfer
penalties, and expensive agency costs.

Additionally, in this paper, we consider scenarios where bus stops have a constraint
on the minimum service headway. The most sensitive structure to this constraint is the
direct-trip based one due to the overlapping lines in the swath-corridors. The previous
conclusions do not completely change, but the headway constraint can introduce
significant variations in specific scenarios. The main effects on the performance of
the direct-trip-based network occur for high levels of demand, losing applicability
especially in favor of the hybrid scheme.

The conclusions (i), (ii), and (iv) above are also similar to the outcomes from
Fielbaum et al. (2016). A radial network (called a hub-and-spoke network in that
paper) is applicable in a city with a strong center, whereas a transfer-based network
(feeder-trunk) is more efficient for dispersed cities. Intermediate scenarios of dispersion
are the space where direct connections are more competitive. Moreover, their areas of
applicability also depend on parameters such as the level of demand and transfer
penalty. The higher the values of these parameters, the greater the applicability of
direct-trip-based structures in comparison to the other two alternatives. In the same line,
Saidi et al. (2017) assess the performance of different metro networks showing that
demand patterns or weights of passenger cost parameters condition which is the best
network configuration and topology. These coincidences reinforce the conclusions
obtained.

On the other hand, the results of Section 4 show that the behavior and general
tendencies for the basic structures are independent of the street pattern. The
general guidelines about the applicability of each network structure do not
change significantly. However, the values of the parameter ϕ of change between
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structures are not exactly the same in a specific scenario; their deviations are
bounded to 0.08 on average. The greatest variations take place at the boundary
between direct trips and transfer-based networks. The main reason is the different
behavior of the hybrid network between the two street patterns. In a ring-radial
mesh, there is an unbalanced distribution of passengers between radial and
circular lines. Only the former serve the periphery; therefore, they carry greater
passenger flows. This makes the exploitation of resources less efficient. Howev-
er, the higher the percentage of central trips, the greater the participation of
circular lines. That is, when fd is higher, there is a more balanced demand
distribution among lines. As a consequence, the area of applicability of this
structure grows.

6 Future Research

This paper contributes an analytical formulation to bus network planning. Transport
planners can use this tool for the decision-making process. Given a specific city, the
model helps analyze what kind of network design approach would be the most
competitive option. Therefore, the next step of this research line is how to apply this
model in real cities. First of all, we need to measure the real urban dispersion. There are
different dimensions of the urban sprawl process. For example, Galster et al. (2001)
consider up to eight dimensions, some of them quantified by different indexes. The
connection of these measures with the parameters ϕ and fd would complete the model,
leading to its applicability in real scenarios.

Application in real cities will allow us to check the similarities between the metrics
of the model with its simple spatial distribution of demand and the metrics in the city
with a real origin–destination matrix. Previous studies have used this family of models
for the design of real bus networks. Estrada et al. (2011) is an example where the
Barcelona bus network is redesigned. That paper shows that the main discrepancy
between user metrics is the trip length, which is longer in the model due to an
overestimation of peripheral trips. The real demand distribution is more centralized
than the idealized uniform distribution over the whole city assumed in the initial model
(Daganzo 2010). However, the introduction of parameters ϕ and fd reduces that
overestimation since the model can consider scenarios with a more concentrated
demand around the center. This upgrade of the initial model would improve the
correspondence between theoretical and real metrics, in particular, obtaining a better
approximation of trip length.

On the other hand, additional aspects could be considered in the model. One of these
aspects is the introduction of a demand function that depends on the characteristics of
the network design. In this way, we can analyze possible effects on demand behavior
according to how each network structure works. In the same line, a more complex
demand distribution with destinations outside the central attractant area could provide
additional insights about the competitiveness and applicability of each network struc-
ture. Another interesting factor is the congestion in the transit system due to the
arrangement of lines. The critical congested points on bus lines are at stops (TRB
2003), where low headways can generate long queues of buses waiting for loading
passengers. The constraint on the service headway shows that congestion has an
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important effect in some scenarios. In this paper, we consider the same minimum
headway for all the structures. However, different operating measures could be imple-
mented in each structure. In a hybrid scheme, each street is served by only one line,
then all its vehicles should serve the same stops. On the other hand, the swath-corridors
of the direct-trip-based structure are crossed by different lines that work independently
to each other. In this way, they could be allocated to different stops, increasing the
capacity of these corridors.

Finally, this model considers simple transit systems that only work with one network
structure. However, if more complex demand representations are assumed, the analysis
of hierarchical systems would be interesting (Fan et al. 2018; Van Nes 2002). Mixed
structures could better satisfy the diverse mobility requirements. For example, the most
demanded zones can be connected with the whole city by direct services, while the rest
of the trips would be completed by a base network where transfers would be an
essential step of their paths.
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Appendix 1. Formulation of the model

Nomenclature H, Headway [h]; θ, Ring stop spacing or radial line spacing [rad]; s, Radial stop
spacing or ring line spacing [km]; d, Swath width or swath-corridor spacing in a direct-trip-based
network structure [km]; α, Variable defining the central ring-radial mesh in a hybrid network structure
[−]; Z, Total system cost [h/p-h]; CA, Agency cost [h/p-h]; CU, User cost [h/p-h]; L, Infrastructure length
[km]; V, Kilometers travelled per vehicle and hour [veh-km/h]; M, Number of vehicles working per
hour [veh-h/h]; A, Average access time per trip [h]; W, Average waiting time per trip [h] (Wc in the
central area and Wp in the periphery); T, Average in-vehicle time per trip [h]; E, Average in-vehicle
distance per trip [km] (Ec in the central area and Ep in the periphery); vc, Commercial speed [km/h]; ls,
Average infrastructure length per stop [km]; eT, Average number of transfers per trip [−]; O, Vehicle
occupancy at the most loaded points of the network [p/veh]; ϕ, Demand decentralization degree [−]; fd,
Factor of densities between central and peripheral areas [−]; ρ, Portion of generated demand in the
central area [−]; Ʌ, Demand during the rush hour [p/h]; λ, Average hourly demand [p/h]; R, Radius of
the circle that represents the city [km]; μ, Value of time [€/h]; δ, Equivalent penalty distance per transfer
[km]; v, Cruising speed (without considering time spent at stops) [km/h]; w, Pedestrian speed [km/h]; €i,
Unit agency cost, where i = L, V, or M [€/km-h; €/veh-km; €/veh-h]; C, Vehicle capacity [p/veh]; SF,
Occupancy safety factor [−]; τ, Dwell time per stop [h]; τ’, Boarding (and alighting) time per passenger
[h]; wj, Time perception weight, where j = A,W, T, or t [−]; Hmin, Minimum service headway constraint
[h]; Hs, Cut-off headway between types of service [h]; hs, Safety waiting time [h]; fs, Home waiting
time factor [−]; εH, Parameter that defines the boundary between both types of service operations in a
direct-trip-based network structure [−]; Oi, Origin of trip; Di, Destination of trip; CPi, Critical point of
occupancy
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This appendix includes explanations and proofs in order to demonstrate the estimation
of the different partial costs for the different network structures. The next process of
derivation is based on the hybrid network model presented in Badia et al. (2014). For
this reason, only some indications are included in this appendix with regard to the
formulation of the hybrid scheme and the radial network. More detailed explanations
are shown for the direct-trip-based structure.

Hybrid Network Structure

The network configuration and the level of service are the same as in Badia et al. (2014)
for s = sr and θ = θc. That is, intermediate stops between transfer-stops in the central
mesh are not considered in this paper; all of the central stops are served by one radial
line and one circular line. Then, the estimations of agency costs in Table 1 are exactly
the same as in Badia et al. (2014). For that reason, their derivations are omitted.

The estimations of user costs differ from the previous paper due to the different
spatial distributions of demand. This changes the weighting between the central area and
the periphery. In this case, there are six types of trips in function of the origin and
destination locations. Three of them have the destination in the central area that is served
by the ring-radial mesh, and they are distinguished by the location of the origin: (a.1) the
origin in the same area, whose probability is ρα4/ϕ4, (a.2) the origin in the remaining
central area, whose probability is ρα2(ϕ2 −α2)/ϕ4, or (a.3) the origin in the periphery,
whose probability is (1 − ρ)α2/ϕ2. On the other hand, the other three types of trips have
the destination in the central area that is only served by radial lines and the origin is
located in: (a.4) the central ring-radial mesh, whose probability is ρα2(ϕ2 −α2)/ϕ4, (a.5)
the central area only served by radial lines, whose probability is ρ(ϕ2 −α2)2/ϕ4, or (a.6)
the periphery, whose probability is (1 − ρ)(ϕ2 − α2)/ϕ2. Assuming the weight of each trip
category, the process of derivation is very similar. Then, the reader is invited to check
these derivations in Badia et al. (2014). Since the estimations have been improved, only
two metrics are derived in detail here: access cost and maximum occupancy.

& Result 1. The expected walking time at the origin and destination is A = [αRθ(6ϕ2

−α2 − ρα2)/6ϕ2 + s]/2w
& Proof. It is assumed that every user connects to the system at his or her nearest stop.

The average distance to one stop is the mean of the walking distances of the closest
user and the furthest one. The former user is located at the stop itself, which implies
a null distance. The walking distance in the latter case is decomposed into two
sections: one radial path whose length is s/2, which is constant across the central
mesh; the other a transverse path that varies with the distance from the city center
with a ratio of θ/2. Therefore, the average walking distance to a stop at a cordon βR
is βRθ/4 + s/4. As β follows a triangular probability density function 2β/α2 in the
central mesh, the resultant average walking distance in that area is

∫α0 2β=α2ð Þ βRθ=4þ s=4ð Þdβ ¼ αRθ=6þ s=4. In the branched section of the
radial lines outside the central mesh, the accessibility is constant and equal to the
boundary αR. Therefore, this average access distance is αRθ/4 + s/4.

On the other hand, the egress cost is the same as the access cost. The total
walking distance is the result of weighting each of the aforementioned distances by
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the portion of trips generated and attracted in the central mesh and in the periphery.
That distance is (αRθ/6 + s/4)(1 + ρ)α2/ϕ2 + (αRθ/4 + s/4)(1 + ρ)(ϕ2 − α2)/ϕ2 +
(αRθ/4 + s/4)(1 − ρ) = αRθ(6ϕ2 − α2 − ρα2)/12ϕ2 + s/2. Finally, the expected
walking time is the previous total distance divided by the pedestrian speed w.

& Result 2. The expected vehicle occupancy at the critical load point during the rush
hour is O = (SF)max {Orp;Ocp;Orc, if rr < αR;Occ, if rc <αR}

& Proof. The vehicle occupancy is studied at those critical points of the system that
present the highest passenger loads. Figure 4c shows the locations of those points in
this network. Two possible locations exist: at an inner point of the ring-radial mesh
and on the boundary of that mesh. In addition, as two types of lines compose the
network, we distinguish the occupancy of radial lines and circular lines. As the
curves of generated and attracted demand are different, the occupancy in one
direction can be different from that in the other direction. It is easy to check that
the generated demand produces higher loads in radial lines than the attracted
demand. The percentage of generated demand outside the mesh is greater than
the percentage of attracted demand, and that demand is only carried by radial lines.
However, with regard to circular lines, the attraction determines the highest occu-
pancy for the same reason. Circular lines only serve inside the central mesh where
there are more attracted trips than generated ones.

Boundary of ring-radial mesh: The demand that crosses this limit through the
radial corridors in the rush hour coincides with the demand generated outside the central
mesh: in the intermediate area it isΛρ(ϕ2−α2)/ϕ2 and in the external peripheryΛ(1− ρ).
This demand is allocated to the existing corridors, whose number is 2π/θ. As corridors
are branched irregularly in the periphery, Badia et al. (2014) show that some of them
serve a peripheral area approximately twice as large as the areas served by other
corridors. For this reason, that demand is multiplied by a factor of two. Finally, this
demand is assigned to the number of vehicles providing the service (1/H), obtaining the
following occupancy: Orp=HθΛ(1− ρα2/ϕ2)/π. Regarding the circular border corridor,
the maximum occupancy that a vehicle supports is obtained from the number of trips
generated in the area of influence of this corridor and the rest of the periphery in an arc of
2 rad, whose destination is situated at an average of 1 rad from the analyzed point.
Obviously, this demandmust be redistributed by the number of vehicles (1/H), giving an
occupancy Ocp = HΛ[4R2(ϕ2 − ρα2) + ρs(4αR − s)][4R2(ϕ2 − α2) + s(4αR − s)]/
32π2ϕ4R4.

Inside the ring-radial mesh: The number of passengers crossing a point of a radial
line at a distance from the city center rr is all the demand generated in the area of
influence of the radial line beyond that point and attracted inside the cordon where the
point is located and outside that cordon if the destination is at an angular spacing ofmore
than 2 rad from that radial line. The former demand is
θΛ ρα2=ϕ2

� �
πα2R2−πr2r
� �

=πα2R2 þ 2 ρ ϕ2−α2
� �

=ϕ2 þ 1−ρð Þ� �� �
=2π, and the

latter is θΛ 1−2=πð Þ πϕ2R2−πr2r
� �

=πϕ2R2 þ πr2r=πϕ
2R2

� �
=2π. The value of rr that

gives the maximum occupancy is R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ 4ϕ2 þ 2ρϕ2−πρϕ2−2ρα2
� �q

=2ρ. Finally,

allocating the passengers to the vehicles that serve the line (1/H), we obtain the
maximum occupancy at the inner point of a radial line Orc=HθΛ[4ϕ2 + ρ(πϕ2− 2ϕ2
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− 2α2)]2/16π2ϕ4ρ. On the other hand, a circular line at a distance rc from the city center
carries all the demand attracted in its surroundings in an arc length of 2 rad and is
generated outside the cordon where the line is located. That is, (2Λsrc/πϕ2R2)[4ϕ2R2

− ρ(2rc− s)2]/8πϕ2R2. Then, the most loaded line is located at a radius

rc ¼ s=3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ρϕ2R2 þ ρ2s2

p
=6ρ. As the line is served by 1/H vehicles per hour,

the most occupied vehicle in a circular line carries

Occ ¼ HΛs 2ρsþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ 12ϕ2R2 þ ρs2
� �q� 	

12ϕ2R2 þ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ 12ϕ2R2 þ ρs2
� �q

−ρs2
� 	

=108π2ϕ4R4ρ.

Finally, from the different analyzed points of the system, the point that
presents the greatest occupancy is the determinant in the model’s results.
However, whether rr or rc is located outside the central mesh, the inner points
would be at the boundary. Therefore, we only consider Orp and Ocp.
Furthermore, the rush hour also has its own peaks, and for this reason, the
occupancy is increased by a safety factor (SF).

Radial Network Structure

The radial structure is the hybrid scheme for α = 0. It is only composed of radial
lines gathered in the central point of the city and branched as they run away from
the center. The main difference from the hybrid network is that there are no circular
lines in this case. Therefore, its costs in Tables 1 and 2 are estimated in the same
way as in the peripheral band of the previous structure. To derive them, we have to
replace αR by s since the reference point here is the first point of ramification.
However, the number of transfers is estimated with more accuracy. This aspect also
conditions the waiting and in-vehicle times since the probability of zero and one-
transfer trips varies, although the derivations follow the same steps. Therefore, the
number of transfers is explained in detail but the remaining costs can be under-
stood from the hybrid scheme in Badia et al. (2014). In addition, the occupancy is
also explained in this appendix. First of all, there are only two types of trips in this
network: (b.1) trips with the origin in the central attractant area, whose probability
is ρ, and (b.2) trips with the origin in the periphery outside that central area, whose
probability is the complement, (1 − ρ).

& Result 3. The expected number of transfers per trip is eT = 1 − 2sθ(3 + ρ)/3πϕR
& Proof. A direct trip exists when the origin and destination are located in the area of

influence of the same line. Due to the line branching, the more central the stop is,
the greater the number of lines that serve that stop. Therefore, the probability of
direct trips between two cordons is determined by the most central one. Given two
cordons βOD and βDD, if the former is greater, that probability is θs/πβOD;
otherwise, θs/πβDD. This probability is the angle between two stops at that cordon
θs/βD divided by the total angle 2π and multiplied by two since the line crosses the
city from one extreme to another through the city center. Knowing that the p.d.f. of
βO and βD is 2βi/ϕ2 in the central area, the probability of zero-transfer trips of

ca tego ry (b .1 ) i s ∫ϕ0 2βO=ϕ
2

� �
∫βO

0 2βD=ϕ
2

� �
θs=πβDRð ÞdβD þ ∫ϕβO

2βD=ϕ
2

� �h
θs=πβORð ÞdβD�dβO ¼ 8sθ=3πϕR. If the origin is peripheral, that probability is
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always determined by the destination. Therefore, ∫ϕ0 2βD=ϕ
2

� �
θs=πβDRð ÞdβD ¼ 2

sθ=πϕR is the probability of direct trips in category (b.2). Finally, weighting by
each trip category, we obtain the portion of direct trips in this network structure
P0 = 2sθ(3 + ρ)/3πϕR. For the remainder of the trips, one transfer is required.
The total probability theorem gives the probability of one-transfer trips, which is
coincident with the expected number of transfers per trip eT.

& Result 4. The expected vehicle occupancy at the critical load point during the rush
hour is O = (SF)HΛθ[3πϕR − θs(3 + ρ)]/6π2ϕR

& Proof. Figure 4a shows that the most loaded point of this structure is the central
point of the city. All passengers who make a transfer go through that center. In
addition, half of the direct trips do too, as mentioned above in Result 3. Therefore,
the number of passengers during the rush hour at that point is Λ[1 − (3 + ρ)θs/
3πϕR]. All of this demand is allocated along the different corridors of the city center
2π/θ and the vehicles that serve each of them (1/H). Therefore, the maximum
vehicle occupancy is HΛθ[3πϕR − (3 + ρ)θs]/6π2ϕR. As in the other structures, this
value is penalized by the factor (SF).

Direct-Trip-Based Network Structure

From the explanations in Sections 2.2 and 2.4, we now start the derivation of
the formulas used to calculate the costs of this network structure. This deriva-
tion is similar to that of Badia et al. (2016), where this structure is designed for
a grid street pattern. Figures 2b and 3 help to understand in detail the
arrangement of the lines on the ring-radial street pattern. The different swath-
corridors are located at a distance i·d from the city center, with i = 1, 2, …, n,
where n is the number of swaths (2ϕR − d)/2d without considering the central
one. A relevant change from the previous structures is the possibility of two
types of services: according to headways or schedules. This divides the city
into two areas at the cordon εHR. The system operates according to headways
inside this cordon and according to schedules outside it. The value of εH is
Hss/HR, the cordon where the service headway reaches the cut-off headway Hs.
We accept operating according to schedules in this structure since transfers do
not exist; that is, eT is zero. Finally, in this structure, we distinguish the same
two categories of trips as in the radial network: (b.1) and (b.2).

& Result 5. The total length of the two-way infrastructure system is L = π[(4 +
θ)R(R + s) − 2θs2]/4sθ + π(4ϕ2R2 − d2)/4d

& Proof. This length is the result of adding the swath-corridors’ lengths to the initial
radial network in Table 1. One swath-corridor is a circumference of radius i·d.
Therefore, the additional length is ∑ 2ϕR−dð Þ=2d

1 2πid ¼ π 4ϕ2R2−d2
� �

=4d.

& Result 6. The total vehicle-distance travelled per hour is V = π[4ϕR2((4 + θ)(2 −
ϕ) + 2πϕ) − d(2d(π − 2) − θ(d − 4s))]/4dθH
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& Proof. We add the vehicle-kilometers of the remainder of the swaths to
those covered by the radial lines that serve the central swath. One line that
serves a swath at a cordon i·d runs from the city edge to its swath-corridor,
covering a length of ((4 + θ)s/4)((R − id)/s), along that corridor for a length
of πid, and finally, from that swath-corridor to the city edge, covering ((4 +
θ)s/4)((R − id)/s) units of distance. The sum of these lengths is multiplied by
two due to its bidirectionality. As the number of vehicles that serves a
swath is 2π/θH, the number of kilometers travelled in that swath is 2π[(4 +
θ)R + (2π − 4 − θ)id]/θH. Adding all the swaths, we obtain π(2ϕR − d)[2R(8 +
2(π − 2)ϕ + (2 − ϕ)θ) + d(2π − 4 − θ)]/4dθH. The resultant number of kilome-
ters travelled is the total sum of the radial network and the remainder of the
swaths, V = π[4ϕR2((4 + θ)(2 − ϕ) + 2πϕ) − d(2d(π − 2) − θ(d − 4s))]/4dθH.

& Result 7. The expected commercial speed during the rush hour is vc = 1/[1/v + τ/ls +
τ ’Λ/V] = 1/[1/v + τπ[4dR(R + s) + s(4ϕ2R2 − d2)]/4Lθds2 + τ ’Λ/V]

& Proof. In this case, the number of stops is 2πR(R + s)/θs2 + π(4ϕ2R2 − d2)/2θds and
the average length per stop ls is the total infrastructure length 2 L divided by that
number of stops. On the other hand, no transfers exist; that is, eT = 0.

& Result 8. The expected walking time at the origin and destination is A = [s(1 +
2θ) + d]/4w

& Proof. The access distance at the beginning of the trip is equal to the access distance
in the radial network structure s(1 + θ)/4. However, the egress distance is not
coincident with the egress distance in that radial network structure. In this case,
the final stop is in one swath-corridor. The width of one swath is d, and therefore,
the user walks a quarter of that width in the radial direction on average. In the ring
direction, the walking distance is θs/4 since the stop spacing is θs. Finally, adding
these distances and dividing by the pedestrian speed, the total access cost is [s(1 +
2θ) + d]/4w.

& Result 9. The expected waiting time per user at the origin stop is:

if εH ≥1 W ¼ H 5 1−ρð Þ þ ϕ 1þ ϕð Þ 5þ ρð Þ½ �R=15 1þ ϕð Þs
if ϕ≤εH < 1 W ¼ hs 1−ε2H

� �þ H 2 f s 1−ε3H
� �þ ε3H−ϕ

3
� �� �

R=3s
� �
1−ρð Þ= 1−ϕ2

� �þ 2ϕRHρ=5s
if εH < ϕ W ¼ hs þ 2 f s 1þ ϕþ ϕ2

� �
RH=3 1þ ϕð Þs� �

1−ρð Þ
þ hs ϕ4−ε4H

� �þ 2H 2 f s ϕ5−ε5H
� �þ ε5H

� �
R=5s

� �
ρ=ϕ4

& Proof. Two aspects are highlighted. First, the service headway at one stop increases
with the distance from the city center due to the line branching. At a cordon βR, the
headway is βRH/s as in the radial network structure or the external area in the
hybrid network. Secondly, as all of the trips are direct, the system can operate
according to headways and schedules. The former implies a waiting time equivalent
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to half of the headway, and the waiting time in the latter follows Eq. (3) in
Section 2.4.2.

Following a similar approximation to Badia et al. (2016), parameter εH deter-
mines the cordon εHR that delimits a central area where the system operates
according to headways and the external one where it operates according to sched-
ules. Headways inside that boundary are lower than Hs; therefore, εH =Hss/HD.
According to the value of that parameter, we identify three different scenarios: (S.1)
when εH ≥ 1, the system only operates according to headways; (S.2) when ϕ ≤ εH <
1, the most external periphery operates according to schedules; and (S.3) when εH
< ϕ, the system only operates according to headways in the most internal region of
the central attractant area. In the first scenario, the city is divided into the same two
areas as in the rest of the proofs, with two types of trips, (b.1) and (b.2). However,
in the other two scenarios, another area appears. In (S.2), the peripheral area related
to (b.2) is divided into two subareas, one external, whose probability is
1−ε2H
� �

1−ρð Þ= 1−ϕ2
� �

, and other internal one, whose probability is

ε2H−ϕ
2

� �
1−ρð Þ= 1−ϕ2

� �
. In this scenario, the central area is (b.1). In (S.3), the

periphery is (b.2), but the central area is divided into two, of which the external
subarea has a probability of ϕ2−ε2H

� �
ρ=ϕ2 and the internal subarea has a probability

of ε2Hρ=ϕ
2.

Focusing our attention on (S.1), the average headways of the central attractant
area and the periphery are weighted by the headway of each cordon βD. The p.d.f.
of β is triangular and follows the functions 2β/ϕ2 and 2β/(1 − ϕ2) in the central
attractant area and in the periphery respectively. Therefore, those average headways

are Hc ¼ ∫ϕ0 2βO=ϕ
2

� �
∫βO

0 2βD=ϕ
2

� �
βOR=sð ÞH� �

dβDþ
h

∫ϕβO
2βD=ϕ

2
� �

βDR=sð ÞH� �
dβD�dβO ¼ 4ϕRH=5s and Hp ¼ ∫1ϕ 2β= 1−ϕ2

� �� �
βR=sð ÞH� �

dβ ¼ 2 1þ ϕþ ϕ2
� �

RH=3 1þ ϕð Þs. This gives an expected waiting time W = [Hcρ +Hp(1 − ρ)]/2 =
H[5(1 − ρ) + ϕ(1 + ϕ)(5 + ρ)]R/15(1 + ϕ)s.

The same derivation is done for the other two scenarios. In (S.2), the average

headways in the two subareas of the periphery are Ho
p ¼ ∫1εH 2β= 1−ε2H

� �� ��
βR=sð Þ

H �dβ ¼ 2 1þ εH þ ε2H
� �

RH=3 1þ εHð Þs and Hi
p ¼ ∫εHϕ 2β= ε2H−ϕ

2
� �� �

βR=sð ÞH� �
dβ ¼ 2 ε2H þ�

εHϕþ ϕ2ÞRH=3 εH þ ϕð Þs. In (S.3), the average headways for the

three different categories of trips between the two central subareas are Ho
c ¼ ∫ϕεH

2βO= ϕ2−ε2H
� �� �

∫βO

εH 2βD= ϕ2−ε2H
� �� �

βOD=sð ÞH� �
dβD þ ∫ϕβO

2βD= ϕ2−ε2H
� �� ��h

βDD=sð ÞH �dβD�dβO ¼ 4 2ε3H þ 4ε2Hϕþ 6εHϕ
2 þ 3ϕ3

� �
RH=15 εH þ ϕð Þ2s,

Hi;o
c ¼ ∫ϕεH 2β= ϕ2−ε2H

� �� �
βD=sð ÞH� �

dβ ¼ 2 ϕ2 þ ϕεH þ ε2H
� �

DH=3 εH þ ϕð Þs,
a n d f i n a l l y Hi

c ¼ ∫εH0 2βO=ε
2
H

� �
∫βO

0 2βD=ε
2
H

� �
βOR=sð ÞH� �

dβD þ ∫εHβO

h
2βD=ε

2
H

� �
βDR=sð ÞH� �

dβD�dβO ¼ 4εHDH=5s. Then, the resultant waiting times
for these scenarios are as follows:
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if ϕ≤εH < 1 W ¼ hs þ f sH
o
p

� 	
1−ε2H
� �þ Hi

p ε2H−ϕ
2

� �
=2

h i
1−ρð Þ= 1−ϕ2

� �þ ρHcϕ
2=2 ¼

hs 1−ε2H
� �þ H 2 f s 1−ε3H

� �þ ε3H−ϕ
3

� �� �
R=3s

� �
1−ρð Þ= 1−ϕ2

� �þ 2ϕRHρ=5s

if εH < ϕ W ¼ hs þ f sHp
� �

1−ρð Þ þ hs þ f sH
o
c

� �
ϕ2−ε2H
� �2 þ hs þ f sH

i;o
c

� �
2ε2H ϕ2−ε2H

� �þ Hi
cε

4
H=2

h i
ρ=ϕ4 ¼ hs þ 2 f s 1þ ϕþ ϕ2

� �
RH=3 1þ ϕð Þs� �

1−ρð Þ þ
hs ϕ4−ε4H
� �þ 2H 2 f s ϕ5−ε5H

� �þ ε5H
� �

R=5s
� �

ρ=ϕ4

& Result 10. The expected in-vehicle travel time per trip is T = E/vc = [5(4 + θ)(1
− ρ) + 2ϕ(1 + ϕ)(5π + ρ(4 + θ − π))]R/30(1 + ϕ)vc.

& Proof. Like the line length, a trip can also be divided into two parts: one in the
swath-corridor and the other in the branched section of the lines. This second
section follows the same path as the radial network. This goes from the most
external extreme of the trip to the cordon where the other extreme is located. Its
length is |βO − βD|R units of distance in the radial direction and (θs/4)|βO − βD|R/s in
the circular direction. The section in the swath-corridor runs from the entrance point
of the previous section to the other extreme of the trip. The distance travelled in this
case is, on average, a quarter of the cordon length, 2π(min{βO; βD})R/4. With this

information, we can estimate the distance travelled on the peripheral trips as Ep

¼ ∫1ϕ 2βO= 1−ϕ2
� �� �

βO−ϕð ÞR 1þ θ=4ð ÞdβO þ ∫ϕ0 2βD=ϕ
2

� �
ϕ−βDð Þ½ R 1þ θ=4ð Þ þ

πβDR=2�dβD ¼ 4þ θþ 2πϕþ 2πϕ2
� �

R=6 1þ ϕð Þ and that on the central trips as
Ec ¼ ∫ϕ0 ∫

ϕ
0 2βD=ϕ

2
� �

2βO=ϕ
2

� �
βO−βDj jR 1þ θ=4ð Þ þ πmin βO;βDf gR=2½ �dβOdβD

¼ 4πþ 4þ θð ÞϕR=15. Finally, weighting these two lengths by the probability of
each trip category, the expected in-vehicle travel distance per trip E is obtained.
Knowing E and dividing it by the commercial speed vc, the in-vehicle travel time T
is determined.

& Result 11. The expected vehicle occupancy at the critical load point during the rush
hour is:

if 2dρþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ϕ2R2ρþ d2ρ2

q� �
=6ρ≤ϕR; O ¼ SFð ÞHΛθd dρ 36ϕ2R2−ρd2

� �þ
ρ1=2 12ϕ2R2 þ ρd2

� �3=2
" #

=216πϕ4R4ρ

if 2dρþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ϕ2R2ρþ d2ρ2

q� �
=6ρ > ϕR; O ¼ SFð ÞHΛθd 2ϕR−dð Þ ϕ2R2 1−ρð Þþ

ρd 2ϕR−dð Þ
 �

=4πϕ4R4

& Proof. The number of vehicles that connect one swath-corridor, which is at a
distance of i·d from the city center, with its external area is Hθ/2π. The total
demand generated in that swath and in its external area is Λ[4ϕ2R2 − (4i2 −
4i + 1)ρd2]/4ϕ2R2, and the probability that this demand has its destination in
the swath is id2/ϕ2R2. Mutiplying these three terms, the number of passengers
carried by one vehicle is HΛθid2[4ϕ2R2 − (4i2 − 4i + 1)ρd2]/8πϕ4R4. The most
occupied vehicles are those that serve the swath at a distance of

2dρþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ϕ2R2ρþ d2ρ2

p� 	
=6ρ from the city center. When this distance is
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inside the central attractant area, the occupancy is Oi = HΛθd[dρ(36ϕ2R2

− ρd2) + ρ1/2(12ϕ2R2 + ρd2)3/2]/216πϕ4R4ρ. Otherwise, the occupancy is a
monotonically increasing function in the central attractant area, and
therefore the swath with the maximum occupancy is at the boundary of this
area since there are no swath-corridors in the periphery. Then, Oe =
HΛθd(2ϕR − d)[ϕ2R2(1 − ρ) + ρd(2ϕR − d)]/4πϕ4R4 is the occupancy in the
most external swath-corridor. Finally, as in all cases, a safety factor (SF) is
included.

Appendix 2. Alternative Criterion on Route Choice in Direct-Trip-Based
and Transfer-Based Structures

To get a simple and compact formulation, we assume that some criteria on route choice
prevail over the others. Two criteria are compared: the shortest-distance path and the
path with the minimum number of transfers. This last criterion is equivalent to direct
trips in a direct-trip-based structure since all of origin-destination pairs can be com-
pleted with no transfers. In this appendix, we demonstrate that the criterion chosen as
prevalent in Section 2.4.2 is the alternative that provides the shortest travel times. For
reasons of space, the formulation for the case that the prevailing criterion is different
from Section 2.4.2 is skipped.

In the direct-trip-based structure, we assume that a direct trip is more compet-
itive than the alternative shortest-distance path through the city center where users
have to make a transfer. The difference in total travel time between the shortest-
distance path and the direct trip is (2 + θ/2 − φ)r/vc + wWHr/s + wtδ/w − wA(d − s)/
4w, being φ the angle between the origin and destination and r the distance from
the city center to the most central end of the trip between origin and destination.
This result depends on the commercial and pedestrian speeds, service headway,
transfer penalty, corridor and stop spacings, user time perceptions, and origin and
destination locations. Focusing on the base case study, this difference is always
positive for all users; that is, the direct trip is always the best choice. For an
unconstrained headway scenario, Fig. 11a shows the total cost curve for different
values of ϕ considering the alternative route choice where the shortest-distance
criterion prevails. For any degree of dispersion, the total cost assuming this option
(dashed black line) is higher than in the base scenario of Section 3 (dashed grey
line). As a result, the range of values of ϕ where the direct-trip-based structure is
the cheapest alternative is shorter, ϕRa→ DT is greater and ϕDT→ Hy is smaller.
Analyzing other scenarios of demand, city size, transfer penalty and unit costs
such as in Section 3.2, the results are similar to the base case study. Following the
shortest-distance criterion, the value of ϕ from which a hybrid scheme is a better
solution than a direct-trip-based structure is smaller than following the criterion of
minimum number of transfers. At the same time, this value is higher when the
comparison is between radial and direct-trip-based networks (Fig. 11b). Therefore,
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the applicability of the direct-trip-based structure is reduced. For that reason, the
model works with the criterion of minimum number of transfers.

On the other hand, if the hybrid network is optimized considering that the criterion
of minimum number of transfers prevails, the results are the same as in Section 3. The
decision variable α is always coincident with the degree of dispersion ϕ. Therefore,
there are no discrepancies between alternative route choices. To connect any origin-
destination pair, there is a route that meets both criteria. For that reason, the curves of
total system cost are coincident (solid black and grey lines in Fig. 11a).

Appendix 3: Sensitivity Analysis of the Transit Network Design Model

The heterogeneity of urban areas could impede the transit system from adopting the
optimal network configuration. As a consequence, the total system cost increases and
the applicability of each network structure could vary. To evaluate possible effects, we
make a sensitivity analysis about the variation of the total system cost with regard to
changes in the decision variables. In this way, we can evaluate the robustness of the
analytical model around the optimal network configuration. Figure 12 exhibits in the
vertical axis the ratio between total cost when one decision variable is modified Z’ and
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Fig. 11 Comparison between criteria on route choice in direct-trip-based and hybrid structures
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total cost for the optimal configuration Z*, and in the horizontal axis, the ratio of
variation of the decision variable under analysis (s’/s*, θ’/θ*, H′/H*, α’/α* or d’/d*). In
each graph, only one decision variable is modified while the others are constant and
equal to the optimum. We consider an unconstrained service headway scenario and the
parameter ϕ equal to 1; therefore, fd is irrelevant in this case. For other values of these
parameters, the evolution of the total cost is similar.

According to the results, the analytical model is robust for all the network structures.
When the decision variables vary around 30%, the total cost increases less than 2% in
most of cases. For the direct-trip-based structure and the radial network, this increase is
bounded to 3% when the characteristics of the city force the final network design to
reduce the stop spacing. The greatest increase happens in the hybrid scheme when
parameter α varies from 1 to 0.7. In this case, the increase almost reaches 5%.
However, when the variation of the decision variables is around 15%, the upper bound
of the total cost growth is 1.5%.

However, the previous increases of the total cost would have limited effects on the
applicability of each structure for different reasons: (i) great changes of the decision
variables are required to produce significant increases in the total cost; (ii) the total cost
growths obtained due to the variation of one decision variable could be reduced
adjusting the other variables as design levers to compensate for those growths; (iii)
the factor that determines the applicability of each structure is the difference between
their respective total system costs, then the variation of that difference could be smaller
than the variation of each particular total cost; and finally, (iv) if urban constraints
forces an adjustment to the optimal value of one decision variable, Fig. 12 shows that it
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Fig. 12 Robustness of the analytical model with regard to the total system cost around the optimal network
configuration
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is always better to adopt higher values of that variable since the total cost increases with
a smaller slope in that direction (in this case, it does not apply for α because this
variable cannot be greater than 1).

Based on these reasons and the results in Fig. 12, we can assume that the main
conclusions of this paper are not invalidated for possible adjustments to the optimal
values of the decision variables. For further information, readers can consult Badia
(2016) where a more exhaustive sensitivity analysis includes the effects of each
decision variable on the different partial costs of the objective function (1) and other
metrics of the bus network.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.
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