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Abstract The analysis of complex networks has recently received considerable
attention. The work by Albert and Barabási presented a research challenge to
network analysis, that is, growth of the network. The present paper offers a network
analysis of the spatial commuting network in Germany. First, we study the spatial
evolution of the commuting network over time. Secondly, we compare two spatial
interaction model (SIM) specifications, in order to replicate the actual network
structure. Our findings suggest that the commuting network appeared to become
more dense and clustered, while the SIMs seem to require more sophisticated
specifications, in order to replicate such a connectivity structure.
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1 Introduction

Network theory has received increasing attention over recent years, because of the
implications that the structure and functioning of networks have for a wide set of
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societal phenomena. Transportation is one of these. In particular, commuting
networks, because of their association with residential choices and job location, are a
fruitful research domain in this context.

Commuting behaviour has become a relevant research issue in many fields
(Rouwendal and Nijkamp 2004). While it has long been studied in terms of fore-
casting and flows approximation (see, for example, White 1977, 1986; Fotheringham
1983), less efforts have been made in studying the structure and connectivity
properties resulting from commuting. However, a growing literature is available that
studies commuting in a spatial framework. Rouwendal (2004) introduces search
theory and spatial behaviour in commuting choice modelling, while Ma and Banister
(2007) analyse the relationship between urban spatial structure decentralization and
average commuting distance. Cörvers and Hensen (2003) use regional modelling in
order to study functional relationships between regions that maximize internal
commuting. Spatial behaviour had also been introduced in more traditional
approaches, as in the works by Fotheringham (see, mainly, Fotheringham 1983),
who introduced the competing destinations models. This approach made it possible
to introduce in traditional spatial interaction models (SIMs) an element representing
the effects of the clustering of destinations, by means of accessibility measures.
Network approaches to commuting have also been proposed, both at an urban level
(Sheffi 1985; Sohn 2005) and a zonal level (Thorsen et al. 1999). A graph theory
approach has instead been proposed by Binder et al. (2003).

The main objective of this paper is to investigate the changes that occur over time
in commuting networks, as well as the associated relationships with the underlying
network configuration. This is done—in a first stage—by considering commuting
networks as graphs, where flows of commuters between two locations (seen as nodes
in the network) represent a logical link between them, according to the recently
developed theories by Albert and Barabási (2000, 2002). Our purpose is to compare
the network connectivity models of Albert and Barabási with the conventional SIMs.
As a case study, we consider the network of the commuting flows in Germany, for
1995 and 2004. In this framework, the connectivity properties of the network
concerned will be first analysed in a graph theory perspective, since they influence
the functioning, reliability and efficiency of the network itself. For example, a
network moving toward a high centralization or denser clustering implies changes in
the opportunity costs of commuters, and, consequently, in the future economic
development of the areas of interest. Secondly, we will observe the network structure
of commuting flows in Germany from the viewpoint of the network spatial
interaction, that is, the spatial mobility. In this context, we will try to identify the
appropriate deterrence form inherent to spatial interaction modelling. We will then
carry out two specifications of the impedance function concerning an unconstrained
SIM: (a) a power-law function; (b) an exponential function, in order to evaluate how
well they simulate the underlying network structure observed for the real data.

The paper unfolds as follows: Section 2 reviews the main aspects of complex
network theory, in the light of the Albert and Barabási developments. In Section 3,
we discuss two SIM formulations employed in the paper, as well as their
interpretation in terms of preferential attachment. Section 4 describes the empirical
application that was carried out. First, a discussion of the data is presented
(Section 4.1), followed by an exploration of the data (Section 4.2). Section 4.3
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presents the network analysis of the commuting network, for 1995 and 2004.
Subsequently, Section 4.4 compares the two specifications of unconstrained SIMs
described earlier in terms of their connectivity properties. Finally, in Section 5, we
draw some conclusions and outline future research directions.

2 Complex network theory

This section briefly reviews the main issues related to complex network theories, and
in particular their implications for transportation networks. While complex networks
have had considerable attention in recent years, the study of such networks is not
particularly new. Before Albert and Barabási’s discoveries, original research had in
fact already been carried out some 40 years ago by Erdös and Renyi (1960), whose
major assumption was an underlying random network structure. However, because
of insufficient computational power and suitable data, for the majority of the
twentieth century, these random theories formed the basis for the most common
methods of network simulation, although they were not adequately challenged
(Barabási 2001). Recently, Albert and Barabási (2002) found that (large) complex
networks were actually behaving according to three main characteristics:

1. Short average path length;
2. High level of clustering;
3. Power law and exponential degree distributions.

In detail, short average path length indicates that any two nodes on the network
can be reached with a limited number of hops. High clustering, on the other hand,
occurs because of nodes locating topologically close to each other in cliques that are
well connected to each other. This property had been formalized by Watts and
Strogatz (1998). Finally, the frequency distributions of node density (or, more
generally, number of connections) are called degrees and can follow power-law and
exponential distributions. This third property implies connections that cut across the
graph, directly linking different clusters of vertices. These direct links between
clusters bring an increased level of efficiency—in terms of number of hops—to the
network. This result shows the limits of the Erdös and Renyi models, in which the
exponential decay of the degree distribution did not imply a higher number of
connections available to the most important nodes. The novelty in the Albert and
Barabási approach was incorporating an additional component: network growth.
Consequently, not only can the number of nodes in the network increase, but new
nodes are found to have a higher probability of connecting to other nodes that are
already well-connected (preferential attachment).

A certain amount of literature is now available on the analysis of transportation
networks in terms of complex theory (Reggiani and Schintler 2005). Because of their
short average path length, airline networks have been considered by Amaral et al.
(2000) as a small-world network, referring to the model presented by Watts and
Strogatz (1998). On the other hand, the same authors note that the structural
limitation of airline networks, such as the limited space available in the airports, may
hinder the emergence of scale-free properties. Other authors have found similar
results. Latora and Marchiori (2002) analysed the Boston subway network, while
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Schintler and Kulkarni (2000) observed congested road networks. Both articles
found small-world network properties in the analysed networks.

Generally, it might be argued that transportation networks are less prone to evolve
into a scale-free structure over time, given the fact that they tend to be planar. In fact,
in planar networks, the maximum number of connections for a single node can be
limited by the physical space available to connect it to other nodes, and it is this fact
that makes the large number of connections needed for finding a power-law
distribution more difficult to obtain. Further, it may be observed that highly
centralized transportation networks can be subject to threats to their viability, in the
case of the destruction of large hubs (Kwan et al. 2003). Scale-free networks have
many implications, but a far-reaching consequence of their unique hub structure is
that they are very fault tolerant, while also susceptible to attack (Albert et al. 2000).
Specifically, a scale-free network model remains connected when up to the 80% of
nodes are randomly removed from the network, but when the most connected nodes
are removed, the average path length of the network increases rapidly, doubling its
original value when the top 5% of nodes are removed (Albert et al. 2000). In short,
targeting the most-connected nodes can cause significant damage to a scale-free
network, making it highly susceptible to a coordinated and targeted attack. Spatial
analysis of network failure has also been done for airline networks, finding similar
results for the Indian airline network (Cliff et al. 1979).

Starting from these considerations, the next section will present the SIMs that
were modelled as approximations of preferential attachment, in order to compare
them—in the framework of spatial mobility—with a scale-free model inspired by the
theories described above.

3 The spatial interaction model as an approximation of preferential attachment

3.1 Spatial interaction models for identifying commuter flows in the German labour
market network

Spatial interaction models are arguably one of the most common methods employed
and studied for estimating commuting flows (see, recently, Thorsen and Gitlesen
1998; Johansson et al. 2003; Jörnsten et al. 2004). Generally, SIMs have long been a
popular technique for describing and explaining behavioural, demographic and
economic phenomena in space (for an extensive presentation of the family of
methods, see Sen and Smith 1995).1 The main reason for the widespread utilization

1 The most common specification of SIM has its origins in analogy with Isaac Newton’s law of universal
gravitation. The idea of utilizing models derived from this theory had already been introduced, in the
nineteenth century, in the field of social sciences by Carey (1858) and Ravenstein (1885), and
subsequently mathematically formalized by Stewart (1941). Remarkably, SIMs have been shown to have
theoretical justification in entropy theory and in utility maximization/cost minimization (see, for example,
Nijkamp 1975; Nijkamp and Reggiani 1992). While Isard (1960) first suggested the use of SIMs in
regional science, the entropy root of SIMs introduced by Wilson (1967; 1970) and, subsequently, the
micro-economic derivation introduced by McFadden (1974, 1979) contributed to make SIMs more
suitable to interpret spatial-economic phenomena.
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of SIMs is their simple mathematical form, in addition to the intuitive assumptions
underlying the approach.

The common form of a SIM (here presented as double-constrained) is as follows:

Tij ¼ AiBjOiDjf β; cij
� �

; for i ¼ 1; :::; I; j ¼ 1; :::; J ; ð1Þ
where:

Ai ¼ 1

,
X

j

BjDjf β; cij
� �

; ð2Þ

Bj ¼ 1

,
X

i

AiOif β; cij
� �

: ð3Þ

Tij measures the flow of interaction between the origin i and the destination j,
depending on the stock variables Oi and Dj, as well as on the deterrence function f
(β,cij), and on the balancing factors Ai and Bj (see Reggiani 2004).

The deterrence function in Eq. (1) depends on the deterrence factor β and the
interaction costs cij. The variable cij might also be considered as generalized costs. In
our experiment, distances were used as a proxy of the interaction costs (such as
congestion), since the analysis was carried out at the German district level (kreise).
The functional form of the deterrence function is also a relevant issue. While in its
first formulations the distance deterrence function was shaped as a power-law
function—as used in the Newtonian formula—Kulldorf (1955) showed that an
exponential deterrence function seemed to better fit migration phenomena.
Subsequently, the exponential deterrence form emerged mathematically from the
entropy maximization approach developed by Wilson (1967).

In our analysis, both the power-law and exponential specifications were used. The
power-law form shows a larger amount of flows—compared with the exponential
form—in the presence of long distances or travel times. In addition to the shape of
the deterrence function, the value of the β deterrence factor was researched for both
specifications (see Section 4.4). In detail, we adopted two unconstrained2 SIM
forms, specified as follows:

Tij ¼ KEiEjd
b
ij ; ð4Þ

Tij ¼ KEiEje
bdij : ð5Þ

In Eqs. (4) and (5), the flows Tij are the employees commuting from the origin
district i to the destination district j. They are a function of the number of persons Ei

and Ej employed3 in the two districts, as well as of the distance dij between the two,

2 We are aware that a doubly constrained model is a better specification of Eqs. (4) and (5). However, we
used it as a first approximation in our experiments. The next phase of the research will certainly
contemplate the use of the doubly constrained SIM (see also Section 5).
3 It should be noted that the use of Ej is formally correct according to spatial interaction theory, since it is
proportional to the inflows Dj. Concerning the outflows Oi, the use of the variable Ei is a necessary
approximation due to data availability.
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in addition to a scaling factor K. The models that we propose are, of course, overly
simple. However, what is most relevant for our experiments is not the exact
estimation of the German commuting flows, but the connectivity structure of the
network that underlies the numerical data (see Section 4.3).

When employing a SIM for estimating inter-urban commuting flows, additional
issues should be cited. One of them is the treatment of internal commuting. In particular,
the distance between the working and living areas is, by definition, null (although travel
time or costs would not necessarily be). This issue is at times solved by assigning an
arbitrary value to the distance for internal commuting. Alternatively, the flows assigned
to internal commuting can be omitted in the analyses. A number of additional ways
to treat internal commuting are available in the literature. The method suggested by
Thorsen and Gitlesen (1998) starts from the consideration that intra-commuting might
imply different transportation means, such as biking or walking. Thorsen and Gitlesen
suggest an additional component to be added to the deterrence function exponent. This
component would represent—depending on the case—either a start-up (generalized)
cost for commuting between different zones, or a premium, expressing the benefit of
intra-commuting. An example model with these characteristics, reminiscent of the
Champernowne deterrence function (see, for example, Sen and Smith 1995), is
presented by Thorsen and Gitlesen (1998, p. 279) for a double-constrained
specification. Alternatively, the authors suggest that labour market characteristics
might be used to influence the elements on the diagonal of the O/D matrix.

In our case, the elements of the diagonal are omitted from the analysis. This
choice was taken mainly due to the network approach to commuting identified in the
paper. As we analyse the connectivity and structural properties of the German
commuting network, the measure of the number of commuters within a certain
district would not add additional information about the network, apart from the
‘socio/economic weight’ of a certain node. On the other hand, the total number of
employees in each district already embraces this aspect.

3.2 Interpretation of spatial interaction behaviour as preferential attachment

The usual practice in the use of SIMs, when dealing with commuting flows, is to
employ the models in forecasting future flows, given certain conditions. In our
experiments, we propose the utilization of the simple power-law-specified SIM
shown in Eq. (4) as a tool for approximating the connectivity and structural
properties of a commuting network, as opposed to the more mainstream and studied
exponential specification [Eq. (5)]. In particular, we want to verify if a SIM can
allow for preferential attachment behaviour. In the models introduced by Barabási
and Albert, nodes have a higher probability of connecting to other nodes that are
already well-connected. The hypothesis that we will test in the next section is that
commuting networks follow a similar preferential attachment-based behaviour in
terms of connectivity and structure. They would not be the first transportation
network to be referred to in these terms. In fact, hub-n-spoke networks operated by
airlines are a well-known example of preferential attachment behaviour (see, for
example, Bowen 2002, and, most importantly, Wojahn 2001).

An additional reason for the consideration of commuting networks in such a
framework can be found if we think of preferential attachment as a maximization of
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utility levels. The idea is that utility is maximized by connecting to the most-
connected nodes of the network, as they give access to other points in the network
by a minimal number of hops (therefore minimizing generalized costs). If so, this
hypothesis would be consistent with the theoretical basis of utility maximization that
justifies the use of SIMs. In particular, the hub-n-spoke network might—
conceptually—be interpreted as a network tree consistent with a nested logit/
hierarchical SIM structure (for the compatibility between the nested-logit and
double-constrained SIM, see Nijkamp and Reggiani 1992).

Given these premises, the next section presents the empirical application carried
out in this paper. We first describe the data available for the experiment (see
Section 4.1), and subsequently carry out a statistical exploration of the data
(Section 4.2). In Section 4.3, a network analysis of the commuting data and the SIM
results follows. Finally, an analysis of the results of the SIMs is presented in
Section 4.4).

4 Empirical analysis: commuting networks over time

4.1 The data and the experiments on SIMs

The primary data employed in the analyses presented in this paper consist of
information on German commuting flows. In detail, for each origin–destination
(O–D) pair (i, j), the number of commuters is represented by the number of
employees living in district i, and working in district j. These are therefore home-
to-work data, which are available for 1995 and 2004. The level of disaggregation, at
district (kreise) level, allows for the analysis of 441 districts, and corresponds to a
NUTS-III classification. It should be noted that, in this data set, Berlin is still
classified as two separate districts (coded 11100 and 11200), while the latest
classification includes them in one larger district (11000). A similar caveat should be
made about the Hannover area, as the main city district and the its surrounding
region are kept separate in the data set, although they belonged to the same joint
district in recent years.

Further, the SIMs estimated for our experiment employ, as shown in Section 3.1,
two types of data:

a. The number of employees working in each German district (both part- and full-
time). Data were collected—as part of a yearly survey—in the year 2004.

b. The distance between each pair of origins and destinations. This is expressed in
kilometres, and acts as a proxy for more effective measurements, such as cost or
travel time.

The next section will therefore analyse the connectivity properties of the observed
commuting network, and of those developed by the models presented in our exercise.

4.2 A statistical comparison of commuting flows for 1995 and 2004

A first step in our network analysis is to statistically explore the commuting data
introduced in the previous section. In particular, we focus our attention on the
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statistical comparison of the observations collected for the first and the last year of
the data set.

Concerning the first point, the four graphs in Fig. 1 show the distribution of the
commuter flows, for both 1995 and 2004, at different scales. While the top-left graph
shows the entire range of the flows, the remaining graphs reduce the visualization to
flows lesser than 70,000, 10,000 and 1,000 commuters (bottom-right), respectively.
A high correlation between the observations for the 2 years can be observed. This
result might imply a certain stability in the relationships between centres, or the
absence of dramatic changes in transport infrastructure over the period considered,
which are among the prime determinants of variations in commuting patterns. As we
observe the smallest ranges of commuters, more spreading starts to be seen. The R2

obtained regressing the data for the year 2004 on those for 1995 decreases from
0.975 to 0.898, when considering the whole range of flows or only those with fewer
than 1,000 commuters.

In the top-left graph of Fig. 1, the most visible outlier, which has the highest
number of commuters, represents the commuting flows between the two formerly
separate East and West Berlin. Workers who live and work on opposite ‘sides’ of
Berlin seem to have increased in the 9-year period, which seems to be a
reasonable and somehow expected finding, considering that the data for the first
year conceived, 1995, were collected only 5 years after reunification. Therefore, it
makes sense to expect a gradual redistribution of residential and business location

Fig. 1 Scatter plot of commuting flows in 1995 and 2004, at different scales
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choices on both sides of Berlin, This might be particularly true for relocations into
the formerly Soviet side of the city, where rents are, or were, supposedly cheaper
(see, for example, Kemper 1998). As explained in the previous section, the two
Berlin districts are kept separate in this data set. Although it could be considered
non-realistic to separately analyse areas that, as a matter of fact, belong to the same
city, this allows us to observe the huge amount of mobility that has been generated,
within the city, by the reunification.

In addition to the above considerations, a more in-depth exploration of the data is
necessary. Table 1 summarizes the statistical results obtained for the two data sets.
The summary statistics show the change in the commuting flows over the years.
Consequently, the total number of commuters also increased, by 15.41%. The
average number of commuters per O–D pair increases from about 108 to about 119.
However, the large increase in the commuting flows within Berlin suggests that the
15.41% increase may not be distributed uniformly over the network. The difference
between the mean and the median of the ratio statistics for the two data sets seems to
suggest an increased disparity in the distribution of flows, as they stand at 1.67
(mean) and 1.21 (median).

Having statistically explored the data in this section, the next section will
examine, from a network perspective, the implications and properties of the logical
links derived from the data set analysed.

4.3 Network analysis: the results

We want to examine the network structure underlying the commuting flows data. In
order to do so, we may consider each O–D pair (i, j) as a link between nodes i and j,
within our commuting network. The nodes of the network are, therefore, the districts
the commuters travel to and from on the network.

The commuting flows are translated in a network structure by means of a simple
procedure. Each O–D pair that has at least a given number of commuters (for
example, (1) contributes to generate a vertex index, which is a counter of the number
of links that attach to one or another node of the network. The final product of this
operation is a ranked list of the nodes (districts) in the network, ordered according to
the number of connections they enjoy. For example, the presence of commuters on
the link between Munich and Rostock increases by one the number of connections of
both districts. The threshold for the minimum amount of flows to be observed on
each link in order to be valid is, of course, subjective. For computational reasons, we
set this threshold at ten commuters for the analysis that follows. Once the vertex list
is complete, a publicly available graph software such as Pajek4 can visualize the

Table 1 Statistical exploration of the commuting flows data sets, for 1995 and 2004

Year Maximum value Sum Mean Mean 2004/1995 ratio Median 2004/1995 ratio

1995 flows 156,999 8,616,362 107.59 1.670 1.214
2004 flows 226,700 9,944,326 118.53

4 Available at http://vlado.fmf.uni-lj.si/pub/networks/pajek.
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resulting network and compute a set of parameters that characterize it. Table 2
presents the results obtained by computing this set of network parameters for the
data collected in 1995 and 2004.

The network parameters computed for the two data sets provide rather interesting
results. In both years, the networks appear to be dense, with an exceedingly large
number of connections for the rather small number of nodes (districts). In the
roughly 10 years between the two samples, the commuting network became more
clustered, more efficient, and less centralized. The growth observed is fascinating,
since the network did not only become more efficient, but it also grew more resilient
and diverse. The lower diameter of the network implies that commuters can cross the
network in a more efficient manner (lesser hops through the nodes), while the lower
betweenness means that the load across any one link in the network has decreased,
from both a maximal and average perspective. The result for the diffusion of link
frequency (betweenness), which decreased in 2004, might be an indicator of
congestion avoidance, where job seekers tend to seek employment in locations that
have less difficult commutes. Generally, the results would seem to indicate that the
structure is becoming more hub-like, despite the increasing density of the network.
The average degree and minimum degree of the network both increased, and the
standard deviation in connectivity rose as well. However, there is no dramatic shift,
as these are all small changes.

The above considerations should be caveated by the fact that the network we are
examining is purely logical, and it does not represent the physical links on which the
commuters are travelling. A one-hop trip on the network (for example, from Munich
to Rostock) could hardly be a single link in reality, but would instead be a trip
crossing many physical links and nodes between the two locations.

The changes outlined above can also be seen in a ranked plot of the number of
connections by district, shown in Fig. 2. In addition, the decay of the number of
connections seems to better fit an exponential distribution, rather than a power-law
distribution, which is an indicator of a tendency toward scale-free, preferential
attachment behaviour. When counting connections for the entire data set, a large
number of nodes seem to enjoy connections to all other nodes in the network. If we
consider a list of the most- and the least-connected districts for the 2 years (see

Index 1995 2004

Clustering coefficient 367.448 378.468
Weighted clustering coefficient 223.696 232.359
Diameter 3 2
Average degree 113.832 133.909
Standard deviation Degree 72.053 79.219
Max degree 430 437
Min degree 25 28
Centralization 3.76% 2.65%
Betweenness mean 163.098 153.045
Betweenness std. dev. 457.403 368.555
Max betweenness 3787.278 2705.86

Table 2 Network parameters
computed for the commuting
networks, for 1995
and 2004

For the definitions of the main
network parameters, see
Appendix A, Table 4
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Appendix B, Table 5), and we follow the district classification by the BfLR/BBR5

(Böltgen and Irmen 1997), we can see that most of the districts with the highest
number of connections belong to type 1, that is, ‘central cities in regions with urban
agglomerations’. Conversely, the least connected districts are mostly classified as
types 8 or 9, which refer to regions with rural features. However, the connections are
still quite high in the rural regions as well, showing a rather good connectivity
structure over the entire network. The high value of the connectivity shows indeed
that we are dealing with more general connectivity rather than daily commuting. The
findings presented here—a high number of fully connected districts and a slow
decay of the number of connections—can be explained by the limited number of
nodes (districts) in the network, and by one of the conditions considered in the
Albert and Barabási framework: network growth. In our case, no new node can be
added to the network over time, unless new districts are introduced.

The network analyses presented in this and the preceding section showed the
distribution of the commuting data from two points of view: numerical and structure-
wise. It is also interesting, at this point, to explore the network’s characteristics (that
is, homogeneity of the network) from the perspective of the deterrence function in
the commuting flows. In other words, it is worth examining, by means of appropriate
models, like SIMs, whether the network under analysis shows—in its deterrence
function—an exponential function, reflecting a homogeneous network, or alterna-
tively a power function—reflecting a hub structure. The next section investigates
how the SIMs introduced earlier fit the data, and, most importantly, which
specification (power-law or exponential) is more suitable to approximate the
deterrence form of the commuting network.

4.4 Spatial interaction models: the results

The last steps in our analysis are: (a) the calibration of the SIMs for 2004; and (b) the
test of the distribution properties of the commuting network in Germany, in the light

5 The BfLR/BBR (BBR is the Bundesanstalt für Bauwesen und Raumordnung, Bonn, which former name
was Bundesforschugsanstalt für Raumordnung und Landeskunde (BfLR) district typologies are (1) regions
with urban agglomeration: (a) central cities, (b) highly urbanized districts, (c) Urbanized districts, (d)
Rural districts; (2) regions with tendencies towards agglomeration: (a) central cities (b) highly urbanized
districts, (c) rural districts; (3) regions with rural features: (a) urbanized districts (b) rural districts.

Fig. 2 Log–log plot of the con-
nections of German districts, for
observed (1995 and 2004) and
estimated data (2004)
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of its impedance function. Concerning the calibration phase, it should be noted that
the SIMs were calibrated in the unconstrained specification. A value of −1.658 was
estimated for the β deterrence factor of the power-law specification [Eq. (4)], while a
value of −0.006 was computed for the exponential specification [Eq. (5)]. The results
of the power-law SIM calibration are consistent with the findings of Olsson (1980)
for Sweden. From this first analysis, the power-law coefficient seems more
appropriate than the exponential coefficient, since the latter suggests a rather low
propensity towards mobility in the German commuting network.

Concerning the test phase, we are then interested in comparing the connectivity
structure emerging from the real data with the results of the SIMs from the O–D
perspective. This is achieved by first ranking the observed and estimated data in
decreasing order of commuters per O–D pair. We can now analyse the decay of the
flows and fit a curve to the data. Table 3 shows the results obtained when fitting both a
power-law and an exponential distribution to the data, while Fig. 3 provides a ‘partial’
visualization of the distribution of the two data sets and models, on a log–log scale.

According to the results shown in Table 3, the distribution of the observed flows fits
a power-law distribution better than an exponential distribution, from both a statistical
and spatial-economic viewpoint. However, from a purely statistical viewpoint, both
functions could be suitable. In this context, refinements of these two functions might
be adopted, for example, by means of a Box–Cox transformation (Box and Cox 1964).
The two SIMs specified earlier [Eqs. (4) and (5)] seem to better fit the respective
functions (power-law and exponential) at the basis of their computation, although with
lower R2 values. Two considerations may be made regarding the SIMs. On the one
hand, the modelling results tend to be smoothed out in comparison with the observed
data. The model data show a lower R2, and a lower exponent for the power-law
function, although its implications are not straightforward (for a discussion of power-
law exponent values, see, for example, Albert and Barabási 2002). On the other hand,
fitting a power-law function implies aiming at a more than proportional concentration
of commuting flows over a few routes, with the number of commuters decreasing
rapidly afterwards. This does not seem to happen with the real data.6

Next, by ranking the number of connections per district emerging from the SIMs
(Fig. 2), it can be seen that the exponential-specified SIM better approximates the
commuting network’s connectivity structure, as it shows a cut-off, for the less-
connected districts, that is more similar to the one of the observed data. This can be
explained by the fact that the data themselves fit an exponential distribution better
(see also Russo et al. 2007). Further, our finding of a slow decay of connections can
also be considered to be a consequence of trends, more or less recent, due to the

6 We can visualize the distribution of the flows estimated by the power-law SIM by plotting them against
the data observed for the year 2004 (see Appendix B, Fig. 4, the scales are the same as Fig. 1). It is evident
that, although the data employed refer to the same year, the clear correlation patterns found in Fig. 1 are
not matched in these new plots. It can be noted, in the top-left graph, that three observations in particular
are wrongly estimated by the SIM. The model underestimates the commuting flows between Hannover
and its surrounding region, while it again overestimates the flows between the cities of Munich and
Bamberg and their surrounding districts, respectively. Overall, the R2 obtained by regressing the observed
data on the SIM results is 0.415. Similarly to the discussion above of the years 1995 and 2004 (see
Section 4.1), the R2 decreases (to 0.405) when only observations with less than 1,000 commuters are
considered. The bottom-right plot of Fig. 4 confirms the wide spread of the data. Generally, a more marked
tendency to underestimation can be seen for mid-range flows (bottom-left graph).
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overcrowding of the main cities, such as the tendency to suburbanization, which
causes an increase in commuting.

5 Conclusions

The present paper has provided an overview of the network properties found for home-
to-work commuting patterns in Germany. First, an exploration of the commuting data
was carried out, showing a significant increase of flows on the network, with a tendency
to a more pronounced skewness and a power-law distribution. Second, a network
analysis was considered in order to investigate the connectivity properties of the
network. The analysis highlighted that the commuting network in Germany has become
more concentrated and more clustered over the period considered (1995–2004). Also,
the number of average connections per district increased, showing a denser net of
reciprocal connections between cities. To some degree, the results also suggest a
tendency toward a hub-based structure, although this trend is not clearly picked up by
the analysis. This hub-process is somehow inhibited by the no-growth condition of the
network (the number of nodes in the network is fixed), which hinders significant

Table 3 Fitting exponential and power-law distributions to commuting flows observed and estimated for
2004

Distributions R2 F Degrees
of freedom

Parameter estimates

Constant b1

Observed flows
Power 0.972 2917991.957 83895 97636479.740*** −1.589***
Exponential 0.839 438229.205 83895 92.631*** −0.00006***

Estimated flows (power law-specified SIM)
Power 0.934 1377917.160 96840 28033260.494*** −1.405***
Exponential 0.908 956887.156 96840 123.979*** −0.00005***

Estimated flows (exponential-specified SIM)
Power 0.901 847,235.717 93,295 1,290,073.530*** −1.176***
Exponential 0.941 1,489,485.743 93,295 47.716*** −0.00004***

All parameters are significant at the 99% level (***)

Fig. 3 A partial visualization of
the observed and the estimated
commuting flows for the year
2004
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modifications of the network. This happens because the number of districts does not
grow. In fact, it actually decreases, as a few districts were merged over time (such as in
the case of Hannover and Berlin). At this stage, however, these mergers are not
considered in our analysis. Generally, the German transportation network (commuting
means are not specified) seems to make travel possible to approximately any point of the
network. This is also evident from the distribution of the number of connections per
district (Fig. 2), which shows a slow decay of the connectivity degree of the districts.
In other words, the least-connected districts also still enjoy connections to the
majority of the nodes in the network (see Appendix B, Table 5). Consequently, the
increase in commuting over the years can be attributed to a better efficiency of
the transportation network already in place.

In addition to the network analysis, two SIMs (alternatively using a power-law and
an exponential deterrence function) have been utilized in order to detect the network
structure underlying the flows. While the SIM modelling results for the flow variables
concerned were quite ambiguous (see Footnote 3), most probably because of the
simplicity of the models employed (unconstrained SIMs), the network connectivity
structures generated by the two SIMs seem to favour the use of the exponential
specification [see Eq. (5)], highlighting the homogeneity of the observed data.

Future research should further investigate the network properties of commuting, by
employing better specified, doubly constrained SIMs that fully account for the total
flows on the network, using a more suitable proxy of the travel opportunity cost than
distance. In addition, it is desirable to go beyond the purely logical analysis of
connections carried out here, by considering the real routes that, in the case of surface
transportation, commuters have to follow. This could be done by means of a shortest-
path analysis of the road network (or data on train routes), in which the commuting flows
are utilized to weigh the network. A careful consideration of the level of spatial
aggregation used should also be pursued. In fact, a recombination of smaller districts in
‘macro-districts’might significantly influence the network structure found in this paper.
A final interesting analysis might be the investigation of pre- and post-reunification
mobility patterns, as well as the effects of the occasional merging of districts.

Table 4 Definition of the main network parameters

Equation Parameters

Clustering C Gð Þ ¼ 1
N

P
iCi Ci=ratio of existing links and max. possible links

GI=subgraph of neighbourhood of vertex i
N=nodes in the network

Diameter L Gð Þ ¼ 1
N N�1ð Þ

P
i6¼jdij dij=shortest path links from i to j

N=nodes in the network
Average
degree

k ¼ 2L=N L=links in the network
N=nodes in the network

Centralization C ¼
PN

i¼1

C p�ð Þ�C pið Þ½ �

max
PN

i¼1

C p�ð Þ�C pið Þ½ �
C(pi)=centrality of node i
C(p*)=max centrality of nodes in the network

Betweenness Cb vð Þ ¼ P
s 6¼v6¼t σst vð Þ=σst σst (v)=geodesic paths between nodes s and t that pass

through node v
σst=total geodesic paths between s and t
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Table 5 Classification of most- and least-connected districts, years 1995 and 2004

1995 2004

District Type of
district

# of
connections

District Type of
district

# of
connections

Most connected districts
Hamburg, Freie und
Hansestadt (W)

1 440 Hamburg, Freie und
Hansestadt (W)

1 440

Hanover, Stadt (W) 1 440 Hanover, Stadt (W) 1 440
Cologne, Stadt (W) 1 440 Düsseldorf, Stadt (W) 1 440
Frankfurt am Main,
Stadt (W)

1 440 Bonn, Stadt (W) 1 440

Stuttgart (W) 1 440 Cologne, Stadt (W) 1 440
Munich,
Landeshauptstadt
(W)

1 440 Frankfurt am Main,
Stadt (W)

1 440

West Berlin, Stadt (E) 1 440 Offenbach (W) 2 440
East Berlin, Stadt (E) 1 440 Stuttgart (W) 1 440
Dresden, Stadt (E) 1 440 Esslingen (W) 2 440
Düsseldorf, Stadt (W) 1 439 Karlsruhe (W) 1 440
Offenbach (W) 2 439 Mannheim (W) 1 440
Esslingen (W) 2 439 Munich,

Landeshauptstadt (W)
1 440

Bremen, Stadt (W) 1 438 Munich (W) 2 440
Munich (W) 2 438 Nuremberg, Stadt (W) 1 440
Nuremberg,
Stadt (W)

1 438 West Berlin, Stadt (E) 1 440

Main-Kinzig-
Kreis (W)

3 437 East Berlin, Stadt (E) 1 440

Leipzig, Stadt (E) 1 437 Dresden, Stadt (E) 1 440
Least connected districts
Sonneberg (E) 8 259 Regen (W) 9 263
Straubing, Stadt (W) 9 257 Stralsund (E) 9 261
Kaufbeuren,
Stadt (W)

9 252 Kaufbeuren, Stadt (W) 9 254

Regen (W) 9 251 Emden, Stadt (W) 8 249
Emden, Stadt (W) 8 243 Kusel (W) 7 249
Pirmasens, Stadt (W) 6 243 Pirmasens, Stadt (W) 6 248
Lüchow-
Dannenberg (W)

9 228 Freyung-Grafenau (W) 9 240

Freyung-
Grafenau (W)

9 227 Zweibrücken, Stadt (W) 6 235

Zweibrücken,
Stadt (W)

6 220 Wismar (E) 8 231

Wismar (E) 8 214 Lüchow-Dannenberg (W) 9 225
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