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Abstract
We keep investigating the properties of consistent conjectural variations equilibrium
(CCVE) developed for a single-commodity oligopoly. Although, in general, the con-
sistent conjectures are distinct from those of Cournot-Nash, in our previous papers,
we established the following remarkable fact. Define a meta-model as such where
the players are the same agents as in the original oligopoly but now using the con-
jectures as their strategies. Then the Cournot-Nash equilibrium in the meta-model
generated the consistent conjectural variations equilibrium in the original oligopoly.
In this paper, we study the conditions under which the inverse is also true, that it,
every consistent CVE provides for the Cournot-Nash optimal strategies for the meta-
model. This equivalence allows one to extend the concept of CCVE to other kinds of
economic and financial models lacking the oligopoly structure.

Keywords Consistent conjectural variations equilibrium · Meta-model · Optimal
Cournot-Nash strategies

1 Introduction

The concept of conjectural variations equilibrium (CVE) was first proposed by Bow-
ley (1924) and Frisch (1933) in order to extend the concept of a solution to a static
(Cournot) model (game). According to this concept, the game players behave in the
following manner: each agent chooses her/his most profitable strategy remembering
that each adversary’s action is a conjectured function of her/his own strategy.
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The papers (Bulavsky and Kalashnikov 1994; 1995) and the monograph (Isac
et al. 2002) introduce and examine a new form of the CVE, in which the conjectural
variations (represented via the influence coefficients of each agent) were used to bring
about a new equilibrium concept distinct from that of Cournot-Nash.

For instance, in Isac et al. (2002), the classical oligopoly model was extended to
the conjectural oligopoly as follows. Instead of the usual Cournot-Nash assumptions,
all producers i = 1, . . . , n, considered the conjectural variations described below:

Gi(η) = G + (η − qi) wi (G, qi) . (1)

Here, G is the current total quantity of the product cleared in the market, qi and η are,
respectively, the present and the expected supplies by the i-th agent, whereasGi(η) is
the total cleared market volume conjectured by the i-th agent as a response to chang-
ing her own supply from qi towards η. The conjecture function wi was referred to as
the i-th agent’s influence quotient (coefficient). Recall that the usual Cournot-Nash
model assumes wi ≡ 1 for all i, i = 1, . . . , n. Under general enough assumptions
concerning the properties of the influence coefficients wi = wi (G, qi), cost func-
tions fi (qi), and the inverse demand function (or, price function) p = p(G), new
existence and uniqueness results for the conjectural variations equilibrium (CVE)
were obtained. This approach was further developed in Kalashnikov et al. (2009,
2010).

An interesting comparison of the Cournot-Nash and Bertran models is conveyed
in Kreps and Scheinkman (1983). Bertrand’s model of oligopoly, which considers the
perfect competition, assumes that (1) there is a competition over prices and (2) pro-
duction follows the realization of the demand. The authors (Kreps and Scheinkman
1983) demonstrate that both of these assumptions are required. In more detail, they
study a two-stage oligopoly game where, first, there is a simultaneous production,
and, second, after the production levels are made public, there is price competi-
tion. Under rather mild assumptions about the demand, the authors show in Kreps
and Scheinkman (1983) that the unique equilibrium is the Cournot-Nash one. This
illustrates that solutions to oligopoly games depend on both the strategic variables
employed and the context (game form) in which those variables are employed.

A different example of a two-stage game can be seen in Murphy and Smeers
(2005). Similar studies kept going in the unpublished manuscript (Kimbrough et al.
2014) dealing mainly with forward markets but still providing important insight into
the consistent conjectural variations equilibrium in the many-stage oligopoly model.
The authors examine the impact of the conjectures about the players’ knowledge on
the outcome of the game, where the outcomes are consistent with their conjectures.
Then they deduce the similar result obtained by Allaz and Vila (1993) on forward
markets but under different assumptions of knowledge from consistent conjectural
variations.

All the above-mentioned papers deal in various modes with games with conjec-
tural variations equilibrium (CVE). A more detailed story of the “highs and lows” of
the CVE can be found in Kalashnikov et al. (2011, 2017) . However, for the sake of
a complete list of the predecessors, we briefly repeat the short survey presented in
Kalashnikov et al. (2017).
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As is mentioned in Figuières et al. (2004), Giocoli (2005), the concept of con-
jectural variations has been the subject of numerous theoretical controversies (e.g.,
see Lindh (1992)). Nevertheless, economists have made extensive use of one form or
the other of the CVE to predict the outcome of non-cooperative behavior in several
fields of economics. The literature on conjectural variations has focused mainly on
two-player games (cf., Figuières et al. (2004)). The central concept of the theory is
the notion of conjecture. Usually, the variational conjecture describes the reaction of
player j , as anticipated by player i, to an infinitesimal variation of player i’s strategy.
This mechanism leads to the notion of a conjectured reaction function of the oppo-
nent. Given these conjectured reactions on the part of the rivals, each agent optimizes
his perceived payoff. This yields the concept of a conjectural best response function.
Equilibrium is obtained when no player has an interest in deviating from his/her strat-
egy, i.e., his/her conjectural best response to the strategies of the other player. Here,
it is worthwhile to recall again that we are studying the static equilibrium where con-
jectures, prices, and production volumes are selected simultaneously by applying the
consistency criterion.

The main obstacle in the way of admitting this concept is a problem with its
consistency. The consistency (a.k.a., sometimes, “rationality”) of the equilibrium is
defined as the coincidence of the conjectural best response by each agent and the
conjectured reaction function of the same agent. A conceptual difficulty arises when
one considers consistency in the case of many (i.e., more than 2) agents (see, again,
Kalashnikov et al. (2017) and Figuières et al. (2004)). Interesting discussions of the
concept of consistency of predictions can be also found in the papers Ben-Akiva et al.
(2001) and Zerrahn and Huppmann (2017).

Indeed, the strongest notion of consistency requires that the conjectural best response
of player i coincides with what the other players have conjectured about her, that is,
with one of their conjectured reaction functions. However, when n agents are present,
there are n best response functions and n(n − 1) conjectures. Therefore, if n > 2, an
equilibrium is consistent only if all players have the same conjectures about player
i. This is the approach followed explicitly by Başar and Olsder (1982); this assump-
tion can be also found in Fershtman and Kamien (1987) dealing with conjectures
in differential games. In the literature on static n-player conjectural variations, the
problem is usually implicitly addressed by assuming a complete identity of all the agents
(cf., Laitner (1980), Bresnahan (1981), and references therein; Novshek (1985)).
Using a bit different approach, Perry (1982) for oligopoly, Cornes and Sandler (1984)
and Sugden (1985) for public goods, consider a class of games where for each agent,
the contributions of all other players to her payoff are aggregated. It is as if each
agent plays against a unique (virtual) player representing the remaining agents.

In order to cope with such a conceptual difficulty arising in many-player games,
a completely new approach was proposed in Bulavsky (1997). Instead of assuming
the identity of the agents in the conjectural variation model of a homogeneous good
market, it is supposed that each player makes conjectures not about the (optimal)
response functions of the other players but only about first-order variations of the
market price depending upon his/her infinitesimal output variations. Knowing the
adversaries’ conjectures (called influence coefficients), each agent can apply a verifi-
cation procedure and check if his/her influence coefficient is consistent (compatible)
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with those of the rest of the agents. Exactly the same verification formulas were
obtained independently (but 10 years later) in Liu et al. (2007) establishing the exis-
tence and uniqueness of consistent conjectural variation equilibrium in an electricity
market. However, to do that, the authors of Liu et al. (2007) made use of a much more
complicated optimal control technique when searching the system’s steady states (a
similar approach was handled in Driskill and McCafferty (1989)). Moreover, in Liu
et al. (2007), the inverse demand function is linear, and the agents’ cost functions
are quadratic, whereas Bulavsky (1997) allows nonlinear and even non-differentiable
demand functions as well as arbitrary convex cost functions of the agents.

The results obtained in Bulavsky (1997) for classical oligopoly models were
extended in Kalashnikov et al. (2011) to a mixed oligopoly model. In the same
manner as in Bulavsky and Kalashnikov (1994, 1995), the authors considered a con-
jectural variations oligopoly model, in which the degree of influence upon the general
situation by each agent is modeled by special parameters (influence coefficients).
However, in contrast to the models defined in Bulavsky and Kalashnikov (1994,
1995) and Kalashnikov et al. (2009, 2010), the papers Kalashnikov et al. (2011) and
Kalashnikov et al. (2017) follows the pattern proposed in Bulavsky (1997) select-
ing the market clearing price p, rather than the producers’ total output G, as an
observable variable. Because of that, the players’ conjectures are denoted by letters
vi instead of the previously employed wi , with an evident relationship valid for these
pairs of parameters:

wi = − vi

p′(G)
, i = 1, . . . , n. (2)

As was demonstrated in Kalashnikov et al. (2011), in general, the consistent con-
jectures (in terms of wi) are not the Cournot-Nash conjectures, i.e., wi �= 1. In other
words, at a consistent CVE, each player i does not use the Cournot-Nash equilib-
rium concept, since he/she doesn’t assume that all other (j �= i) agents are stuck
to the (equilibrium) production volumes qj , j �= i. In our previous paper (Kalash-
nikov et al. 2017), we introduced a meta-model, in which not the players’ production
volumes qi but their conjectures vi serve as the players’ strategies instead. The
remarkable fact was demonstrated: the consistent (for the original oligopoly) con-
jectures v∗

i , while in general not being the Cournot-Nash ones for this game, are
the optimal Cournot-Nash strategies in the above-mentioned meta-model. In other
words, if each player i assumes that the rest of the players stick to their consistent
CVE conjectures v∗

j , j �= i then his/her consistent conjecture v∗
i is optimal for player

i, too. The latter means that the vector of (consistent in the original oligopoly) con-
jectures v∗

i , i = 1, . . . , n, coincides with the classical Cournot-Nash equilibrium in
the meta-game. Similar results were claimed (without proof) in our previous paper
(Kalashnykova et al. 2012) but only for quadratic cost functions.

However, since the meta-model allows the agents to select their strategies from
Rn, and the latter isn’t compact, the existence of the Cournot-Nash equilibrium in
the meta-model has to be guaranteed by some extra assumptions (similar difficulties
related to the price equilibrium were run into and overcome by Kress and Pesch
(2015)). Under those assumptions, the complete equivalence of the consistent CVE
in the original oligopoly and the meta-model has been established in this paper.
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The rest of the paper is organized as follows. In Section 2, the mathematical model
from Bulavsky (1997) is described and then, in Section 3, the concept of exterior
equilibrium (i.e., the conjectural variations equilibrium (CVE) with the influence
coefficients fixed in an exogenous form) is defined. The existence and uniqueness
theorems for this kind of CVE end the section. Section 4 deals with a more advanced
concept of interior equilibrium, which is determined as the exterior equilibrium with
consistent conjectures (influence coefficients). The consistency criterion, its verifica-
tion procedure, and the existence theorems for the interior equilibrium are formulated
in the same Section 4. Even though the short Sections 2 to 4 mainly are the same as in
our recent paper (Kalashnikov et al. 2017), we insert them to make this paper some-
what self-contained. Finally, Section 5 establishes the main (and the only new) results
of this manuscript asserting that the consistent conjectural equilibrium in the orig-
inal oligopoly provides the classical Cournot-Nash equilibrium in the meta-model
and vice versa. The main body of the paper is finished with Section 6 that presents a
couple of numerical examples that illustrate the applicability of the obtained results
to real cases. The proofs of the three principal theorems of this paper are exported to
the Appendix.

2 Model Specification

Consider an oligopoly of at least two producers of a homogeneous good with the cost
functions fi = fi(qi), i ∈ {1, . . . , n}, n ≥ 2, where qi ≥ 0 is the supply by pro-
ducer i. Consumers’ demand is described by a demand function G = G(p), whose
argument p is the market price established by a cleared market. An active demand
D is nonnegative and does not depend upon the price. The equilibrium between
the demand and supply for a given price p is guaranteed by the following balance
equality:

n∑

i=1

qi = G(p) + D. (3)

We assume the following properties of the model’s data:

A2.1 The demand function G = G(p) ≥ 0 is defined for p > 0, being decreasing
and continuously differentiable.

A2.2 For each i ∈ {1, . . . , n}, the function fi = fi(qi) is defined for every qi ≥ 0,
is twice continuously differentiable, and in addition, the following inequalities hold:

f ′
i (0) > 0 and f ′′

i (qi) > 0, ∀qi ≥ 0. (4)

Next, every producer i ∈ {1, . . . , n} chooses its output volume qi ≥ 0 so as to
maximize its net profit function:

πi(p, qi) = pqi − fi(qi). (5)

293Special Issue on Variational Inequalities



Now we postulate that the producers admit that their perturbations in production
volumes may affect the price value p. In first order terms, the latter assumption is
implemented by means of a conjectural dependence of infinitesimal variations of the
price p upon infinitesimal variations of the supply volumes qi . If so, the first order
maximum condition to describe the equilibrium will have the form:

∂πi

∂qi

= p + qi

∂p

∂qi

− f ′
i (qi)

{ = 0, if qi > 0,
≤ 0, if qi = 0,

i ∈ {1, . . . , n}. (6)

Therefore, to describe the (infinitesimal) behavior of producer i, it is enough to
conjecture the first order derivative ∂p/∂qi ≡ −νi instead of the exact functional
dependence of p upon qi . Here, we introduce the negative sign in order to deal with
nonnegative values of νi . Of course, the conjectured first-order dependence of p on qi

must provide, at least locally, the concavity of the i-th producer’s conjectured profit as
a function of its output (otherwise, one cannot guarantee the profit to be maximized).
As we suppose that the cost functions fi are strictly convex and strictly increasing,
by inequalities (4), then, for all i ∈ {1, . . . , n}, the concavity of the product pqi with
respect to qi would suffice. For instance, it is enough to assume the coefficient νi

(from now on referred to as the i-th producer’s influence coefficient) to be nonnega-
tive and constant. Then, the conjectured (infinitesimal first order) dependence of the
profit’s variations upon the production output ηi has the form:

π̂i(ηi) = [p − νi(ηi − qi)]ηi − fi(ηi), (7)

which is a concave function on ηi .
Here, it is worthwhile to mention that relation (7) does not mean that agent i

exercises its market power, which would look weird as combined with the balance
equality (3). In fact, vice versa, player i is a price-taker: she/he accepts its conjectured
influence coefficient νi and calculates the expected variation in the market clearing
price p (and hence in her/his net profit) under the infinitesimal variation of her/his
produce (η − qi).

Therefore, the maximum necessary condition at ηi = qi is provided by the
relationships

{
p = νiqi + f ′

i (qi), if qi > 0,
p ≤ f ′

i (0), if qi = 0,
i ∈ {1, . . . , n}, (8)

and it is the sufficient condition, too.
If the producers’ conjectures about the model are given in an exogenous mode like

it was assumed in Bulavsky and Kalashnikov (1994, 1995), we could allow the val-
ues νi to be functions of qi and p. However, here we use the approach from papers
(Kalashnykova et al. 2012) and (Bulavsky 1997), where the conjectured parameters
for the equilibrium are determined simultaneously with the price p and the output val-
ues qi by a special verification procedure. In the latter case, the influence coefficients
are scalar parameters determined only for the equilibrium state. In what follows, such
equilibrium state is referred as to interior, and it is described by the combined vec-
tor of variables and parameters (p; q1, . . . , qn; ν1, . . . , νn). Nevertheless, in order to
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present the verification procedure, we need first to introduce a simpler notion of equi-
librium called exterior (cf., Bulavsky (1997)) with the parameters νi assigned in the
exogenous form. This concept is defined and discussed in the next section.

3 Exterior Equilibrium

We define the concept of exterior equilibrium as follows:

Definition 3.1 A vector (p; q1, . . . qn) is called exterior equilibrium for the given
influence coefficients νi ≥ 0, i ∈ {1, . . . , n}, if the market is balanced, i.e., equality
(3) holds, and for each i ∈ {1, . . . , n}, the maximum conditions (8) are valid.

From now onward, we are going to consider only the case when the set of really pro-
ducing participants is fixed (i.e, it doesn’t depend upon the values νi of the influence
coefficients). To guarantee this feature, we make the assumption listed below.

A3.1 For p0 = max
1≤i≤n

{f ′
i (0)} and any i ∈ {1, . . . , n}, there exists a unique (due to

A2.2) supply volume q0
i ≥ 0 such that

p0 = f ′
i (q

0
i ), and in addition,

n∑

i=1

q0
i < G(p0). (9)

Lemma 3.2 Assumptions A2.1, A2.2 and A3.1 imply that for all nonnegative values
of νi , i ∈ {1, . . . , n}, any exterior equilibrium has its supply values qi strictly positive
(that is, qi > 0, i ∈ {1, . . . , n}) if, and only if p > p0.

Proof cf., Kalashnikov et al. (2017) .

The existence and uniqueness of the exterior equilibrium for any set of (non-
negative) conjectures (influence coefficients) were established in Bulavsky (1997).
However, in the latter paper, only differentiability of the equilibrium clearing price p

with respect to the active demand D was proven, while in this paper, we also need to
show that the same equilibrium price function p = p(D, ν1, . . . , νn) is differentiable
by the influence coefficients, too. Therefore, the following theorem has been proved.

Theorem 3.3 Under assumptions A2.1, A2.2 and A3.1, for any D ≥ 0, νi ≥ 0, i ∈
{1, . . . , n}, there exists uniquely the exterior equilibrium (p; q1, . . . , qn) that depends
continuously on the parameters D ≥ 0, νi ≥ 0, i ∈ {1, . . . , n}. The equilibrium
price p = p(D, ν1, . . . , νn), as a function of these parameters, is differentiable with
respect to both D and νi , i ∈ {1, . . . , n}. Moreover, p(D, ν1, . . . , νn) > p0, and

∂p

∂D
= 1

n∑

i=1

1

νi + f ′′
i (qi)

− G′(p)

, (10)
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while

∂p

∂νi

=
qi

νi + f ′′
i (qi)

n∑

k=1

1

νk + f ′′
k (qk)

− G′(p)

> 0, i ∈ {1, . . . , n}. (11)

Similarly, the equilibrium supply qi = qi(D, ν1, . . . , νn), i ∈ {1, . . . , n}, is differen-
tiable with respect to the influence coefficients νk , k ∈ {1, . . . , n}, with the partial
derivatives having the forms:

∂qi

∂νi

= − qi

νi + f ′′
i (qi)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑

k=1
k �=i

1

νk + f ′′
k (qk)

− G′(p)

n∑

k=1

1

νk + f ′′
k (qk)

− G′(p)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, i ∈ {1, . . . , n}, (12)

and

∂qi

∂νj

= 1

νi + f ′′
i (qi)

⎡

⎢⎢⎢⎢⎣

qj

νj + f ′′
j (qj )

n∑

k=1

1

νk + f ′′
k (qk)

− G′(p)

⎤

⎥⎥⎥⎥⎦
> 0, i, j ∈ {1, . . . , n}, j �= i.

(13)

Proof cf., Kalashnikov et al. (2017) .

4 Interior Equilibrium

Now we are in a position to define the concept of interior equilibrium. To do that,
we first describe the procedure of verification of the influence coefficients νi exactly
as it was introduced in Bulavsky (1997). Assume that the system is in the exterior
equilibrium (p; q1 . . . , qn) that occurs for some given D and νi , i ∈ {1, . . . , n}.
Now, one of the producers, say k, 1 ≤ k ≤ n, temporarily changes its behavior
by abstaining from the maximization of the conjectured profit, subtracts its produce
qk from the total demand and makes infinitesimal fluctuations around the latter. In
mathematical terms, it is tantamount to restricting the model’s producers to the subset
I−k := {i | 1 ≤ i ≤ n, i �= k} with the output qk subtracted from the active demand
with the balance equality restated in the form:

∑

i �=k

qi = G(p) + D − qk . (14)
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Variations of the production output by producer k is then equivalent to the active
demand fluctuation in the form dDk := d(D − qk) = −dqk . If we treat these varia-
tions as infinitesimal, we can assume that by observing the corresponding variations
of the equilibrium price in the equilibrium attained among the remaining participants,
producer k can evaluate the derivative of the equilibrium price with respect to the
active demand, i.e., their influence coefficient.

Applying formula (10) from Theorem 3.3 to calculate the derivatives, one has to
remember that producer k is temporarily absent from the equilibrium model, hence
one has to exclude the term with number i = k from the sum. Having that in mind,
we come to the following criterion.

Consistency criterion 4.1 In the exterior equilibrium (p; q1 . . . , qn), the influence
coefficients νi , i ∈ {1, . . . , n}, are called consistent if the following equalities hold:

νi = 1
n∑

j=1
j �=i

1

νj + f ′′
j (qj )

− G′(p)

, i ∈ {1, . . . , n}. (15)

A definition of the consistent (interior) equilibrium follows.

Definition 4.2 A collection (p; q1 . . . , qn; ν1, . . . , νn) is referred to as interior
equilibrium if, for the influence coefficients νi ≥ 0, i ∈ {1, . . . , n}, the vector
(p; q1 . . . , qn) is the exterior equilibrium, and the consistency criterion 4.1 is valid
for all those νi .

Theorem 4.3 Let the number of oligopoly producers be at least three, i.e., n ≥ 3,
under assumptions A2.1, A2.2 and A3.1, there exists an interior equilibrium. More-
over, if the number of producer is two, i.e., n = 2, in addition to assumptions A2.1,
A2.2 and A3.1, suppose that exists ε > 0 such that G′(p) ≤ −ε for all p > 0, then,
there exists interior equilibrium.

Proof cf., Appendix 1.

Without additional assumptions or simplifications of the model, uniqueness of the
interior equilibrium is not guaranteed.

In our future research, we are going to extend the obtained results to the case
of not necessarily differentiable demand functions. However, some of the essential
techniques can be developed now, in the differentiable case but under a bit stronger
assumptions about the structure of the producers’ cost functions. Namely, let us intro-
duce the following assumption instead of A2.2. Moreover, this new assumption is
used in our extension of the existence theorem 4.3 to the case of duopoly, i.e., when
n = 2.
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A4.4 For every i ∈ {1, . . . , n}, the cost function fi is quadratic (and strictly convex)
with fi(0) = 0, f ′

i (0) > 0 and f ′′
i > 0, i.e.,

fi(qi) = 1

2
aiqi

2 + biqi, (16)

where ai > 0, bi > 0, i ∈ {1, . . . , n}.

Theorem 4.5 Let n = 2 (duopoly), and assumptions A2.1, A3.1 and A4.3 hold true.
If in addition there exists ε > 0 such that G′(p) ≤ −ε for all p > 0, then, there exits
the unique interior equilibrium.

Proof cf., Kalashnikov et al. (2017).

Now denote the value of the demand function’s derivative by τ = G′(p) and
rewrite the consistency equations (15) in the form:

νi = 1
n∑

j=1
j �=i

1

νj + f ′′
j (qj )

− τ

, i ∈ {1, . . . , n}, (17)

where τ ∈ (−∞, 0]. When τ → −∞ the system (17) converges to the solution
νi = 0, i ∈ {1, . . . , n}. For all finite values of τ we can establish the following
proposition.

Theorem 4.6 Let assumptions A2.1, A3.1 and A4.3 be valid. Then, for any τ ∈
(−∞, 0] there exists a unique solution νi = νi(τ ), i ∈ {1, . . . , n}, of equations (17),
continuously depending upon τ . Furthermore, νi → 0 when τ → −∞, and νi(τ )

strictly increases and tends to νi(0) as τ → 0, i ∈ {1, . . . , n}.

Proof The proof is easily deduced from that of Kalashnikov et al. (2011)[Theorem
3].

5 Consistent Conjectures as Optimal Nash Strategies
in theMeta-Model

This section establishes the three most important results of this paper. Indeed, under
certain rather mild conditions, we prove the equivalence of the consistent conjectural
variations equilibrium (CVE) in an original oligopoly model to the classical Cournot-
Nash equilibrium in the meta-model. The latter comprises the same agents of the
original oligopoly but with their conjectures (about the possible price variations) as
their strategies.

These results seem to be very interesting in two aspects. First, they could be con-
sidered as a good justification of the CVE concept as being tightly related to the
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classical Nash equilibrium. Second, this equivalence occurring in the oligopoly can
help one develop a concept similar to the CVE but in application to other kinds of
economic and financial models that lack some attributes of the oligopoly and thus
do not allow one to introduce the (consistent) CVE directly. In other words, one
could define the (consistent) CVE in such a model via the Nash equilibrium in the
corresponding meta-model.

To begin with, Theorem 3.3 allows us to define the following many-person game
� = (N, V, Π, D), which will be referred to as the meta-model. Here, D ≥ 0 is
the fixed value of the active demand, N = {1, . . . , n} is the set of the same pro-
ducers (the payers) as in the above described model, V = R

n+ represents the set
of possible strategies, i.e., the vectors of conjectures ν = (ν1, . . . , νn) accepted by
the producers. Finally, Π = Π(ν) = (π1 . . . πn) is the collection of payoff values
defined (uniquely, according to Theorem 3.3) by the strategy vector ν. Indeed, the
payoff values πi = πi(ν), i ∈ {1, . . . , n}, are defined by formula (5), were the equi-
librium outputs qi ≥ 0, i ∈ {1, . . . , n}, as well as the equilibrium price p, are the
elements of the exterior equilibrium whose existence and uniqueness is guaranteed
by Theorem 3.3 from Section 3.

Now the main results of this paper are as follows. As was mentioned in the intro-
duction, the Cournot-Nash conjectures ωi = 1 are usually inconsistent (in sense of
criterion 4.1) in our single commodity market model. In other words, the Cournot-
Nash conjectures νi = −1/G′(p) in general do not satisfy the consistency system
(15). However, in the meta-model introduced above, the consistent conjectures νi ,
i ∈ {1, . . . , n}, determined by Eq. 15 provide the Nash equilibrium. This curious
fact could be considered as an extra argument supporting the concept of interior
equilibrium introduced in Section 4.

Theorem 5.1 Suppose that assumptions A2.1, A2.2, and A3.1 hold. Then, any Nash
equilibrium in the meta-model � = (N, V, Π, D) generates interior equilibrium in
the original oligopoly.

Proof cf., Kalashnikov et al. (2017).

Since the meta-model strategies set V = R
n+ is unbounded, the existence of at least

one Nash equilibrium state in this game is by no means easy to check. The following
three results (under some extra assumptions) guarantee that the existence of interior
equilibrium in the original oligopoly implies the existence of Nash equilibrium in the
meta-model.

Theorem 5.2 Suppose that the stronger assumption A4.3 is true, together with A2.1
and A3.1, and suppose that the function G is concave. Then, the consistency criterion
for the original oligopoly is a necessary and sufficient condition for the collection
of influence conjectures ν = (ν1, . . . , νn) to produce Nash equilibrium in the meta-
model.

Proof See Appendix 2.
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Corollary 5.3 In addition to assumptions A2.1, A3.1, and A4.3, if the demand
function is affine, that is,

G(p) := −Kp + T , (18)

where K > 0 and T > 0, then, the consistency criterion for the original oligopoly
is a necessary and sufficient condition for the collection of influence conjectures
ν = (ν1, . . . , νn) to form Nash equilibrium in the meta-model.

Since the concavity of the demand function may be a much too restrictive require-
ment, the next theorem relaxes it by replacing it with the Lipschitz continuity of the
derivative G′(p).

Theorem 5.4 Suppose that apart from assumptions A2.1, A3.1 and A4.3, the regu-
lar demand function’s derivative is Lipschitz continuous. In more detail, for n ≥ 3
assume that for any p1 > 0 and p2 > 0 the following inequality holds:

|G′(p1) − G′(p2)| ≤ 1

2s2G(p0)
|p1 − p2|, (19)

where s = max{a1, . . . , an}, and the price p0 is the one defined in the assumption
A3.1. Next, if n = 2 (duopoly), we again suppose that there exists ε > 0 such that
G′(p) ≤ −ε for all p > 0, and the Lipschitz continuity of the demand function is
described in the form:

|G′(p1)−G′(p2)|≤ 2
(

a1 + a2

εmin{a1, a2} + 3max{a1, a2}
)2

G(p0)

|p1−p2|, ∀p1, p2>0.

(20)
Then, the consistency criterion for the original oligopoly is a necessary and sufficient
condition for the collection of influence conjectures ν = (ν1 . . . νn) to be the Nash
equilibrium in the meta-model.

Proof See Appendix 3.

6 Numerical Experiments

Nowwe illustrate our main results from Section 5. For the numerical experiments, we
consider the inverse demand and costs function from an electricity market presented
in Liu et al. (2007).

The inverse demand function is given by:

p(G,D) = 50 − 0.02(G + D), (21)

thus, the demand function has the form:

G(p) + D = −50p + 2500. (22)

There are n = 6 firms with quadratic costs functions, i.e., fi(qi) = 1

2
aiqi

2 +biqi ,

i ∈ {1, . . . , n}, where the coefficients ai and bi are given in Table 1.
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Table 1 Quadratic costs
function’s coefficients i ai bi

1 0.02 2.0

2 0.0175 1.75

3 0.025 3.0

4 0.025 3.0

5 0.0625 1.0

6 0.00834 3.25

In addition, as a kind of dual concept developed in our previous papers, we are
going to consider the influence of the producers over the total output G (cf., Isac et al.

(2002)), i.e, the influence coefficients ωi := ∂G

∂qi

, i ∈ {1, . . . , n}.
In this sense, the conjectures ωi = 1, ∀i ∈ {1, . . . , n}, correspond to the Cournot-

Nash conjectures, while the zero-conjectures ωi = 0, ∀i ∈ {1, . . . , n}, lead to the
perfect competition model.

Moreover, by the chain rule, one can easily verify the relationship

ωi = −G′(p)νi, ∀i ∈ {1, . . . , n}. (23)

Experiment 1 For the electricity market described above, the producers’ influence
coefficients ωi , supplies qi and profits πi , i ∈ {1, . . . , n}, along with the market’s
price p and demand G, of the interior equilibrium results are shown in Table 2.

Next, we vary the influence coefficient of one of the producers and compute the
corresponding exterior equilibrium to see how their profits change.

In Tables 3, 4, 5, 6, 7, 8, we see that whenever one of the producers (unilater-
ally) increases or decreases its consistent influence coefficient, its profit drops. This,
as proved in Section 5, is due to the fact that the consistent influence coefficients
describing the interior equilibrium form the Nash equilibrium in the meta-model.

Experiment 2 Here, we are going to find the interior equilibrium for an electricity
market (as the base model) that does notmeet the conditions of Theorems 5.2 and 5.4,
and test if it serves as the Nash equilibrium in the meta-model.

Now, we consider the following demand function:

G(p) + D = 2400p−1.2 + 1600, (24)

along with the cost functions described above.

Table 2 Interior equilibrium for the electricity market

i 1 2 3 4 5 6

ωi 0.19275 0.19635 0.18759 0.18759 0.17472 0.22391

qi 353.40 405.12 258.44 258.44 142.90 560.18

πi 1730.4 2080.6 1085.4 1085.4 709.48 2713.8

p 10.431

G 1978.5
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Table 3 Net profits when agent 1 (unilaterally) changes its consistent conjecture (the new data is in bold)

i 1 2 3 4 5 6

ωi 0.19275 0.19635 0.18759 0.18759 0.17472 0.22391

0.39165

πi 1730.4 2163.4 1136.0 1136.0 735.45 2844.6

1703.2

Table 4 Net profits when producer 2 (unilaterally) changes its consistent conjecture (the new data is in
bold)

i 1 2 3 4 5 6

ωi 0.19275 0.19635 0.18759 0.18759 0.17472 0.22391

0.12000

πi 1688.8 2080.6 1055.9 1055.9 694.22 2637.3

2072.0

Table 5 Net profits when agent 3 (unilaterally) changes its consistent conjecture (the new data is in bold)

i 1 2 3 4 5 6

ωi 0.19275 0.19635 0.18759 0.18759 0.17472 0.22391

0.43615

πi 1783.6 2142.7 1085.4 1123.3 728.97 2811.9

1066.3

Table 6 Net profits when producer 4 (unilaterally) changes its consistent conjecture (the new data is in
bold)

i 1 2 3 4 5 6

ωi 0.19275 0.19635 0.18759 0.18759 0.17472 0.22391

0.061570

πi 1697.1 2041.7 1061.8 1085.4 697.27 2652.6

1077.8
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Table 7 Net profits when agent 5 (unilaterally) changes its consistent conjecture (the new data is in bold)

i 1 2 3 4 5 6

ωi 0.19275 0.19635 0.18759 0.18759 0.17472 0.22391

0.14870

πi 1728.9 2078.8 1084.3 1084.3 709.48 2711.0

709.44

Table 8 Net profits when producer 6 (unilaterally) changes its consistent conjecture (the new data is in
bold)

i 1 2 3 4 5 6

ωi 0.19275 0.19635 0.18759 0.18759 0.17472 0.22391

0.47305

πi 1968.4 2358.2 1255.6 1255.6 796.41 2713.8

2578.1

Table 9 Interior equilibrium for the electricity market with the nonlinear demand function defined by (24)

i 1 2 3 4 5 6

ωi 0.086234 0.088004 0.083674 0.083674 0.077221 0.10112

qi 317.77 363.63 231.17 231.17 132.16 479.30

πi 1467.8 1769.1 903.22 903.22 616.76 2179.9

p 9.7968

G 1755.2

Table 10 Net profits when the demand function is nonlinear and the producers vary (unilaterally) their
conjectures (the consistent conjectures and the corresponding profits are in bold)

i 1 2 3 4 5 6

ωi 0.060438 0.076765 0.035183 0.079306 0.074729 0.093522

0.086234 0.088004 0.083674 0.083674 0.077221 0.10112

0.11277 0.10719 0.095928 0.12058 0.079999 0.1033

πi 1464.0 1768.1 897.04 903.18 616.76 2178.5

1467.8 1769.1 903.22 903.22 616.76 2179.9

1464.3 1766.4 902.88 900.35 616.76 2179.8
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The function (24) is not concave nor Lipschitz, but we can still compute the
corresponding interior equilibrium. The corresponding data is shown in Table 9.

Finally, we vary the consistent influence coefficient of one of the producers and
compute the corresponding exterior equilibrium to see how their profits change.
These results are shown in Table 10.

From Table 10, one can see that each time as one of the agents changes (uni-
laterally) its consistent influence coefficient, its profit decreases. (Each column
i ∈ {1, ..., 6} shows the profit of producer i for the respective influence coefficient
while the other producers keep being stuck to their consistent conjectures.) Thus, the
results of Theorems 5.2 and 5.4 can hold true for a wider set of functions than the
ones satisfying the theorems’ requirements.

7 Conclusions

This paper logically completes the authors’ previous papers Kalashnikov et al. (2011,
2017) by providing in Section 5 three results establishing (under certain rather
mild conditions) the equivalence of the consistent conjectural variations equilibrium
(CVE) in an original oligopoly model to the classical Cournot-Nash equilibrium in
the meta-model. The latter comprises the same agents of the original oligopoly but
with their conjectures (about the possible price variations) as their strategies.

These results seem to be very interesting in two aspects. First, they could be con-
sidered as a good justification of the CVE concept as being tightly related to the
classical Nash equilibrium. Second, this equivalence occurring in the oligopoly can
help one develop a concept similar to the CVE but in application to other kinds of
economic and financial models that lack some attributes of the oligopoly and thus
do not allow one to introduce the (consistent) CVE directly. In other words, one
could define the (consistent) CVE in such a model via the Nash equilibrium in the
corresponding meta-model.

In our future research, we plan to implement the above-mentioned ideas, as well as
extend the developed constructions to the cases of mixed oligopolies, where at least
one agent endeavors to maximize not its net profit but some other function related
to the social surplus. Another important extension could be related to more general
economic models with not necessarily differentiable (even discontinuous) inverse
demand and/or cost functions.
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Appendix 1: Proof of Theorem 4.3

Theorem 4.3 Let the number of oligopoly producers be at least three, i.e., n ≥ 3,
under assumptions A2.1, A2.2 and A3.1, there exists an interior equilibrium. More-
over, if the number of producer is two, i.e., n = 2, in addition to assumptions A2.1,
A2.2 and A3.1, suppose that exists ε > 0 such that G′(p) ≤ −ε for all p > 0, then,
there exists interior equilibrium.

Proof For any given set of influence coefficients ν = (ν1 . . . νn) ≥ 0, by
Theorem 3.3, there exists the unique exterior equilibrium (p(ν), q1(ν), . . . , qn(ν)).

Now, we define the following functions:

Fi(ν) = 1
n∑

j=1
j �=i

1

νj + f ′′
j (qj (ν))

− G′(p(ν))

, i ∈ {1, . . . , n}. (25)

These functions are well-defined and continuous with respect to ν = (ν1 . . . νn) ≥ 0,
due to assumptions A2.1 and A2.2.

Therefore, the function H = (F1 . . . , Fn) : Rn+ → R
n+ is also continuous.

Next, we define the value s = max{f ′′
i (qi) | 0 ≤ qi ≤ G(p0), i ∈ {1, . . . , n}} >

0.
For n ≥ 3, if 0 ≤ νi ≤ s

n − 2
for all i ∈ {1, . . . , n}, we have:

0 ≤ Fi(ν) = 1
n∑

j=1
j �=i

1

νj + f ′′
j (qj (ν))

− G′(p(ν))

≤ 1
n∑

j=1
j �=i

1

νj + f ′′
j (qj (ν))

≤ 1
n∑

j=1
j �=i

1
s

n − 2
+ s

= 1
n − 1
s

n − 2
+ s

= s

n − 2
, i ∈ {1, . . . , n}.

(26)

Thus, the function H = (F1 . . . , Fn) maps the convex compact subset

[
0,

s

n − 2

]n

onto itself. Therefore, by Brouwer’s fixed-point theorem, H has a fixed point, i.e.,
there exists ν∗ = (ν∗

1 . . . ν∗
n) ≥ 0 such that Fi(ν

∗) = ν∗
i for all i ∈ {1, . . . , n}.

On the other hand, for n = 2 and G′(p) ≤ −ε for some ε > 0, if 0 ≤ νi ≤ 1

ε
for

all i ∈ {1, . . . , n}, we have:
0 ≤ F1(ν) = 1

1

ν2 + f ′′
2 (q2(ν))

− G′(p(ν))

≤ 1

−G′(p(ν))
≤ 1

ε
,

0 ≤ F2(ν) = 1
1

ν1 + f ′′
1 (q1(ν))

− G′(p(ν))

≤ 1

−G′(p(ν))
≤ 1

ε
.

(27)
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Thus, the function H = (F1, F2) maps the convex compact subset

[
0,

1

ε

]2
onto

itself, then, again by Brouwer’s fixed-point theorem, H has a fixed point Fi(ν
∗) =

ν∗
i , i ∈ {1, 2}.
By the definition of the functions (25), the influence coefficients ν∗ =

(ν∗
1 . . . ν∗

n) ≥ 0, given by Brouwer’sfixed-point theorem, satisfy the Consistency
Criterion 4.1 and, therefore, the vector(p(ν∗), q1(ν∗), . . . , qn(ν

∗), ν∗
1 , . . . , ν

∗
n) is the

interior equilibrium. The proof is complete.

Appendix 2: Proof of Theorem 5.2

Theorem 5.2 Suppose that the stronger assumption A4.3 is true, together with A2.1
and A3.1, and suppose that the function G is concave. Then, the consistency criterion
for the original oligopoly is a necessary and sufficient condition for the collection of influ-
ence conjectures ν = (ν1, . . . , νn) to produce Nash equilibrium in the meta-model.

Proof Note that the necessity is a particular case of Theorem 5.1, thus, to prove
Theorem 5.2, we just need to establish the sufficiency.

We assume A4.3, that is, for all i, the cost functions fi are quadratic (and strictly
convex) with fi(0) = 0, f ′

i (0) > 0, and f ′′
i (0) > 0, i.e.,

fi(qi) = 1

2
aiqi

2 + biqi,

where ai > 0, bi > 0, i ∈ {1, . . . , n}. Now we are in a position to demonstrate that in
this specific case, each interior equilibrium (p∗; q∗

1 , . . . , q∗
n; ν∗

1 , . . . , ν
∗
n) of the orig-

inal oligopoly provides the Nash equilibrium in the meta-model � = (N, V, Π, D).
Namely, the consistent conjectures (influence coefficients) ν∗ = (ν∗

1 , . . . , ν
∗
n)

satisfying (15) form the Nash equilibrium in the meta-model.
Indeed, first of all, equations (15) in this particular case are reduced to the system

ν∗
i = 1

n∑

k=1
k �=i

1

ν∗
k + ak

− G′(p∗)
, i ∈ {1, . . . , n}, (28)

which clearly implies that all components of the vector ν∗ are positive: ν∗
i > 0,

i ∈ {1, . . . , n}.
Next, equations

∂πi

∂νi

= q2
i

νi + f ′′
i (qi)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
n∑

k=1

1

νk + f ′′
k (qk)

− G′(p)

−

n∑

k=1
k �=i

1

νk + f ′′
k (qk)

− G′(p)

n∑

k=1

1

νk + f ′′
k (qk)

− G′(p)

νi

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

306 V. Kalashnikov et al.



= q2
i

νi + f ′′
i (qi)

n∑

k=1
k �=i

1

νk + f ′′
k (qk)

− G′(p)

n∑

k=1

1

νk + f ′′
k (qk)

− G′(p)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
n∑

k=1
k �=i

1

νk + f ′′
k (qk)

− G′(p)

− νi

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0, i ∈ {1, . . . , n}.
(29)

guarantee that the first-order optimality conditions for the meta-game payoff func-
tions hold:

∂πi

∂νi

(ν∗) = 0, i ∈ {1, . . . , n}. (30)

Therefore, the value ν∗
i may be the maximum point of the i-th producer’s payoff

function

π̃i(νi) ≡ π(νi, ν
∗−i ), i ∈ {1, . . . , n}, (31)

where ν∗−i = (ν∗
1 , . . . , ν

∗
i−1, ν

∗
i+1, . . . , ν

∗
n). In order to establish the maximum point

property, we are going to fix an arbitrary i and to show that the function π̃i = π̃i(νi):

(a) doesn’t increase along the ray (ν∗
i , +∞),

(b) doesn’t decrease in the interval (0, ν∗
i ).

In order to prove (a), taking into account (29), it suffices to show that

1
n∑

k=1
k �=i

1

ν∗
k + ak

− G′(p(ν∗
i + δ, ν∗−i ))

− (ν∗
i + δ) ≤ 0, ∀δ > 0. (32)

By inverting both sides of the consistency equation (28) one gets

1

ν∗
i

=
n∑

k=1
k �=i

1

ν∗
k + ak

− G′(p∗), (33)

which clearly implies the relationships

n∑

k=1
k �=i

1

ν∗
k + ak

= 1

ν∗
i

+ G′(p∗) = 1 + ν∗
i G′(p∗)
ν∗
i

> 0. (34)
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Making use of Eq. 34, rewrite the left-hand side of Eq. 32 in the form
1

n∑

k=1
k �=i

1

ν∗
k + ak

− G′(p(ν∗
i + δ, ν∗−i ))

− (ν∗
i + δ) = 1

1

ν∗
i

+ G′(p∗) − G′(p(ν∗
i + δ, ν∗−i ))

− (ν∗
i + δ)

= ν∗
i

1 + ν∗
i G′(p∗)−ν∗

i G′(p(ν∗
i +δ, ν∗−i ))

− (ν∗
i + δ)

= (ν∗
i )2

[
G′(p(ν∗

i +δ, ν∗−i ))−G′(p∗)
]−δ + ν∗

i δ
[
G′(p(ν∗

i +δ, ν∗−i ))−G′(p∗)
]

1 + ν∗
i G′(p∗)−ν∗

i G′(p(ν∗
i +δ, ν∗−i ))

= ν∗
i

[
G′(p(ν∗

i +δ, ν∗−i ))−G′(p∗)
]
(ν∗

i +δ) − δ

1 + ν∗
i G′(p∗) − ν∗

i G′(p(ν∗
i + δ, ν∗−i ))

.

(35)

Since 1 + ν∗
i G′(p∗) > 0 from Eq. 34, and −ν∗

i G′(p(ν∗
i + δ, ν∗−i )) ≥ 0 by

assumption A2.1, then the denominator of Eq. 35 is strictly positive, thus the sign
of ratio (35) is determined by that of its numerator. Now since the derivative G′(p)

is non-increasing by hypothesis, and
∂p

∂νi

> 0 by Eq. 11, it isn’t difficult to show

that
[
G′(p(ν∗

i + δ, ν∗−i )) − G′(p∗)
] ≤ 0, hence the numerator of Eq. 35 is strictly

negative for any δ > 0:

ν∗
i

[
G′(p(ν∗

i + δ, ν∗−i )) − G′(p∗)
]
(ν∗

i + δ) − δ < 0, ∀δ > 0. (36)

The latter brings about the desired inequality

dπ̃i

dνi

(νi, ν
∗−i ) < 0, ∀νi > ν∗

i , (37)

which finishes the proof of (a).
Now to demonstrate that (b) is also true, again taking into account (29), it is enough

to check that

1
n∑

k=1
k �=i

1

ν∗
k + ak

− G′(p(ν∗
i − δ, ν∗−i ))

− (ν∗
i − δ) ≥ 0, ∀δ such that 0 < δ < ν∗

i . (38)

Again employing Eq. 34 yields the following transformation of the left-hand side of
Eq. 38:

1
n∑

k=1
k �=i

1

ν∗
k + ak

− G′(p(ν∗
i − δ, ν∗−i ))

−(ν∗
i − δ)= 1

1

ν∗
i

+ G′(p∗) − G′(p(ν∗
i − δ, ν∗−i ))

−(ν∗
i −δ)

= ν∗
i

1 + ν∗
i G′(p∗) − ν∗

i G′(p(ν∗
i − δ, ν∗−i ))

− (ν∗
i − δ)

= (ν∗
i )2

[
G′(p(ν∗

i − δ, ν∗−i )) − G′(p∗)
] + δ − ν∗

i δ
[
G′(p(ν∗

i − δ, ν∗−i )) − G′(p∗)
]

1 + ν∗
i G′(p∗) − ν∗

i G′(p(ν∗
i − δ, ν∗−i ))

= ν∗
i

[
G′(p(ν∗

i − δ, ν∗−i )) − G′(p∗)
]
(ν∗

i − δ) + δ

1 + ν∗
i G′(p∗) − ν∗

i G′(p(ν∗
i − δ, ν∗−i ))

.

(39)
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Similar to the proof of case (a), the denominator of the fraction (39) is strictly posi-
tive, hence, the fraction’s sign coincides with that of its numerator. Again, since the

derivativeG′(p) is non-increasing by hypothesis, and
∂p

∂νi

> 0 by Eq. 11, it is evident

that
[
G′(p(ν∗

i − δ, ν∗−i )) − G′(p∗)
] ≥ 0, hence, the numerator of Eq. 39 is strictly

positive for any 0 < δ < ν∗
i :

ν∗
i

[
G′(p(ν∗

i − δ, ν∗−i )) − G′(p∗)
]
(ν∗

i − δ) + δ > 0, ∀δ that 0 < δ < ν∗
i , (40)

which deduces the desired inequality:

dπ̃i

dνi

(νi, ν
∗−i ) > 0, ∀νi < ν∗

i . (41)

Therefore, the proof of (b) is also completed.
Now we can conclude that the Nash equilibrium condition has been established:

πi(ν
∗) = max

νi>0
πi(νi, ν

∗−i ), for any i ∈ {1 . . . , n}, (42)

which finishes the proof of Theorem 5.2

Appendix 3: Proof of Theorem 5.4

Theorem 5.4 Suppose that apart from assumptions A2.1, A3.1 and A4.3, the regu-
lar demand function’s derivative is Lipschitz continuous. In more detail, for n ≥ 3
assume that for any p1 > 0 and p2 > 0 the following inequality holds:

|G′(p1) − G′(p2)| ≤ 1

2s2G(p0)
|p1 − p2|,

where s = max{a1, . . . , an}, and the price p0 is the one defined in the assumption
A3.1. Next, if n = 2 (duopoly), we again suppose that there exists ε > 0 such that
G′(p) ≤ −ε for all p > 0, and the Lipschitz continuity of the demand function is
described in the form:

|G′(p1) − G′(p2)| ≤ 2
(

a1 + a2

εmin{a1, a2} + 3max{a1, a2}
)2

G(p0)

|p1 − p2|, ∀p1, p2 > 0.

Then, the consistency criterion for the original oligopoly is a necessary and sufficient
condition for the collection of influence conjectures ν = (ν1, . . . , νn) to form Nash
equilibrium in the meta-model.

Proof Again, the necessity is just a particular case of Theorem 5.1, then, we proceed
to show the sufficiency.

Just like in the proof of Theorem 5.2, we need to establish that the i-th producer’s
payoff function

π̃i(νi) ≡ π(νi, ν
∗−i ), i ∈ {1, . . . , n}, (31)

has a maximum point at νi = ν∗
i for a fixed value of i, for which, again, it will suffice

to show that:
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(a)

ν∗
i

[
G′(p(ν∗

i + δ, ν∗−i )) − G′(p∗)
]
(ν∗

i + δ) − δ < 0, ∀0 < δ < s, (43)

(b)

ν∗
i

[
G′(p(ν∗

i − δ, ν∗−i )) − G′(p∗)
]
(ν∗

i − δ) + δ > 0, ∀0 < δ < ν∗
i , (44)

where s = max{a1, . . . , an} > 0. From the proof of Theorem 4.3 (Bulavsky, 1997)
we have:

0 ≤ ν∗
i ≤ s

n − 2
, i ∈ {1, . . . , n}. (45)

Now, from assumption (19) and the fact that
∂p

∂νi

> 0, it follows that

ν∗
i

[
G′(p(ν∗

i +δ, ν∗−i ))−G′(p∗)
]
(ν∗

i +δ)−δ ≤ν∗
i

∣∣G′(p(ν∗
i +δ, ν∗−i ))−G′(p∗)

∣∣ (ν∗
i + δ)−δ

≤ν∗
i (ν∗

i + δ)
1

2s2G(p0)
|p(ν∗

i +δ, ν∗−i ) − p∗|−δ

≤ν∗
i (ν∗

i + δ)
1

2s2G(p0)
(p(ν∗

i +δ, ν∗−i ) − p∗)−δ.

(46)
By the mean value theorem here exists a value ν̂i such that νi < ν̂i < νi + δ and

p(ν∗
i + δ, ν∗−i ) − p∗ = δ

∂p

∂νi

(ν̂i , ν
∗−i ). (47)

Using Eq. 11 we get

∂p

∂νi

(ν̂i , ν
∗−i ) =

qi(p(ν̂i , ν
∗−i ), (ν̂i , ν

∗−i ))

ν̂i + ai
n∑

k=1
k �=i

1

ν∗
k + ak

+ 1

ν̂i + ai

− G′(p(ν̂i , ν
∗−i ))

≤
qi(p(ν̂i , ν

∗−i ), (ν̂i , ν
∗−i ))

ν̂i + ai
n∑

k=1
k �=i

1

ν∗
k + ak

+ 1

ν̂i + ai

≤
qi(p(ν̂i , ν

∗−i ), (ν̂i , ν
∗−i ))

ν̂i + ai

1

ν̂i + ai

= qi(p(ν̂i , ν
∗−i ), (ν̂i , ν

∗−i )) ≤ G(p0).

(48)

Applying Eqs. 47 and 48 to Eq. 46 we find:

ν∗
i

[
G′(p(ν∗

i + δ, ν∗−i )) − G′(p∗)
]
(ν∗

i + δ) − δ ≤ ν∗
i (ν∗

i + δ)
1

2s2
δ − δ =

[
ν∗
i (ν∗

i + δ)
1

2s2
− 1

]
δ,

(49)

moreover, since 0 < ν∗
i ≤ s and 0 < δ < s, it follows that

ν∗
i

[
G′(p(ν∗

i + δ, ν∗−i )) − G′(p∗)
]
(ν∗

i + δ) − δ ≤
[
ν∗
i (ν∗

i + δ)
1

2s2
− 1

]
δ < 0,

(50)
which proves (a).

Analogous to the previous case, we can find that

ν∗
i

[
G′(p∗) − G′(p(ν∗

i − δ, ν∗−i ))
]
(ν∗

i − δ) − δ ≤
[
ν∗
i (ν∗

i − δ)
1

2s2
− 1

]
δ, (51)

310 V. Kalashnikov et al.



and, since 0 < δ < ν∗
i ≤ s, we have

ν∗
i

[
G′(p∗) − G′(p(ν∗

i − δ, ν∗−i ))
]
(ν∗

i − δ) − δ ≤
[
ν∗
i (ν∗

i − δ)
1

2s2
− 1

]
δ < 0,

(52)
then

ν∗
i

[
G′(p(ν∗

i − δ, ν∗−i ) − G′(p∗))
]
(ν∗

i − δ) + δ > 0. (53)

Therefore, the vector ν∗ is Nash equilibrium for n ≥ 3.
Finally, let n = 2. We can repeat the steps for the case n ≥ 3 to get the following

inequality:

ν∗
i

[
G′(p(ν∗

i + δ, ν∗−i )) − G′(p∗)
]
(ν∗

i + δ) − δ

≤

⎡

⎢⎢⎢⎣ν∗
i (ν∗

i + δ)
2

(
a1 + a2

εmin{a1, a2} + 3max{a1, a2}
)2

− 1

⎤

⎥⎥⎥⎦ δ.
(54)

From

νi ≤ 1

2

(
a1 + a2

εmin{a1, a2} + max{a1, a2}
)

+ max{a1, a2} =

= 1

2

(
a1 + a2

εmin{a1, a2} + 3max{a1, a2}
)

, i ∈ {1, 2}. (55)

we have

0 < ν∗
i ≤ 1

2

(
a1 + a2

εmin{a1, a2} + 3max{a1, a2}
)

(56)

and

0 < δ < max{a1, a2} <
1

2

(
a1 + a2

εmin{a1, a2} + 3max{a1, a2}
)

, (57)

thus

ν∗
i

[
G′(p(ν∗

i + δ, ν∗−i )) − G′(p∗)
]
(ν∗

i + δ) − δ

≤

⎡

⎢⎢⎢⎣ν∗
i (ν∗

i + δ)
2

(
a1 + a2

εmin{a1, a2} + 3max{a1, a2}
)2

− 1

⎤

⎥⎥⎥⎦ δ < 0.
(58)

which finally proves (a).
Analogously, to prove (b), it is easy to show that

ν∗
i

[
G′(p(ν∗

i − δ, ν∗−i )) − G′(p∗)
]
(ν∗

i − δ) + δ

≥

⎡

⎢⎢⎢⎣1 − ν∗
i (ν∗

i − δ)
2

(
a1 + a2

εmin{a1, a2} + 3max{a1, a2}
)2

⎤

⎥⎥⎥⎦ δ > 0.
(59)

The theorem has been proved.
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