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Abstract In this paper, we propose a multi-objective spatial analysis framework to
evaluate the economic, environmental and health impacts of transport investment
strategies under different urban growth scenarios. We consider a linear monocentric
city (LMC) wherein residents are distributed continuously along an urban corridor
and commute daily to a common destination, the central business district (CBD), rep-
resented by one end of the linear city. Two modes are available: car and rail. Users
can travel from their residence to the CBD by car on a congestible highway with
stochastic travel time, or by rail from the most convenient nearby station, which they
reach by walking or cycling. Travellers throughout the city have a distribution of reli-
ability preferences. Individual mode choice is determined using the notion of travel
time budget surplus to take into consideration the travel time, travel time reliability
and monetary cost associated with each mode. We assume users would like to min-
imise travel time, monetary cost, and maximise travel time reliability. The resulting
formulation is a three-objective user equilibrium model (TBSmaxTUE). For the con-
tinuous monocentric city model, TBSmaxTUE can be formulated as a fixed point
problem. To admit a numerical solution the continuum is discretised, allowing it to be
expressed as a standard network equilibrium assignment problem. The performance
of this LMC model can then be analysed against multiple objectives. We consider the
economic objective to minimise total system travel time; the environmental objective
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to minimise total tailpipe emissions from car trips; and health objectives to min-
imise pollutant uptake while also maximising the level of physical activity during the
journey to work.

Keywords Network equilibrium · Multi-objective user equilibrium · Mode choice ·
Linear monocentric city · Air quality · Health impact

1 Introduction

Urban sprawl is observed in many countries around the world after decades of road
dominated infrastructure investment. The evolution of urban form is, to a certain
extent, the result of people’s choices regarding where to live, where to work and
how to travel. The assumption of rational behaviour presupposes that people make
choices according to their preferences. That is, some of those who live in rural sub-
urbs might have chosen to live there because there are certain qualities they enjoy
in these areas, while others might be living there because they cannot afford to live
near the city centre. Urban sprawl leads to a vicious circle of low-density devel-
opment in rural areas and car dependency, which is unsustainable. High density
mixed development has been considered as one of the strategies to moderate this
problem, yet this might not be universally preferred. Promoting smart, green and
integrated transport is considered a priority in the strategic move towards sustain-
able development by the European Union and many other countries worldwide. This
is reflected by the numerous studies on designing, modelling and promoting green
transport/bikesharing systems (e.g. Bao et al. (2017), Kitthamkesorn et al. (2016),
and Lin and Liao (2016)); and environmental constraints/efficiency as well as sus-
tainability have been considered explicitly in many transport network design studies
(e.g. Li et al. (2014, 2016), Maheshwari et al. (2016), Yang et al. (2017)).

There is no doubt that to plan for sustainable cities, we must consider the effect of
transport policy on the environment in terms of air quality and its subsequent effect
on health. As suggested by Engardt et al. (2011), there are various factors influ-
encing air quality within a planning horizon of 20 to 30 years: the global effect of
climate change as well as local effects of urban form need to be considered. At the
local level, the design of transportation systems and transport policies will influence
the city’s own contribution to air pollution. The travel choices made by inhabitants
not only determine their contribution to urban emissions, but also influence their
own health, which in turn determines the health sustainability of society as a whole.
Empirical evidence from the last decade has shown that the characteristics of city and
regional land use and transport planning are directly linked with air quality, individ-
ual exposure, uptake of pollutants and subsequent health outcomes (e.g. de Nazelle
et al. (2011), Schindler and Caruso (2014), and Sider et al. (2013)). de Nazelle et al.
also demonstrated that assessing the health impact of active travel policies needs to
account for the connections between transport policies, planning and health. In par-
ticular, numerous studies have looked at the potential health benefits of cycling, as
reviewed in Mueller et al. (2015) and Oja et al. (2011). As part of daily life, cycling
can indeed improve public health, with the dominant benefits arising from increased
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physical activity during travel, in particular by replacing short car trips of 5-7km with
bicycle trips (Götschi et al. 2016; Mueller et al. 2015).

To quantify the health impacts from transport related physical activity as well as
changes to air pollution, Woodcock et al. (2013) applied an Integrated Transport and
Health Impact Modelling Tool (ITHIM), developed from the work in Woodcock et al.
(2009). However, a key assumption in ITHIM is that the reduction in road trans-
port trips, as a result of increases in walking and cycling instead of car use, led to
equal proportional reduction in pollutants attributed to transport. That is, the effect of
changes in traffic congestion on air pollution was not modelled. This might lead to
overestimation or underestimation of the potential benefits of change in air quality to
cyclists. As cyclists exercise their breathing rate increases, so that they might breathe
in more pollutants than car drivers, as shown by experimental results in Auckland
(Dirks et al. 2012) and Barcelona (de Nazelle et al. 2012). Cycling might therefore
not always bring desired health benefits, depending on the concentrations of pollu-
tants the cyclists encounter and the travel time they spend. Although the impact of
air pollution might appear small when compared to the benefits of increased phys-
ical activity in previous studies (Götschi et al. 2016; Mueller et al. 2015), this may
not be the case when local differences in air quality due to spatially non-uniform
traffic congestion are considered. The health impact of an increase in cycling trips
to suburban rail stations will be different from a similar increase in cycling trips
to the city centre. Thus, both the benefits of physical activity and pollutant uptake
during the journey should be considered when evaluating the health consequences
of transport mode choice. Schepers et al. (2015) assess the potential health impact
of investment in cycling infrastructure in a hypothetical city considering both the
influence of changes in physical activity and pollutant uptake. However, the assess-
ment is based on exogenously imposed changes to mean concentrations. The effect
of travel behavioural change in terms of modal shift from driving to cycling is not
modelled.

There is also a rich literature linking strategic transport planning models with air
quality models, e.g. Affum et al. (2003), Boogaard et al. (2012), Hatzopoulou and
Miller (2010), Lee et al. (2009), and You et al. (2010). The general approach taken
by most integrated transport planning and air quality models is to take traffic infor-
mation from the transport planning model, including traffic flow, speed and vehicle
types on each roadway. These are input into an air quality model. Vehicle emission
and dispersion models are applied to deduce concentrations of pollutants and hence
population exposure can also be assessed (Hatzopoulou and Miller 2010; Shekarriz-
fard et al. 2015; Sider et al. 2013), where air pollution exposure is measured by a
proxy variable, i.e. the level of emissions occurring in a zone. Mode-specific expo-
sure and pollutant uptake during travel, accounting for activity level, which is an
important element in health impact assessment as explained above, have not been
explicitly included in such models.

Public transport investment can attract modal shift from car trips, and potentially
can have positive effects on population health. In addition to the health benefits
from increased physical activity during access and egress at the trip ends, users of
non-road based public transport, such as rail, might acquire additional benefits from
less pollutant uptake during travel due to reduced exposure in a better air quality

841



J.Y.T. Wang, R.D. Connors

environment (Dirks et al. 2012). Most of the work on health impact assessment has
been focussed on the benefits of cycling more than any other modes that involves
an active component. In Mueller et al.’s review, out of 30 selected papers, the ben-
efits from changes in public transport policy have been explicitly mentioned in only
six cases (Mueller et al. 2015, Table 1). The potential health benefits of modal shifts
from car trips to public transport such as rail is worth further exploration.

In summary, despite a rich literature linking transport modelling to air quality as
well as health impact assessment of modal shifts from car to cycling, there are a few
knowledge gaps in the existing methodology:

1. the health impact should include both physical activity benefits and pollutant
uptake;

2. the localised effect on spatial pattern of air quality as a result of transport choices
(e.g. mode choice, route choice, etc.) of residents should be considered; and

3. the exposure encountered by travellers on different modes at different locations
throughout their trip should be estimated based on their physical activity on
different modes as well as the spatial pattern of air quality concentrations.

In an ideal world, we would hope that everyone can enjoy living in a suburb or
in the city as they desire; be able to get to work within reasonable time and cost
on a comfortable mode of transport; live and work in a nice clean environment; and
most important of all, stay healthy. From a modelling point of view, an ideal planning
model should be able to support the analysis of the effectiveness of policy decisions
in terms of all of these aspects, i.e. economic, environmental and health impact, tak-
ing into consideration users’ behavioural response and its subsequent effect on the
environmental and public health. In particular, the health impact assessment should
cover the knowledge gaps identified above.

In the present paper, we will look at one particular missing element at the policy
level: the inclusion of potential health benefits of transport investment decisions, in
particular active mobility (walking or cycling), which most often occurs as the means
to access public transport facilities. Our methodology is developed for the assessment
in a multi-modal environmental, i.e. we assess the potential health impact of active
modes both as a means to replace car trips and as an access/egress mode for multi-
modal trips with public transport. This requires a multi-objective approach as found
in many studies in the literature. For example Lin and Liao (2016) considered sus-
tainability with multiple objectives in a bikeway network design problem; Lin et al.
(2016) incorporated the cost of environmental constraints in a bi-level programming
framework to assess the interaction of traffic with its environmental impacts; and
Miandoabchi et al. (2012) looked at a bi-modal multi-objective urban road and public
transit network problem. Here, in particular, we model decisions with multiple objec-
tives at two levels: (1) urban growth, transport planning, air quality and health impact
assessment at the policy decision level; and (2) behavioural response at the user level
in terms of mode and route choice. A typical decision analysis framework (with mul-
tiple objectives considered at both the government and users’ levels) is illustrated in
Fig. 1.

As highlighted earlier, an important knowledge gap in the literature is the mod-
elling of air quality at different locations arising from travel choices and the
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Government's multiple objectives,
for example:
1. Minimise total travel time
2. Minimise total vehicle emissions

Users' multiple objectives, for example:
1. Minimise travel time
2. Maximise travel time reliability
3. Minimise monetary cost

Government's decision on:
1. Land use policy
2. Transport investment
3. Price

Users' decision on:
1. Mode choice
2. Route choice

Fig. 1 A typical decision analysis framework with multiple objectives

subsequent effect on pollutant uptake of individuals using different (multiple) modes
during their journey. We, therefore, focus on two new aspects within this analysis
framework:

1. Policy level: the modelling of health benefits with multiple objectives, namely,
physical activity and pollutant uptake.

2. User level: the modelling of users’ mode choice behaviour considering three
objectives, namely, travel time, travel time reliability and monetary cost.

From an optimisation point of view, this suggests a bi-level network design prob-
lem (NDP), with a classical general formulation in Ben-Ayed et al. (1988). Typically
NDPs have single objectives at both the lower and upper levels. More recently, multi-
ple objectives have been considered at the upper level (e.g. Miandoabchi et al. (2012)
and Szeto et al. (2015)). Meanwhile, multiple objectives have not been considered at
the lower (user equilibrium) level in the context of a bi-level NDP. Multi-objective
equilibrium models have been introduced in recent research with a view to more
realistic modelling of route choice behaviour (Ehrgott et al. 2015; Wang and Ehrgott
2013; Wang et al. 2014a).

In this study, we introduce a multi-objective equilibrium model at the lower level
for a bi-modal network in order to determine more realistically where modal shifts
might occur and where active modes are used. With this formulation at the lower
level, multiple system performance indicators can be observed at the upper level for
different (pre-defined) urban growth and transport investment scenarios. In partic-
ular, the lower level model enables a health impact assessment (at the upper level)
that takes into the spatially disaggregate emissions concentrations encountered by
travellers, and mode-specific uptake of pollutants. This provides the necessary foun-
dation for multi-objective optimisation at the upper level (subject to multi-objective
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equilibrium at the lower level). The multi-objective bi-level NDP (with multiple
objectives considered at both levels) will be a subject for future research.

To support the strategic analysis of different urban growth scenarios and transport
investment strategies, we need not only a representation of the transport infrastructure
but also a model of the city, where the urban form and environment in terms of
air quality can be modelled. We adopt a classical urban model, known as the linear
monocentric city.

As shown in Fielbaum et al. (2017), there are many different ways to represent the
urban form of a city. The monocentric city is one such abstract form, which originated
from models developed in the 1960s (e.g. Alonso (1960, 1964)) to support urban
density analysis. In its simplest form, the city is represented as a disc with radial dis-
tance from the central CBD the key explanatory variable. Smith’s review suggests
that ‘a monocentric population density model can be viewed as a one-origin, many-
destination version of a spatial interaction model’ (cited in Smith (1997) fromWilson
(1970)). For the morning commute, this becomes a many-origin, one-destination spa-
tial interaction model. With improved data availability and computational efficiency
in the 70s and 80s, the use of monocentric mathematical urban density models has
become a popular approach (e.g. Anas (1990) and Mohan (1979)). Until today, this
classical urban density model is still a building block for many urban economics
models. For instance, a recent article has shown that a monocentric model can be
extended to model the effect of congestion pricing in the Paris region (with multiple
centres) and its long term change in urban form (De Lara et al. 2013).

The linear monocentric city model (LMC) may be thought of as collapsing
the circular symmetry of the monocentric city into one representative radial cor-
ridor. However, in the first thorough mathematical treatment of the LMC it was
simply introduced as ‘a traffic corridor problem with several congested modes, a
continuum of entry points and a single exit point’ by Jehiel (1993), in a paper
that provided formulations for both user equilibrium and system optimum, along
with results on the existence and uniqueness of solutions. Over the years, the
modelling of spatial interactions of transport policy, the transport system and the
urban form within a linear monocentric city has also been well studied. Some
examples include the optimisation problems of location and pricing of Park-
and-Ride facilities (e.g. Liu et al. (2009) and Wang et al. (2004)); congestion
pricing (e.g. Chen et al. (2017), Li et al. (2014), and Liu et al. (2014)); and
public transport investment strategies (e.g. Li et al. (2012a, b)). All of these stud-
ies have focussed on the economic and/or welfare aspects. The present study
is the first to look at the interactions with the environment and the subsequent
health impact of transport investment within a linear monocentric city modelling
framework.

We propose a multi-objective spatial analysis framework to evaluate the economic,
environmental and health impacts of transport investment strategies under different
urban growth scenarios. We consider a linear monocentric city wherein residents are
distributed continuously along an urban corridor and commute daily to a common
destination, the central business district (CBD), represented by one end of the linear
city. Two modes are available: car and rail. Users either travel by car from their
residence to the CBD, or by rail from the nearest station, which they reach by walking
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or cycling. There is also the alternative to walk/cycle directly to the CBD, without
using train or car.

As in many previous studies, we need to consider co-evolution of urban growth
and its interactions with choices made by residents (e.g. Li et al. (2016) and
Maheshwari et al. (2016)) as well as the influence of different transport invest-
ment strategies on the behaviour of residents (e.g. Stepniak and Rosik (2017)).
We illustrate the model with two cases of urban growth (Huang et al. 2014):
(1) horizontal growth (length of the city) to represent urban sprawl; and (2)
vertical growth (population density) to represent higher density development. In
both scenarios we assume that the co-evolution of residential land use and road
infrastructure follows scaling law growth (Bettencourt et al. 2007) and that,
for simplicity, population density is uniform. The model presented can, with-
out modification, accommodate any (exogenously defined) population distribu-
tion, however residential location choice is not modelled within this equilibrium
framework.

We adopt a multi-objective approach (Wang and Ehrgott 2013; Wang et al. 2014a)
to model individual mode choice decisions taking into consideration travel time,
travel time reliability and monetary cost associated with each mode. It is important to
include travel time reliability when considering commuter mode choice since empir-
ical evidence reveals rail as an attractive alternative to driving, not only for short
commute within the urban area but also for long distance commuting (Wang 2011);
travel time reliability and travel comfort are the two most important dimensions of
the journey that affects the overall satisfaction (Brons and Rietveld 2009).

We consider multiple system performance parameters at the policy level, in terms
of aggregate information on vehicle emissions as well as disaggregate information
on both individual pollutant uptake and exercise level during journey to work. The
availability of individual activity information enables health impact analyses to be
carried out both spatially and temporally at an appropriate level of detail that can
support informed policy decisions.

This paper contributes a configurable multi-modal model, including active modes,
that represents the multi-objective trade-offs faced by travellers in terms of travel
time, travel cost and travel time reliability. The model is sufficiently spatially disag-
gregate to capture health impacts due to activity-related uptake of localised emissions
arising from road traffic congestion. The model is used to explore alternative urban
growth scenarios via multiple system performance indicators, revealing the upper-
level trade-offs faced by policy makers and demonstrating the potential of this
modelling framework for future application to a multi-objective bi-level NDP (with
multiple objectives considered at both levels).

This paper is organised as follows. The next section introduces the mod-
elling suite, including an overview of the four modelling components: the urban
growth, transport planning, air quality modelling and health impact assessment
components. The mathematical formulation of the model is then described in
Section 3. We then demonstrate with numerical examples in Section 4 how
this modelling suite can be applied to support policy analysis. Finally, conclu-
sions are drawn in Section 5 followed by a discussion on further research
topics.
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2 Model Overview

An overview of the modelling suite is depicted in Fig. 2, consisting of two sets of
sub-components: (a) the urban growth and transport planning components; and (b)
the air quality and health impact assessment components.

2.1 The Urban Growth and Transport Planning Components

As shown in Fig. 2a, the urban growth and transport planning components include
two processes: (i) system specification; and (ii) equilibrium analysis.

2.1.1 System Specification

The idea behind this linear monocentric city model with continuum demand dis-
tribution is to represent a general planning/design problem that urban/transport
planners face every day. Let us consider any typical congested corridor in a city,
where there exists only one road connection at the moment and with population
growth, the corridor has now become congested. We consider two possible trans-
port infrastructure investment strategies here: (1) increase road capacity to satisfy

Fig. 2 An overview of the modelling suite of urban growth, transport planning, air quality and health
impact assessment components
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the demand; or (2) invest in more sustainable alternative modes of transport, such
as rail, that can be accessed by walking and cycling. Obviously, combinations of
the two strategies at different investment levels can also be considered. In terms
of urban growth strategies, planners might consider restricting urban development
to be within certain areas, like the Green Belt in the UK, such that rail supply
can be supported by higher demand generated from intensification with mixed
development.

As shown in the overview of the modelling suite in Fig. 2, we will need a system
specification that represents both the transport investment and urban growth strate-
gies. In this model, the structural design variables include the length of the city and
distance between stations. Typically we can assume a catchment distance of about
1km to the rail station by walking and 5km by bicycle. Residents are located con-
tinuously along the corridor and they can all access the rail service by walking and
cycling to the nearest station, or access the highway at any point. Note that for sim-
plicity, we do not include park-and-ride or passenger drop-off by car as an access
mode here. That is, residents only have two mode choices, car or rail. This system
can be represented conceptually as shown in Fig. 3.

2.1.2 Equilibrium Analysis

Once we have a system specification, the next planning question is what level of ser-
vice to be offered at what price on each mode. The ultimate objective is to provide a
system that will bring the highest level of benefits in all aspects, including economic,
environmental and health. The performance of the system in turn depends on how
users might respond to the choices available. Therefore, it will be vitally important to
be able to forecast the demand on the two different modes at different locations of the
city. This requires a choice model that can predict realistically the travel behaviour of
users in terms of mode choice. As mentioned earlier, travel time reliability, is one of
the two most important dimensions of the journey that affect the overall satisfaction
on rail (Brons and Rietveld 2009). On the other hand, travel time, travel time reliabil-
ity and monetary costs are considered as the three most important factors influencing
route choice behaviour on a road network (e.g. Abdel-Aty et al. (1995), Lam and
Small (2001), and Li et al. (2010)).

Fig. 3 A schematic design of a linear monocentric city
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A lot of research effort has been put into developing reliability-based assignment
models in both road networks (e.g. Lo et al. (2006) and Watling (2006)) and transit
networks (e.g. Szeto et al. (2013) and Yang and Lam (2006)). These models essen-
tially look at the effect of travel time reliability on route choice behaviour within
either a road network or a transit network. Since travel time reliability, however, is
also an important factor influencing mode choice, naturally this leads to a combined
mode and route choice approach (Fu et al. 2014). Fu et al. (2014) applied a reliability-
based user equilibrium (RUE) approach in a multi-modal network to determine the
mode and route choice, assuming that all users have a common objective of min-
imising a route (dis)utility function based on travel time budget (TTB) (Lo et al.
2006).

As discussed in Wang and Ehrgott (2013) and Wang et al. (2014a), the existing
network equilibrium models (including RUE models), as identified earlier, share the
common feature that the objectives of minimising cost, time and (un)reliability are
combined into a single objective, which is either in the form of a generalised cost or
(dis)utility function. The use of a single objective in network equilibrium models has
restricted their capability to model some rational choices, which cannot be chosen
under this modelling framework, but might have been chosen in reality as they are
considered to be rational choices from a multi-objective point of view.

Let us look at the implications of applying a single-objective user equilibrium
mode choice model in a linear monocentric city. This is in fact quite a well studied
problem as reviewed in Huang et al. (2014). In a linear monocentric city the conges-
tion level on the road network will only increase towards the CBD. This leads to the
classical watershed case (Jehiel 1993) that commuters living farther away from the
CBD beyond this indifferent point will all take the car. Thus, in the bi-modal case,
as in Huang et al. (2014), there always exists a location whereby the generalised cost
or the TTB is indifferent between the two modes. There are other studies that con-
sidered more than two mode choices in the literature. Wang et al. (2004) studied the
optimisation of a single park-and-ride location problem in a linear monocentric city.
Wang et al. considered the user equilibrium between three modes: (1) rail only; (2)
park-and-ride to catch rail; and (3) car only. Liu et al. (2009) subsequently studied
the case of a continuum park-and-ride location problem where multiple park-and-
ride facilities can be located anywhere along the corridor. Both models are based on
minimisation of the conventional generalised cost function which is a linear combi-
nation of travel time and monetary cost. Wang and Du (2013) then proposed a RUE
model by applying the concept of TTB in Lo et al. (2006) to optimise a single park-
and-ride location in a linear monocentric city. Wang and Du assume that all users
want to minimise TTB subject to a reliability threshold. All of these models define
equilibrium based on a single objective.

Now in the proposed system as described in Section 2.1.1, for some locations, rail
might be more expensive and take longer time but it might also be the most reliable
mode of transport. From a multi-objective optimisation point of view, rail can still
be a more attractive alternative compared to car for some people, as long as it is not
dominated by car in terms of all qualities, i.e. travel time, travel time reliability and
monetary cost. However, in all the standard formulations for bi-modal equilibrium in
a linear monocentric city mentioned above, the generalised cost or TTB on rail would
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have appeared to be higher for all residents living farther away from the CBD beyond
a certain point, as in the watershed case. In other words, even though rail might be
a rational choice based on multi-objective optimisation concept, the single-objective
formulation will predict that no one is going to choose it beyond this indifference
point. This is an unrealistically restrictive constraint on the model, which is relaxed
in this paper.

With the proposed equilibrium analysis model, we overcome this difficulty by
applying a bi-modal three-objective user equilibrium (TUE) model. This TUE con-
cept is introduced in Wang and Ehrgott (2017), developed based on concepts
introduced in Wang and Ehrgott (2013) and Wang et al. (2014a). This new equilib-
rium model permits a more general concept of equilibrium based on the simultaneous
consideration of all three objectives separately, thereby overcoming the unrealistic
limitations of standard equilibrium models for a linear monocentric city.

All users are assumed to have three objectives: (1) minimise travel time; (2) max-
imise travel time reliability; and (3) minimise monetary cost. In this case, when faced
with the two alternatives, car or train, a user will consider the monetary cost alongside
the departure time at which they will need to leave in order to achieve their desired
arrival time reliability.

Different travel time distributions can be considered for each mode, along with dif-
ferent distributions of desired reliability amongst the population of travellers. In this
paper we assume that rail has (fixed) reliability of 95% and fixed travel time, whereas
car travel times are described by a continuous non-negative distribution (details in
3.1) whose mean and variance increase with congestion. Each user has his/her own
threshold of travel time reliability, which is defined as the probability of arriving
at the destination within an allocated TTB (Lo et al. 2006). We assume travellers’
desired level of reliability is uniformly distributed between 50% and 95% at every
location throughout the LMC; 50% and 95% represent the two extreme cases of risk
neutral and risk averse, respectively. A user will work out the required TTB in order
to satisfy his/her own desired level of reliability and hence decide his/her preference
based on the trade-off between the monetary costs and the required TTBs for the
two options. Note that if we included travellers demanding > 95% reliability, they
would be restricted to only car (and likely require very high TTB); such fixed-mode
travellers are of less interest.

One would expect that as the road network becomes both more congested and
more unreliable, rail would become more attractive, in the sense that even though
the door-to-door travel time may be longer, one might prefer to take the train instead
of driving as long as the rail service punctuality outperforms the travel time relia-
bility on the road network. To model how individuals might trade-off between the
required TTBs and monetary costs, we apply the travel time budget surplus (TBS)
concept introduced in Wang and Ehrgott (2017), further developed from the time sur-
plus concept introduced in Wang and Ehrgott (2013). We assume that for any given
price (monetary cost), an individual will have a maximum TTB that he/she would be
willing to spend. Naturally, the higher the price, the less time will be willing to be
spent. This becomes the indifference curve for this individual, as shown in Figs. 4
and 5, meaning that along this curve, the alternatives are equally attractive. Note that
this formulation allows for nonlineear indifference curves; convex or concave curves

849



J.Y.T. Wang, R.D. Connors

Car 95%

Time budget surplus for Car Option
with reliability threshold of 95%

(negative)

Choose Rail

Car 95%

Rail 95%

M
on

et
ar

y 
co

st

Travel Time Budget

Indifference curve

Rail

Time budget surplus for Rail Option
(negative)

Fig. 4 Illustration of TBS concept: Rail is preferred

could be used. We define TBS as the maximum TTB minus the required TTB for the
desired level of reliability. An individual would choose the option with the highest
TBS. For example, as shown in Figs. 4 and 5, a user with reliability threshold of 95%
will choose rail while a user with reliability threshold of 50% will prefer to drive.
An equilibrium is reached when no individual can improve his/her TBS by switching
mode. This is called the travel time budget surplus maximisation three-objective user
equilibrium (TBSmaxTUE) condition.
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Fig. 5 Illustration of TBS concept: Car is preferred
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At each location, the equilibrium modal split can be all different and it will follow
this equilibrium condition. There are three possible outcomes: (1) all residents from
this location will use rail; (2) all residents from this location will use car; and (3)
some residents will use rail and some will use car.

Based on the TBSmaxTUE condition, we can determine the conditions for these
three outcomes based on the TBS for car at different reliability threshold values,
compared with that for rail which has a fixed given reliability of say 95%, as illus-
trated in Figs. 6, 7 and 8. Note that we assume that rail is the most reliable mode.
Thus, the travel time reliability of car can only be in the range of [50%, 95%]. Now
to determine the modal share, it would be a matter of comparing the TBS for rail
with those for car: the highest achievable TBS at 50% threshold; and the minimum
possible achievable TBS at 95% threshold. As illustrated in Fig. 8, when TBS95%Rail is
in between these two values, then both rail and car will have positive modal shares
and the modal split is dependent on the distribution of threshold values at this loca-
tion. It is interesting to note that, as shown in Fig. 8, at this indifferent threshold
value (denoted as r%), the equilibrium TBS for car is equal to that of rail. Here we
assume that travel time reliability on road is flow dependent. Thus the traffic volume
on road at equilibrium modal split will also give us the TTB value corresponding to
the equalised TBS value for car, as illustrated in Fig. 8.

2.2 The Air Quality Modelling and Health Impact Assessment Components

From equilibrium analysis, as described in Section 2.1.2, we can obtain the modal
split between the two modes at each location along the city. Based on the modal
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Fig. 6 Case 1(a): Rail only
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Fig. 7 Case 1(b): Car only

split, we can then derive the link flow, average speed and travel time on all modes
(including not only car and rail, but also the access modes, walking and cycling). The
next stage is to determine at each location, the environmental and health impact as a
result of the choices made by the residents at equilibrium, as shown in Fig. 2b. Here
we adopt a three-stage approach to model the pollutant uptake during the commute
(Wang et al. 2014b):

1. Vehicle Emission Prediction Model (VEPM) – modelling emission rates for the
road based on traffic flow and average vehicle speed (Energy & Fuel Research
Unit The University of Auckland 2008).

2. Dispersion model – modelling air pollutant concentrations from road emission
rates and surface meteorology (Dirks et al. 2002, 2003).

3. Pollutant uptake estimation – modelling pollutant uptake from air pollution con-
centrations and the travel time along each link in the commute including the
active mobility component (Dirks et al. 2012).

It is important to note that (Dirks et al. 2012)’s pollutant uptake function is based
on the following principle:

Pollutant uptake = Pollutant concentration × Link travel time × Breathing rate

By applying Dirks et al.’s model, we will be able to estimate individual pollutant
uptake, by aggregating the pollutant uptake on different modes (including access
modes, walking and cycling) during the journey to work. As highlighted earlier, this
is an important measure of the impact of air quality on health that cannot be ignored,
as the breathing rate during exercise can be up to 2–3 times resting breathing rate
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(Dirks et al. 2012). Similarly, we can also keep track of the total time of each indi-
vidual being active during his/her journey to work, which is the link travel time on
either of the two access modes, walking or cycling.

2.3 System Performance Analysis

To assess system performance, we perform both spatial and overall system perfor-
mance assessment, as well as analysis at an individual level. For economic and
environmental impact, we apply the conventional approach of measuring the total
system travel time and total emissions as a proxy variable for environmental impact
from tailpipe emissions. In terms of health impact, it is meaningful to perform the
analysis at an individual level. As described in Sections 2.1 and 2.2, we first start with
an equilibrium analysis of mode choice decisions made by residents. We then per-
form spatial analysis of emission levels as well as pollutant concentrations. Finally,
we can determine the total pollutant uptake as well as the total time each individ-
ual being active during journey to work. Now to measure the performance of the
system in terms of impact on health, we will need to look at the population distri-
bution of pollutant uptake level as well as the time being active. Here we introduce
two new measures: (1) median or maximum pollutant uptake during journey to work;
and (2) percentage of population achieving a minimum level of physical activity, for
example, being active for at least 10 minutes.
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3 Mathematical Formulation

Consider a corridor city, x ∈ [0, L], with the CBD at location x = L. Total travel
demand in the city arises from the population of commuters Q. These commuters are
continuously distributed along the corridor with constant density q = Q/L.

We consider two modes for morning commuting: driving in private car on the
highway (denoted C) or taking the train (T ). All commuters can access the highway
everywhere along the corridor. Commuters access the railway at the most convenient
nearby station which is reached by an active mode, walking or cycling, depending on
the distance to the station. For commuters living close to the CBD, it may be more
efficient to walk or cycle directly to the CBD. We will use ’train’ as shorthand for all
non-car commuters, including those using only an ‘access’ mode.

At each location, x, the proportion choosing car versus train is pC(x) and pT (x)

respectively with pT (x) + pC(x) = 1.
We assume that the population of travellers have different risk preferences, with

the desired reliability at each location continuously uniformly distributed between
50% and 95%.

3.1 Travel Time, Travel Cost and Travel Time Reliability

Train Travel Time We consider the case when the railway is congestion free. Travel
time by train from location x to the CBD (at x = L) comprises the following
components:

• access time to the most efficient (not necessarily nearest) station, s(x), by
walking/cycling, TA(x, s(x))

• bike parking time if cycling, TBP

• waiting time for the train, WT , (depends on service frequency)
• train travel time to the CBD
• egress time (includes walking time from station to office), ET

We will deal with these components in turn.
Consider NS stations located at S = {si : i = 1, . . . , NS}. Rather than simply

going to the nearest station, it may be more attractive to cycle/walk slightly further to
a station which is closer to the CBD, since this reduces train travel time to the CBD
and hence the total trip time. Of the stations closer to the CBD, the nearest one to
x is simply s+ (x) = minsi∈S {si : si ≥ x}. Whereas the nearest station further away
from the CBD is s− (x) = maxsi∈S {si : si ≤ x}.

Travel time to the station by walking/cycling is derived from the walking speed
(fW in minutes per km) or bicycle speed (fB in minutes per km) as appropriate. If
travelling by bike we add an extra “bike parking” time delay, TBP , which also serves
to ensure that active mode travel time is strictly increasing with distance. Travel time
by active mode from x to y is

TA (x, y) =
{ |x − y| × fW walk if |x − y| ≤ DW

|x − y| × fB + TBP bike if DW < |x − y| ≤ DB
(1)
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where DW, DB are the maximum walking and biking distances respectively. For
commuters living near the CBD it may be quicker to walk/cycle directly to the CBD
rather than incur the waiting time at the station and egress time from the CBD station.
The active mode travel time directly to the CBD is TA(x, L).

For non-car commuters we compare these alternatives: (i) walk/cycle to nearest
station and take train, (ii) walk/cycle to nearest ‘forward’ station (closer to the CBD
than starting location) (iii) walk/cycle direct to the CBD (if less than 10km). Note
that option (iii) of using only an active mode has zero money cost and (we assume
at least) 95% reliability. Hence when this ’active mode only’ option has minimum
expected travel time and zero cost it dominates the train options (i) and (ii).

The total travel time by active mode and train from location x to the CBD is

TT (x) = min

⎧⎪⎨
⎪⎩

TA

(
x, s− (x)

)+ WT + ∫ L

s−(x)
fT dw + ET

TA

(
x, s+ (x)

)+ WT + ∫ L

s+(x)
fT dw + ET

TA (x, L)

⎫⎪⎬
⎪⎭ (2)

where WT is the train waiting time (taken to be half the headway), fT is the constant
travel time per unit distance (km) by train and ET is egress time from the central sta-
tion. The “train” mode comprises the minimum time alternative from TT (x) above
and hence includes walking/cycling direct to the CBD when this is quicker than tak-
ing the train. For simplicity of notation we denote the used station, that minimises
TT (x), as s(x). Recall that by assumption the active mode with train provides (fixed)
95% reliability.

Train Monetary Cost The rail ticket price is proportional to distance (from the sta-
tion, s(x)) to the CBD. With mT as the per km monetary cost for train travel the total
money cost MT (x) to travel by train from x to the CBD is

MT (x) = mT × [L − s(x)] (3)

Travellers taking only an active mode for their whole journey will incur zero money
cost.

Car Travel Time Travel time on the highway depends on congestion arising from
traffic volume v. Using the BPR function, the expected travel time per unit distance
is given by

tC(v) = fC ×
[
1 + 0.15

(
v

cC

)4]
(4)

where fC is the free-flow travel time (minutes per km). For simplicity we will
consider capacity, cC , to be constant along the entire highway, though the model for-
mulation allows for this to vary. The traffic volume at location x is determined by
the number of commuters choosing car, pC(x), from city boundary (at x = 0) up to
location x. Therefore v = v(x) with

v(x) =
∫ x

0
pC (w) q dw (5)
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and hence the expected travel time by car from x to the CBD is

TC(x)=
∫ L

x

tC (v(w)) dw+TCP =
∫ L

x

fC×
⎡
⎣1+0.15

(∫ w

0 pC (z) q dz

cC

)4⎤
⎦ dw+TCP

(6)
We add the constant TCP for the time required to park the car.

Car Travel Time Reliability We assume that the car travel time from location x

to the CBD is stochastic, with mean TC(x) as defined above. Following Taylor and
Susilawati (2012), we represent the car travel time distribution using a Burr XII
distribution, having PDF:

φ (t |α, c, k) = ck

α

(
t

α

)c−1 (
1 +
(

t

α

)c)−(k+1)

for t > 0, α > 0, c > 0, k > 0

(7)
and corresponding cumulative distribution function � (t |α, c, k). The mean value, μ,
is

E (t |α, c, k) = μ =
αk�
(
k − 1

c

)
�
(
1 + 1

c

)
� (k + 1)

. (8)

Note that for fixed shape parameters, c, k, the scaling parameter, α, determines the
mean. The variance of this travel time distribution is

V ar (t |α, c, k) =
α2k�

(
k − 2

c

)
�
(
1 + 2

c

)
� (k + 1)

− μ2. (9)

Note that for most choices of α, k, c, the Burr distribution is typically skewed; the
mean does not coincide with the 50th percentile. We fix the shape parameters c, k.
For each location x, the travel times from x to the CBD comprise a Burr distribution
with mean set to be TC(x), by choosing the value of α appropriately, using Eq. 8. This
results in the standard deviation (from Eq. 9) scaling linearly with the mean (Figs. 9
and 10).

Car Monetary Cost We consider parking charges (PC) and fuel costs only. We
could include fuel costs according to travel time/speed to take account of the conges-
tion impact on fuel use, but for this simple case we have a fixed cost per km (mC) for
fuel. The monetary cost of travel by car from x to the CBD is:

MC(x) = PC + mC × [L − x] . (10)

3.2 Travel Time Budget Surplus Mode Choice

With the preceding specification, consider travelling from location x to the CBD.
Travel by train costs MT (x) and the travel time is TT (x), with reliability of 95%.

This includes the case of travelling by active mode directly to the CBD when this is
quicker (from Eq. 2). Therefore for all travellers, regardless of reliability preferences,
the travel time budget for train is T T BT (x) = TT (x),
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Travel by car costs MC(x). Car travel times comprise a Burr distribution with
mean μ = TC(x), which corresponds to scaling parameter α (TC(x)), calculated
from Eq. 8. The probability of car travel time from location x to the CBD being
less than t is �(t |α (TC(x)) , c, k). Any desired level of reliability r ∈ [0.50, 0.95]
therefore corresponds to a travel time budget that can be computed from the inverse
CDF:

T T BC (x, r) = �−1 (r|α (TC(x)) , c, k) . (11)
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Fig. 10 Burr Distribution Mean vs Standard Deviation
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As described in Section 2.1.2, mode choice is based on maximising the travel
time budget surplus with reference to a time-money indifference curve. Therefore an
indifference curve needs to be specified at each location, as part of the model specifi-
cation. Clearly a variety of indifference curves can be proposed and used within this
model formulation. For the purposes of this paper the indifference curve at location x

is assumed to be negative exponential, and is defined by specifying two time-money
reference points, (m, t), that this curve passes through:

• t = TA(x, L) and m = 0 corresponding to travelling by active mode to the CBD
for free

• t = (L−x)fT and m = (L−x)τ corresponding to travelling at the car free flow
speed to the CBD at the cost of paying the toll of τ (in £/km).

The toll τ is not implemented, it is a hypothetical fixed per km toll that commuters
would be willing to pay in order to achieve free flow travel speed for their entire
journey. This results in an indifference curve for each location x:

I (m; x) = TA(x, L) exp

{
m

(L − x)τ
log

(
(L − x)fT

TA(x, L)

)}
. (12)

Using the indifference curve defined at location x, travellers decide between car and
train alternatives by maximising their travel time budget surplus:

T T BST (x) = I (MT (x); x) − T T BT (x), (13)

T T BSC (x, r) = I (MC(x); x) − T T BC(x, r). (14)

At each location, the TTBS for train is constant across all travellers. The TTBS for
car comes from Eq. 11 and depends on the desired reliability which is uniformly
distributed at each location. Money costs for train and car come from Eqs. 3 and 10
respectively.

Travellers will choose the mode which maximises their TTBS. Recall that at each
location there is a uniform distribution of reliability preferences r ∈ [0.50, 0.95].
Figures 6, 7, and 8 illustrate the possible mode choice outcomes. At location x, the
reliability preference, r , that gives T T BSC(x, r) = T T BST (x) will be

r̃(x) = �([I (MC(x); x) − T T BST (x)] |α (TC(x)) , c, k) . (15)

Note that the mean of the car travel time distribution depends on the highway flow,
via TC(x), and hence on the modal split pC(x). By contrast, I (MC(x); x) and
T T BST (x) do not change with pC(x). It will be helpful to explicitly recognize this:

r̃(x)=�

⎧⎨
⎩[I (MC(x); x)−T T BST (x)] |α

⎛
⎝fC

∫ L

x

⎡
⎣1+0.15

(∫ w

0 pC (z) q dz

cC

)4⎤
⎦dw+TCP

⎞
⎠ , c, k

⎫⎬
⎭ .

(16)

The proportion choosing car is then

pC (x) =
⎧⎨
⎩
1 if r̃(x) > 0.95
r̃(x)−0.50
0.95−0.50 if 0.50 < r̃(x) ≤ 0.95
0 if r̃(x) ≤ 0.50

(17)
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and by definition, pT (x) = 1 − pC(x).
By substituting r̃ from Eq. 16, this is the equilibrium formulation summarised as

a fixed point problem. Travellers will compare the car and train alternatives and seek
to maximise their travel budget surplus, by consulting their indifference curve, with
reference to their desired level of reliability. Each traveller will switch mode if they
can improve their TTBS. We achieve equilibrium when no traveller can increase their
TTBS by changing mode.

Emission, Dispersion, Uptake Models Road traffic gives rise to harmful emissions
including CO, NOx and particulates. In this modelling framework emissions do not
affect individual travel choices, they result from them. Emissions and their health
impacts are considered within the upper level assessment of system performance.
Here we focus only on CO, although clearly the approach could easily be extended
to include additional emissions predictions, providing further performance indicators
for policy makers to consider alongside one-another.
Rilett and Benedek (1994) give the rate of production (ROP) of CO in grams/(veh ft)
as

ROP = 0.0033963 exp (0.01456V )
1

V
(18)

when the vehicle velocity, V , is in ft/sec.
Assuming all the CO production is from cars, with vehicle flow v(x) in veh/hr and

instantaneous travel time tC(v(x)) in min/km, at location x the instantaneous ROP in
grams/(km sec) is

ROP(x) = 1

60
0.0033963 exp

(
0.01456

3280.8399

60 tC(v(x))

)
tC (v(x)) v(x). (19)

The total production of CO is then
∫ L

0 ROP(x)dx in grams/sec.
Following Dirks et al. (2002, 2003) the emission concentration at x in g/cu.m is

E(x) = ROP(x)/(60×1000×2.1), assuming windspeed of 2.1 m/s and dispersion
throughout the urban corridor up to a height of 60m.

Individual CO uptake is computed (Dirks et al. 2012) based on activity-based
breathing rate (in cu.m/min), the location-specific emissions concentration and the
time spent at each location, i.e. the speed of travel. Resting breathing rate is taken to
be BR = 0.012 cu.m/min which doubles for walking (BW = 0.024 cu.m/min) and
triples for cycling (BB = 0.036 cu.m/min). The pollutant uptake per person (in g) for
car drivers is then

UC(x) =
∫ L

x

E(w)BR tC(v(w)) dw. (20)

For those taking the train it is

UT (x) =
∣∣∣∣∣
∫ s(x)

x

E(w) ×
{

BW fW

BB fB

}
dw

∣∣∣∣∣+
∫ L

s(x)

E(w)BR fT dw (21)

depending on whether access mode to the station is by cycling or by walking. In the
case of cycling/walking direct to the CBD the second integral is simply zero. The
modulus sign is needed in case the used station is further from the CBD, s(x) < x.
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3.3 Solution Algorithm

First we list the necessary model parameters in Table 1.
The linear monocentric city is modelled as a continuum, which we solve by dis-

cretisation, splitting the interval x ∈ [0, L] into N elements so that dx = L/N .
We will use the superscript n to indicate vectors of the discretised problem that
correspond to functions above.

Initialisation of Fixed Quantities The demand (veh/hr) arising from each of the N

locations is q = Q/N . For each location xn = n dx for n = 1, ..., N :

1. compute the station access times (to nearest ‘forward’ and ‘backward’ stations)
from Eq. 1

2. compute the train travel time to the CBD, T n
T , from Eq. 2 and the monetary cost,

Mn
T , from Eq. 3

3. compute the car free flow travel time, and the car monetary cost,Mn
C , from Eq. 10

4. compute the walking/cycling time to the CBD from Eq. 1
5. generate the indifference curve In(m) from Eq. 12
6. compute the travel time budget surplus for train T T BSn

T .

The goal is to determine the mode split {pn
C : n = 1, ..., N} such that no traveller can

improve their TTBS by changing mode. The solution algorithm adopts the method of
successive averages, and iteration i of the mode split is labelled pn

C(i).

1. Set pn
C(i − 1) = 0 ∀n and the iteration counter i = 1.

2. Compute the car flow from Eq. 5 vn =∑n
m=0 q pm

C

Table 1 Model Parameters

Parameter Description Default Value

L City Length (km) −
si Station Locations −
DW ,DB Maximum walking, cycling distance (km) 0.5, 10

fC, fT , fW , fB Speed (km/min) by car (free flow), train, walk, bike 0.75, 1.2, 15, 6

Q Total travel demand (persons/hr) −
WT Waiting time for train (min) 15

ET Egress time (min) from station 5

mT ,mC Cost (£/km) by train (ticket), by car (fuel) 0.15, 0.12

τ Willing to pay (£/km) to get free flow speed 1

cC Road capacity (veh/hr)

TCP , TBP Parking time (min) for car, bicycle 3, 4.5

PC Cost to park car (£) 3

c, k Burr Distribution shape parameters 10,0.7

BR,BW ,BB Breathing rate (cu.m/min) resting, walking, cycling 0.012,0.024,0.036
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Fig. 11 Equivalent Network Assignment Problem

3. Compute the car travel time tnC = tC(vn) from Eq. 4 and T n
C = TCP +∑N

m=n tmC dx

4. Compute break-even car reliability from Eq. 15: r̃n =
�
([

In(Mn
T ) − T T BSn

T

] |α (T n
C

)
, c, k
)

5. Get new proportion wishing to use car from Eq. 16: p̃n
C ∈

{0, (r̃n − 0.50) / (0.95 − 0.50) , 1}
6. MSA step: set pn

C(i) = pn
C(i − 1) + (1/i)

(
p̃n

C − pn
C(i − 1)

)
7. If converged stop, otherwise set i = i + 1 and go to step 2.

We check convergence by monitoring
∥∥pn

C(i) − pn
C(i − 1)

∥∥.

Equivalent Network Assignment Problem We can re-cast the discretised problem
as a ‘standard’ network equilibrium problem with N origins and one common des-
tination (the CBD), see Fig. 11. The highway comprises N links in series, each link
having strictly increasing separable BPR cost function. Constant cost centroid con-
nectors can be used to contribute TCP to each car trip. The access mode and train
combination comprise a second route for each OD pair. Note that for each location
xn the rail alternative has fixed cost in both time and money, independent of mode
choice, pn

C, pn
T , and hence independent of demand and flow. This discretised model

can be admitted within the formulation presented in Wang and Ehrgott (2017) and
hence solution by MSA is appropriate.

4 Numerical Examples

In this section, we present numerical examples to illustrate how the different compo-
nents of the modelling suite as described in Section 2 can be applied to assess system
performance of a linear monocentric city to support policy analysis.
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Fig. 12 a Cumulative Flow (coloured) & Modal Split (grey); b Travel Time (coloured) & Cost (grey)

4.1 Spatial Analysis

To illustrate the model, let us consider a 25-km city with a highway of capacity 2,788
vehicles per hour. The peak demand is 9,000 trips per hour, about three times the
capacity of the highway. Rail service is running at a frequency of 4 trains per hour.
For simplicity, we assume that rail has unlimited capacity. There are 5 stations in
total, evenly distributed along the city 5-km apart from each other, with the terminus
at the CBD.

4.1.1 Equilibrium Analysis

Equilibrium analysis for the 25-km city as described above (L = 25km, Q =
9000, cC = 2788) is performed based on the TBSmaxTUE model, as described
in Section 2.1.2, to determine the mode choice of residents originating from each
location along the city considering the travel time, cost and travel time reliabil-
ity on car and rail. The resulting cumulative flows, modal split and corresponding
measures of health impact, i.e. level of physical activity and pollutant uptake of indi-
viduals from each location are illustrated in Figs. 12 and 13. Note that the CBD is
located at the end of the corridor, i.e. at 25km from the origin, while the boundary
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Fig. 13 a Flow on Active Modes & Time Active (grey); b CO Uptake & CO Concentration (grey)

of the city is at the origin. Station locations are coloured in blue on the x-axis of
Fig. 12a.

Let us now explore the spatial pattern of mode choice decisions along the city and
the resulting cumulative flows on car and rail, as illustrated in Fig. 12(a). With the
road being empty at the boundary of the city, all residents at the boundary choose to
drive. This corresponds to Case 1(b) ‘Car only’ in Fig. 7, where although car costs
more it requires less travel time budget than rail for all traveller risk preferences. As
we approach the first train station at location 5km, rail appeals to some travellers who
live nearer to the station; they are attracted to the high travel time reliability offered
by this mode as well as the lower cost. This corresponds to Case 1(c) ‘Both car and
rail have positive modal shares’ in Fig. 8. Rail modal share then started to pick up
and eventually all travellers living near the train station will take the train when the
travel time budget on rail equals to that for the risk averse travellers, as shown in Fig.
12a. This corresponds to Case 1(c) ‘Rail only’ in Fig. 6.

As shown in Fig. 12a, this mode choice pattern (grey lines) repeats in a cyclical
manner as we approach each train station. The closer a location is to the station, the
higher the modal share on rail. This is indicated by the spikes of rail modal share that
coincide with the station locations. Complementary to this, the spikes for car modal
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share appear to be at locations farthest away from the train station, around midway
between stations.

There is another interesting observation as we approach the CBD, indicated in Fig.
12a and b by a green line, representing pure active modes (cycle or walk only) being
chosen here. The green line in Fig. 12b illustrates locations from where it is faster to
cycle or walk to the CBD directly rather than go “backwards” to the station at location
20km and then take the train. Thus, in this zone near to the CBD, residents will either
drive or cycle/walk to the CBD directly. Even closer to the CBD, all choose to cycle
or walk due to shorter travel time and high reliability of the active modes (see mode
split in Fig. 12a).

4.1.2 Health Impact Analysis

As discussed in Section 2.2, we measure health impact at an individual level in two
aspects: (1) pollutant uptake; and (2) the time spent being active during the journey.
Information on the flow on active modes, time being active and CO pollutant uptake
level for trips generated from different locations are depicted in Fig. 13a and b.

Depending on the location, residents might choose to go in the “forward” or
“backward” direction, whichever way that will minimise the access time plus the
remaining journey time. The (cumulative) flows for walk and bike access to the sta-
tion are demonstrated in Fig. 13a. Since these active modes are to access the train, the
walk/bike flow is dependent on rail modal share. Hence these flows on active modes
(walk or cycle to the station or to the CBD), as shown in Fig. 13a, follow a similar
pattern to that of rail mode share and active-only mode share towards the CBD in
Fig. 12a. The corresponding time per trip being active are as shown (in grey) in the
background. Note that the peak journey time being active appears very close to the
CBD, where direct trips are made on bikes to the CBD, since cycling is the fastest
mode of transport from these locations as explained earlier.

The CO uptake per person for their entire journey, for each starting location and
for each mode, are demonstrated in Fig. 13b. Here for simplicity we assume that there
is no difference between the CO concentration on different modes of transport. The
change in background CO concentration (grey line), as shown in Fig. 13b, is a result
of the increase of car flow, with this dependency clear from the cumulative car flow
shown in Fig. 12a.

The differences in CO uptake per person are induced by the differences in breath-
ing rates (on different modes), journey time and variations in CO concentration at
different locations throughout their journey. As a result, as shown in Fig. 13b, the
total CO uptake per person for rail users would be higher than that on car because of
the higher breathing rate during access to the train station, i.e. when they cycle/walk.
The CO uptake per person for rail (and active-only) users are therefore always higher
than those on car. The peak CO uptake occurs near the CBD for those who cycle to
work directly for three reasons: (1) the highest background CO concentration due to
vehicle emissions under severe road congestion; (2) cyclists’ breathing rate being up
to three times of rest breathing rate; and (3) the maximum distance cycled is by those
going direct to the CBD.
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4.2 Policy Analysis

For illustration purposes, here we compare the performance of combinations of two
simple urban growth strategies and two road/rail capacity investment strategies:

1. Urban growth strategies

(a) Vertical growth. The length of the city is fixed. All demand will be evenly
distributed within the city.

(b) Horizontal growth. The length of the city will increase with demand. All
new demand will be distributed to the extended part of the city.

2. Transport investment strategies

(a) S1. Road capacity improvement only. Road capacity increases with popula-
tion following scaling law. Rail capacity is fixed.

(b) S2. Investment on both road and rail capacity improvement. Both road
capacity and train frequency increase with population following scaling law.

The following parameter settings are tested for illustration purposes in the
following sections:

1. Urban growth strategies

(a) Vertical growth. Length of city fixed at 25km (L = 25km); with stations
5km apart; initial demand (Q0 = 2000), i.e. initial population density
(Q0/L = 80/km).

(b) Horizontal growth. Length of city initialised at 4km (L0 = 4km); popula-
tion density is kept at an initial level of 500/km (Q/L = 500/km) while
total demand increases from 2,000 to 30,000, i.e. length of city increases
from 4km to 60km; with future stations 5km apart.

2. Transport investment strategies

(a) S1. Road capacity improvement only. Road capacity initialised at 800 veh/hr;
increasing at a rate following scaling law, e.g. at a demand level of 15,000,
the road capacity will be 4,260 veh/hr. Rail frequency is fixed at 4 trains per
hour.

(b) S2. Investment on both road and rail capacity improvement. Road capacity
as above: initialised at 800 veh/hr and increasing at a rate following scaling
law. Rail frequency initialised at 4 trains per hour; increasing at a rate fol-
lowing scaling law, e.g. at a demand level of 15,000, the road capacity will
be 4,260 veh/hr; the train frequency will be 21 trains/hr.

4.2.1 Trend Analysis

As demand increases, we apply combinations of the strategies as stated above. The
system performance in terms of three different performance measures: total travel
time, percentage of population being active for longer than 10 minutes and total CO
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emissions are depicted in Fig. 14a and b. This shows the trend of system performance
over time.

In terms of total travel time and total CO emissions, as demand increases, the
performances deteriorate over time under all scenarios. This is obviously what we
would expect with demand increase.

In terms of percentage of population being active for ≥ 10 minutes, indicated
in green in Fig. 14a and b, the picture is quite different. It is worth noting that for
the chosen model parameters and scenarios, those active for more ≥ 10 minutes
are cycling for ≥ 1.67km, and hence are either located roughly midway between
stations and taking the train, or cycling to the CBD. Under vertical growth the per-
centage being active increases over time, which can be explained by the fact that the
rate of road capacity increase is not sufficient for the increase in population. As the
overall level of road congestion is increasing, people increasingly choose rail and
hence a higher percentage of people are active in accessing commuter stations as
demand increases. Moreover, congestion near the CBD makes cycling attractive. The
improved train service (in S2) attracts significantly more people cycling/walking to
stations and hence an increase in rail modal share.

Under horizontal growth the picture is more complex. At lower population lev-
els the city is “short” and hence does not have many rail stations. Cycling for ≥ 10
minutes is dominated by people cycling directly to the CBD. As the city grows in
population and physical extent, new stations are installed to maintain station sepa-
ration of 5km and this gives rise to the regular oscillations in Fig. 14b. As the city
grows, so does the number of people cycling to stations in order to take the train to
the CBD; cycling as an access mode starts to dominate those cycling for ≥ 10 min-
utes. Comparing the two investment strategies, i.e. S2 versus S1, it is notable that
congestion near the CBD is always worse in S1 and this encourages more people to
cycle (rather than drive) directly to the CBD. This results in more people being active
for ≥ 10 minutes in S1 for lower populations when those cycling directly to the
CBD dominates. For larger populations when the city is more spread out with more

Fig. 14 Performance trend analysis (stations are 5km apart)
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stations, the increased train frequency in S2 attracts more people cycling/walking to
stations and hence sees a higher proportion active for ≥ 10 minutes than in S1.

4.2.2 Spatial and Temporal Analysis

Investment Strategy Comparison (S1 Versus S2) As explained earlier, the level
of CO uptake of an individual traveller is dependent on his/her breathing rate (as
determined by the mode of his/her own choice), journey time and variations in
CO concentration at different locations throughout his/her journey. Therefore, it is
important to understand the impact of the growth and investment strategies on the
CO uptake at an individual level. In other words, to assess the health impact cor-
rectly, we should perform analysis spatially as well as temporally so that we can
observe how the spatial performance of the system evolves over time as demand
increases.

We start with looking at the spatial plot of mode share (in circles), aggregated time
being active (in green bar) as illustrated in Fig. 15.

Note that here the linear city is on the y-axis with the CBD located at the
bottom of the axis. The background grey scaled colouring represents the level of
CO concentration at that location (darker indicates worse air quality). This graphic
displays analysis at a ‘block’ level, where each ‘block’ represents the catchment area
for a station; the catchment areas can easily be seen from the blue line in Fig. 12b.
The location of the station is shown within each block as a blue triangle. Within each
catchment block, the changes in air quality can also be observed.

Here we investigate the effect of different investment strategies (S1 and S2) under
vertical urban growth strategy on modal share and time being active, as depicted in
Fig. 16a and b, respectively. Within each catchment block, we observe the number
of users, represented in circles (the size proportionate to the number of users), who

Station 

Catchment

By Train[3098]

By Car [5302]

Person Mins 

Active

31534 mins

13256 mins

Fig. 15 An illustration of spatial plot of mode share & aggregated time being active
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choose to drive (in orange) or take the train (in blue). By definition of the catch-
ment areas, in the block closest to the CBD, users will choose to drive or cycle/walk
directly to the CBD (shown in green). We also observe the total time being ‘active’
during access to a station or to the CBD, represented by a green bar. The subsequent
effect on total CO uptake by mode (for the whole population) and distribution of CO
uptake per person for each mode under the two strategies are depicted in Fig. 17a
and b.

With investment in road only, the air quality deteriorates significantly at a much
faster rate as demand increases. When there is no increase in train service frequency
to match population growth, more will choose to drive despite increased congestion.
The congestion condition near the CBD increases, resulting in worse air quality as
shown in Fig. 16a compared with Fig. 16b. Due to the relatively inconvenient train
service, plus the highly congested road, a high proportion of those living near the
CBD choose to cycle/walk to work directly despite the much higher CO concentra-
tion levels, resulting in a higher total time being active for the population but a much
higher median CO uptake per person on the active-only group who bike to work
directly. As depicted in the bar charts of total CO uptake by mode in Fig. 17a and
b, investment in rail in additional to road, will reduce the total CO uptake not only
for active-only mode but also for car users. Most importantly, the median CO uptake
per person will all decrease with investment in both road and rail, as shown in the
boxplots in Fig. 17a and b.

From the analysis above, it is clear that investing in both road and rail, as com-
pared to investing on road only, will increase modal share on rail along the city,
which will not only help improve air quality but crucially will reduce CO concen-
trations near the CBD. This reduces the overall health impact induced by CO uptake
during journey to work, particularly for those walking or cycling directly to the
CBD.
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Fig. 16 Spatial plot of mode share and aggregated time being active by catchment area (vertical growth)
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Fig. 17 Total CO uptake & boxplot of CO uptake per person with increase in demand under vertical
growth

Vertical Growth Versus Horizontal Growth In order to assess the impact of dif-
ferent growth strategies, we perform spatial and temporal analysis of mode share
and aggregated time being active under vertical and horizontal growth strategies, as
shown in Fig. 18a and b. The corresponding total CO uptake by mode and distribu-
tions of CO uptake per person on different modes are depicted in Fig. 19a and b.

Here we consider investment in road only (S1) for both growth strategies. Thus,
the case of S1 & vertical growth represents the worst case scenario and we inves-
tigate whether switching to a horizontal growth strategy might help improve the
performances.

In terms of air quality, as shown in Fig. 18a as compared to Fig. 18b, the air
quality near the CBD does improve. However, due to the longer distance travelled,
as depicted in Fig. 19a and b, the total CO uptake on both car and rail, as well as the
median uptake per person will increase. Users on car and rail will not benefit at all
in terms of CO uptake. On the contrary, those cycle/walk to the CBD directly will
experience lower concentration of CO. As a result, the total CO uptake on active-only
mode will be reduced.

Under horizontal growth strategy, residents might enjoy the same quality of life
in terms of space, yet the level of CO uptake will increase as a result of the longer
distance they will have to travel. This might induce worse health impact in the long
term.
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Fig. 18 Spatial plot of mode share and aggregated time being active by catchment area

Fig. 19 Total CO uptake & boxplot of CO uptake per person with increase in demand
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5 Conclusions and Outlook

In this paper, we proposed a new multi-objective spatial analysis framework to eval-
uate the economic, environmental and health impacts of urban development and
transport investment strategies in a linear monocentric city with continuum demand
distribution, where residents have access to a road at any location or rail services by
walking or cycling to the nearest station. The multi-objective modelling framework
presented here allows the trade-offs between objectives to be examined at both the
upper level, and from the perspective of travellers. The framework is flexible in that
it allows component models to be altered or enhanced.

This modelling suite consists of two main subcomponents: (a) the urban growth
and transport planning components; and (b) the air quality and health impact assess-
ment component. The main purpose of the urban growth and transport planning
components is to model travel behavioural response in terms of mode choice. We
applied the concept of a three-objective user equilibrium model, wherein travellers
maximise their time budget surplus (TBSmaxTUE). This incorporates the three most
important factors influencing route/mode choice behaviour: travel time, travel time
reliability and monetary cost. This new multi-objective bi-modal equilibrium model
gives location-specific modal splits that depend on the travel time budget needed on
each mode to achieve the desired level of reliability for each resident at that location.

With this method, we are able to capture the localised effect of accessibility to
rail services on mode choice. The equilibrium analysis provides spatial information
about the flows on every mode, including road, rail, walking and cycling, throughout
the city. The air quality and health impact assessment component uses the flow and
average speed information at each location along the road to determine local emis-
sions concentrations. The impact of residents’ mode choice on the environment in
terms of overall air quality can therefore be determined. Most importantly, this model
also captures the exposure of individual travellers to spatially heterogeneous pollu-
tant levels, and hence the impact of individual mode choices on their own health in
two aspects: (1) the level of physical exercise; and (2) the pollutant uptake during
journey to work.

We demonstrate how the different components of the modelling suite can be
applied to carry out system performance analysis with numerical examples. To eval-
uate system performance, we consider a set of four performance parameters: (1)
total travel time; (2) total CO emissions; (3) median CO uptake during journey to
work; and (4) percentage of population achieving a minimum of 10 minutes of exer-
cise. We assess the performance for combinations of different strategies including
urban growth strategies: vertical growth and horizontal growth; transport investment
strategies: investment in road capacity improvement only and investment on both
road and rail capacity improvements. By performing multi-objective analysis spa-
tially and temporally, we demonstrate how this novel model can be applied to provide
information for the trade-off between different criteria in policy decisions.

By introducing multi-objective bi-modal equilibrium model in a linear city, we
have made a first step towards building a bi-level network design model with multi-
ple objectives at both lower and upper levels. This approach has enabled the spatial
and temporal analysis of economic, environmental and health impact assessment
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to be performed at both aggregate and disaggregate levels, represented by multiple
objectives. Naturally there are several topics that can be considered for further devel-
opment of this model. Residential location choices should be considered as a longer
term decisions apart from day-to-day transport mode and route choice. Development
of a bi-level optimisation model with multiple objectives at both the policy and user
decisions’ levels for a general multi-modal network would be our ultimate goal.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.
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