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Abstract
Recent graph-theoretical studies of Parkinson's disease (PD) have examined alterations in the global properties of the brain 
structural connectome; however, reported alterations are not consistent. The present study aimed to identify the most robust 
global metric alterations in PD via a meta-analysis. A comprehensive literature search was conducted for all available dif-
fusion MRI structural connectome studies that compared global graph metrics between PD patients and healthy controls 
(HC). Hedges’ g effect sizes were calculated for each study and then pooled using a random-effects model in Comprehensive 
Meta-Analysis software, and the effects of potential moderator variables were tested. A total of 22 studies met the inclusion 
criteria for review. Of these, 16 studies reporting 10 global graph metrics (916 PD patients; 560 HC) were included in the 
meta-analysis. In the structural connectome of PD patients compared with HC, we found a significant decrease in clustering 
coefficient (g = -0.357, P = 0.005) and global efficiency (g = -0.359, P < 0.001), and a significant increase in characteristic 
path length (g = 0.250, P = 0.006). Dopaminergic medication, sex and age of patients were potential moderators of global 
brain network changes in PD. These findings provide evidence of decreased global segregation and integration of the struc-
tural connectome in PD, indicating a shift from a balanced small-world network to ‘weaker small-worldization’, which may 
provide useful markers of the pathophysiological mechanisms underlying PD.
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Introduction

Parkinson’s disease (PD) is a common, complex, progressive 
multi-system neurodegenerative disease mainly affecting older 
people (Kalia & Lang, 2015; Pringsheim et al., 2014), and is the 
fastest growing of the leading neurological causes of disability 
(Dorsey et al., 2018). The symptoms of PD are generally 
classified into motor symptoms (including bradykinesia, 
resting tremor, and postural and gait impairment) and non-
motor symptoms (such as disturbances in autonomic function, 
sleep disturbances, cognitive and psychiatric disturbances, and 
sensory symptoms) (Kalia & Lang, 2015; Sveinbjornsdottir, 
2016). Neuroimaging biomarkers including cortical thickness 
(a structural marker) and dopaminergic imaging of the striatum 
(a PET imaging methodology, yielding a functional measure) 
have been used clinically for early diagnosis, prognosis and 
disease course management (Mitchell et al., 2021). However, 
the underlying neurobiology has not been fully elucidated.

Advanced magnetic resonance imaging (MRI) techniques 
are increasingly used to investigate the pathophysiology of 
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neurodegenerative diseases (Cerasa et al., 2012; Kassubek 
& Müller, 2016; Suo et al., 2019; Weingarten et al., 2015). 
Previous studies in PD have focused on specific regions of 
interest such as substantia nigra (Deng et al., 2018; Hirata 
et al., 2017; Ofori et al., 2015) and basal ganglia (Fioravanti 
et al., 2015). However, localized brain alterations are not 
sufficient to explain the clinical heterogeneity (Rodriguez-
Oroz et al., 2009). It is now clear that PD involves altered 
connections between various brain regions and can therefore 
be considered a network-disconnection syndrome (Cronin-
Golomb, 2010; Nigro et al., 2016; Premi et al., 2016).

Brain connectivity studies are of two main kinds: of  
structural connectivity based on data from structural MRI or 
diffusion MRI (dMRI); and of functional connectivity using data 
from functional MRI (Zhang et al., 2022), electroencephalography, 
or magnetoencephalography. Neuroimaging studies have reported  
abnormal brain connectivity in PD patients (Hall et al., 2016; 
Weingarten et  al., 2015) e.g. in basal ganglia circuits (Wu  
et al., 2012), in cortico–basal ganglia–thalamo-cortical circuits 
(Rodriguez-Oroz et al., 2009; Singh, 2018), and between basal 
ganglia and motor regions (Helmich et al., 2010). However, 
pathological changes in PD are not restricted to isolated brain 
regions, and no model with separate analyses of different regions 
or a single neural circuit can account for the whole clinical and 
behavioral spectrum.

Graph theoretical analysis (GTA) allows analysis of the 
topological properties of the interconnected whole-brain 
network (the connectome) and quantification of its abnormalities 
in vivo (Bullmore & Sporns, 2009; Griffa et al., 2013; Rubinov 
& Sporns, 2010). The brain is modeled as a large-scale network 
composed of nodes (brain regions) and edges (connections 
between nodes)  (Suo et  al., 2022a). The nodes represent 
cortical and subcortical regions, determined by a specific a 
priori template, the edges reflecting either their structural 
or functional connections. As white matter tracts are the key 
components of these large-scale distributed networks, to limit 
cross-study heterogeneity we focus our analysis on structural 
connectivity measured by dMRI. Tractography, a key method 
in ‘connectomics’, infers continuity of white matter tracts 
from voxel to voxel (Jeurissen et al., 2019). Brain network 
topology can be quantified by a variety of metrics summarised 
in Supplementary Table S1, including measures of global 
segregation, global integration and small-worldness (σ) (Sporns, 
2013; Watts & Strogatz, 1998): network integration denotes 
the ability to transfer information rapidly between different 
nodes, and its metrics are characteristic path length (Lp), global 
efficiency (Eglob) and normalized characteristic path length 
(λ); network segregation denotes ability to perform specific 
processing in closely-interconnected clusters of brain regions, 
and its metrics are clustering coefficient (Cp), normalized 
clustering coefficient (γ) and local efficiency (Eloc); finally σ is 
the ratio of γ to λ, and represents the balance between network 
segregation and network integration. GTA has been widely 

applied (Sanz-Arigita et al., 2010; Suo et al., 2017, 2018, 
2022) and shows promise in neuropsychiatric disorders (Griffa 
et al., 2013) such as traumatic brain injury (Imms et al., 2019), 
Alzheimer’s disease (Yu et al., 2021) and schizophrenia (Zhao 
et al., 2018). Several studies of PD have reported topological 
changes in the structural connectome compared to healthy 
controls (HC) (Abbasi et al., 2018; Galantucci et al., 2017; 
Kamagata et al., 2017). However, these are not consistent, 
and some (Inguanzo et al., 2021; Kok et al., 2020; Zarkali 
et al., 2020) find no statistically significant abnormalities. In 
this situation a meta-analytic review can help explore robust 
patterns of altered GTA metrics in PD, to throw light on the 
pathophysiology and provide a framework for hypotheses in 
future studies.

The present study is the first quantitative meta-analysis 
of white matter global graph metrics in PD. Its purpose 
is to address the inconsistency in reports of the structural 
connectome in PD. The potential moderating effects of 
clinical and methodological factors are further addressed 
using subgroup analyses and meta-regression.

Methods

Search Strategy and Study Selection

A comprehensive search was performed for relevant studies in 
the PubMed, PsycINFO, Embase, and Web of Science databases 
up to August, 2021, following the Preferred Reporting Items for 
Systematic reviews and Meta-Analyses (PRISMA) guidelines 
(Moher et al., 2009). To find the largest pool of potentially 
eligible studies, the search strategy (detailed in Supplementary 
Table S2) included the 3 main themes of this systematic review: 
Parkinson's disease, GTA and dMRI. The reference lists of the 
retrieved studies and reviews were manually checked. Studies 
were considered eligible according to the following criteria: 1) 
comparing PD with HC; 2) using dMRI to investigate structural 
network alterations at the whole-brain (not sub-network) level; 
3) reporting global topological parameters (including Cp, Lp, γ, 
λ, σ, Eloc, Eglob, network density, network strength, modularity) 
of the structural connectome (not regional/nodal measures); and 
4) published in English in peer-reviewed original articles. To 
avoid sample overlap, among several papers using Parkinson 
Progression Markers Initiative (PPMI) databases (a multicenter 
observational study), the single study (Abbasi et al., 2018) with 
the largest sample size was included for meta-analysis. Studies 
were independently ascertained and checked by two researchers 
(C.Z. and X.S.), and inclusion and exclusion criteria were 
evaluated by consensus. There was almost perfect agreement 
(Cohen’s kappa = 0.841) (Viera & Garrett, 2005) between the 
two reviewers, any discrepancies (notably a study (Colon-Perez 
et al., 2018) disputed in the study inclusion session) being 
resolved by discussion or consulting a third senior investigator.
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Quality Appraisal

The quality and completeness of each included study 
were evaluated independently by two reviewers using a 
13-point checklist (see Supplementary Table S3) adapted 
from previous meta-analyses on structural (Imms et al., 
2019; Jiang et al., 2017) and functional (Pan et al., 2017) 
neuroimaging studies. The 13 points address three areas: 
the demographic and clinical aspects of participants (items 
1–4), the methods for image acquisition and analysis (items 
5–10), and the results and conclusions (items 11–13). For 
each item, 1, 0.5 or 0 scores were assigned when criteria 
were fully met, partially met or not met, respectively.

Data Extraction

A data abstraction spreadsheet was created and data from 
eligible studies were extracted by one author (C.Z.) and double-
checked by a second (X.S.). The following data were abstracted: 
family name of first author; publication year; demographic 
data of PD patients and HC; dMRI acquisition parameters; 
parcellation scheme; definition of edge, thresholds, basic 
measures of network topology (network density and network 
strength), measures of network segregation (Cp, γ, Eloc, and 
modularity) and network integration (Lp, λ, and Eglob), and 
small-worldness (σ); and clinical variables including illness 
duration, medication status, Unified Parkinson’s Disease Rating 
Scale (UPDRS) III scores, Mini-mental state examination 
(MMSE), Montreal Cognitive Assessment (MoCA), and Hoehn 
and Yahr (H&Y) stage. Corresponding authors were contacted 
via email if important data were not provided in the original 
report (Koirala et al., 2019; Shah et al., 2017; Zarkali et al., 
2020). In two studies (Colon-Perez et al., 2018; Vriend et al., 
2018) that did not report numerical data, this was extracted from 
graphical display using WebPlotDigitizer software (Rohatgi, 
2020), a reliable and validated tool (Drevon et al., 2017). For a 
study (Kok et al., 2020) involving multiple independent PD and 
HC groups, each PD/HC pair was treated as a separate dataset. 
For studies (Colon-Perez et al., 2018; Galantucci et al., 2017; 
Wang et al., 2019, 2020; Wen et al., 2020) reporting results for 
multiple PD subgroups compared with one HC group, they were 
combined into a single group as recommended by the Cochrane 
collaboration (Higgins et al., 2021) (provided in Supplementary 
Material). For studies (Inguanzo et al., 2021; Wang et al., 
2020; Wen et al., 2020) reporting the median and interquartile 
range rather than the first and third quartile, the mean was 
taken as equal to the median, and the standard deviation (SD) 
(if necessary) was calculated as recommended by Wan et al. 
(2014). In one study (Kamagata et al., 2017), the global network 
metrics calculated by probabilistic multi-shell multi-tissue 
constrained spherical deconvolution (CSD) were included in 
the analyses. For one study (Guan et al., 2019) with both binary 
and weighted networks, we extracted only weighted networks, 

as for the other included studies. In one study (Li et al., 2017) 
where data could not be extracted from a figure, we used the 
supplementary materials which reported results consistent with 
the main results, the only difference being a threshold number 
of streamlines (NOS) ≥ 5 rather than ≥ 3. Otherwise, if reported 
results were insufficient, the study was excluded from the meta-
analysis (Shah et al., 2017).

Data Analysis

We conducted all statistical analyses using Comprehensive 
Meta-Analysis software (version 3). For each global graph 
measure, the standardized mean difference between PD and 
HC across studies was calculated as Hedges’ g with a 95% 
confidence interval (CI). Hedges’ g and variance from each 
study were then pooled using a random-effects model to account 
for between-study heterogeneity (Borenstein et al., 2010). Being 
more conservative, the random-effects model yields a wider CI 
for the summary effect than the fixed-effect model and permits 
conclusions to be generalized to a wider range of situations 
(Borenstein et al., 2010). Pooled effect sizes were classified 
as small (0.2), medium (0.5) or large (0.8) (Cohen, 1988). 
Subgroup analyses were conducted for medicated (on-state) and 
medication-free (including both medication-naïve and off-state) 
patients (Suo et al., 2021c), tractography methods [probabilistic 
tractography (PT) and deterministic tractography (DT)], weights 
of the edge [fractional anisotropy (FA) and NOS], number of 
diffusion directions (≥ 30 and < 30), the definition of nodes [i.e., 
atlas: automated anatomic labeling (AAL) and non-AAL], and 
threshold approach (sparsity and absolute). A meta-regression 
was carried out to evaluate the potential moderating effects of 
clinical variables (mean age of the participants, percentage 
of males, mean duration of disease, mean UPDRS-III scores, 
and mean H&Y stages) which met the minimum requirement 
of meta-regression analysis (Borenstein et al., 2009; Higgins 
et al., 2021). To control Type I error, we employed the Knapp 
& Hartung adjustment (Viechtbauer et al., 2015).

Heterogeneity was assessed using the Q test, τ2 (tau-
squared) and I2 values, which measure the true heterogeneity 
resulting from between-study variance rather than sampling 
error or chance. A statistically significant Q value (P < 0.10) 
shows that the true effects vary: τ2 is an absolute measure 
of heterogeneity, I2 a relative measure; I2 values of 25%, 
50% and 75% indicate low, moderate and high proportions, 
respectively, of variance from the true heterogeneity 
(Higgins et al., 2003). To evaluate the impact of each study 
on the overall effect size and the stability of the results, a 
sensitivity analysis was performed by repeating the analysis 
after removing one study at a time (Gagne & Power, 
2010). Potential publication bias was determined through 
visual inspection of funnel plot asymmetry (Sedgwick & 
Marston, 2015) and Egger’s linear regression test (Egger 
et al., 1997), and we used Duval and Tweedie’s ‘trim and fill’ 



786	 Neuropsychology Review (2023) 33:783–802

1 3

method to adjust the impact of publication bias (Duval & 
Tweedie, 2000). Two-sided P-values < 0.05 were considered 
statistically significant.

Results

Search Results and Sample Characteristics

After removing 285 duplicate papers, 336 unrelated articles 
were rejected based on title and abstract, following which 
46 full-text original articles were assessed for eligibility. 
Twenty-two studies met the inclusion criteria for systematic 
review. Of these, six studies could not be included in the 
meta-analysis: one did not report suitable data (Shah et al., 
2017) and five reported data from the same PPMI database 
(Gou et al., 2018; Mishra et al., 2020; Wen et al., 2017a, b, 
2018). Finally, sixteen whole-brain dMRI studies reporting 
on twenty-five datasets reporting graph theoretical measures 
were included in the meta-analysis (Fig. 1).

Demographic and clinical characteristics of the sixteen 
studies included in meta-analysis are provided in Table 1. 
These yielded aggregated data for 1476 participants: 916 PD 
patients and 560 HC. The mean age range for PD and HC 
samples were 57.9–69.4 years and 53.2–68.2 years, respectively. 
The PD sample (except for Colon-Perez et al. (2018), which 
did not report sex composition) consisted of 58.7% males, the 
HC sample 54.5% males. For the PD sample, mean UPDRS-
III scores ranged from 14.4–37.2. Of the fifteen studies which 

gave information about medication status at the time of MRI 
scanning (one did not), four studies were of patients in the 
medication off-state, eight of the medication on-state, and three 
of medication-naïve patients. The diagnosis of PD was based 
on UK PD Society Brain Bank Clinical Diagnostic Criteria 
(Daniel & Lees, 1993; Hughes et al., 1992) in thirteen studies, 
Gelb-National Institute of Neurological Disorders and Stroke 
(NINDS) criteria (Gelb et al., 1999) in two studies, and was not 
specified in one study. The diagnosis of PD with mild cognitive 
impairment (MCI) in three studies (Galantucci et al., 2017; 
Inguanzo et al., 2021; Wang et al., 2020) included in the current 
meta-analysis was made according to level II of the Movement 
Disorder Society (MDS) proposed diagnostic criteria (e.g., at 
least 2 SDs below the normative scores for at least two cognitive 
tests within the five cognitive domains) (Litvan et al., 2012). The 
quality scores shown in Table 1 ranged from 9.5–12.5 (mean 
11.4), a generally high quality. One of the lower scores among 
the 13 items was the clarity of the calculation of graph-theory 
metrics: most studies only introduced the concept of graph 
theory without giving the calculation formula or using multiple 
correction.

Data acquisition and GTA details are presented in 
Table 2. The number of acquisition diffusion directions 
was ≥ 30 in eleven studies and < 30 in three studies. Eight 
studies defined nodes through AAL and four studies by 
Desikan atlas. Four studies used sparsity threshold, ten used 
absolute threshold and two did not use a threshold approach. 
Six studies constructed a NOS-weighted brain structural 
network and five studies an FA-weighted network.

Fig. 1   PRISMA flow diagram. 
The figure depicts the literature 
search and selection criteria. 
Abbreviations: HC, healthy 
controls; MEG, magnetoen-
cephalography; PD, Parkinson’s 
disease; PPMI, Parkinson 
Progression Markers Initiative; 
rs-fMRI, resting-state functional 
magnetic resonance imaging; 
SPECT, single photon emission 
computed tomography
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Table 3 summarizes the main findings of the sixteen articles 
in the meta-analysis. Of twenty datasets reporting Cp, five 
datasets reported a decrease and fifteen no significant change 
between PD (or PD subgroup) and HC. Of twenty datasets 
reporting Lp, eight reported an increase, two a decrease and ten 
no significant change. Of eighteen datasets reporting Eglob, ten 
reported a decrease and eight no significant change.

Meta‑analysis and Meta‑Regression analysis

The results of the main meta-analysis are summarized in 
Fig. 2 and Table 4, the subgroup analyses in Supplementary 
Table S4 and the meta-regression analysis in Supplementary 
Table S5. Details of these analyses are presented below, 
grouped by the main category of network measurements.

Information Segregation Measures

Thirteen studies (NPD = 809, NHC = 463) reported clustering 
coefficient Cp (Abbasi et  al., 2018; Colon-Perez et  al., 
2018; Galantucci et al., 2017; Guan et al., 2019; Hu et al., 
2020; Kamagata et al., 2017; Li et al., 2017; Nigro et al., 
2016; Vriend et al., 2018; Wang et al., 2019, 2020; Wen 
et al., 2020; Zarkali et al., 2020). The main meta-analysis 
showed significantly decreased Cp in PD patients compared 
to HC (g = -0.357, 95% CI: -0.608 to -0.106, P = 0.005). 
However, this effect had high heterogeneity (I2 = 76.9%, 
Q [12] = 51.915, P < 0.001, τ2 = 0.159) and evidence of 
publication bias (P = 0.038, Supplementary Fig.  S1A). 
Duval and Tweedie’s ‘trim and fill’ yielded two potentially 
missing studies on the left side of the plot, lowering Hedges’ 
g to − 0.456 (95% CI: -0.712 to -0.200). In the medication 
status subgroup analysis of Cp (Supplementary Table S4), 
the effect remained significant for on-state and drug-naïve/
off-state subgroups and the impact of heterogeneity was 
reduced in the on-state subgroup (I2 = 36.0%). Over the 
twelve studies in which it was possible, meta-regression 
analysis for Cp (Supplementary Table S5) found a significant 
association between sex (male %) and Hedges’ g [regression 
coefficient (β) = − 5.217, P = 0.014]. However, UPDRS- 
III scores, age, H&Y stages or duration had no significant 
moderating effect on the combined effect size (all P > 0.05).

Four studies (NPD = 235, NHC = 154) reported normalized 
clustering coefficient γ (Hu et al., 2020; Inguanzo et al., 2021; 
Li et al., 2017; Wang et al., 2020). The meta-analysis showed 
no significant difference in γ of PD compared to HC (g = 0.190, 
95% CI: -0.013 to 0.394, P = 0.067) with low heterogeneity (Q 
[3] = 0.994, P = 0.803, I2 < 0.001%, τ2 < 0.001).

Three studies (NPD = 185, NHC = 123) reported modularity 
(Inguanzo et al., 2021; Vriend et al., 2018; Zarkali et al., 
2020). The meta-analysis showed no significant difference 
in modularity of PD compared to HC (g = 0.116, 95% 
CI: -0.211 to 0.443, P = 0.488) with low heterogeneity 

(Q [2] = 3.665, P = 0.160, I2 = 45.4%, τ2 = 0.038). The 
small number of included studies for γ and modularity 
precluded analysis of publication bias, subgroup analysis 
and meta-regression.

Eight datasets from seven studies (NPD = 397, NHC = 231) 
reported local efficiency Eloc (Guan et al., 2019; Hu et al., 
2020; Kok et al., 2020; Li et al., 2017; Wang et al., 2019, 
2020; Wen et al., 2020). The main meta-analysis showed 
no significant difference in Eloc (g = -0.151, 95% CI: -0.314 
to 0.012, P = 0.070) with low heterogeneity (Q [7] = 4.265, 
P = 0.749, I2 < 0.001%, τ2 < 0.001) and no evidence of 
publication bias (P = 0.055, Supplementary Fig. S1B). In the 
medication status subgroup analysis, there was no significant 
effect.

Information Integration Measures

Thirteen studies (NPD = 798, NHC = 438) reported characteristic 
path length Lp (Abbasi et al., 2018; Colon-Perez et al., 2018; 
Galantucci et al., 2017; Guan et al., 2019; Hu et al., 2020; 
Kamagata et al., 2017; Koirala et al., 2019; Li et al., 2017; Nigro 
et al., 2016; Wang et al., 2019, 2020; Wen et al., 2020; Zarkali 
et al., 2020). The main meta-analysis showed significantly 
increased Lp of PD compared to HC (g = 0.250, 95% CI: 0.073 
to 0.427, P = 0.006). This effect had moderate heterogeneity 
(Q [12] = 25.113, P = 0.014, I2 = 52.2%, τ2 = 0.053), with 
no evidence of publication bias (P = 0.332, Supplementary 
Fig. S1C). Nevertheless, ‘trim and fill’ yielded 2 potentially 
missing studies on the left side of the plot, lowering Hedges’ g 
to 0.200 (95% CI: 0.027 to 0.373). For the drug-native/off-state 
subgroup, the significance of the increased Lp in PD patients 
was retained (k = 5, P < 0.001) with no significant heterogeneity. 
However, the on-state PD subgroup showed no significant 
difference in Lp from HC (k = 7, P = 0.424, I2 = 71.7%). For the 
meta-regression of Lp, an outlier analysis required the exclusion 
of a study (Koirala et al., 2019) whose duration, H & Y stages 
and sex ratio were not in the range of the mean ± 2 SDs. After 
that, only age had a negative moderating tendency (k = 12, 
β = -0.056, 95% CI: -0.113 to 0.0002, R2 = 0.714, P = 0.051) on 
the combined effect size.

Four studies (NPD = 235, NHC = 154) repor ted 
normalized characteristic path length λ (Hu et al., 2020; 
Inguanzo et al., 2021; Li et al., 2017; Wang et al., 2020). 
The main meta-analysis showed no significant difference 
in λ between PD and HC (g = 0.182, 95% CI: -0.033 to 
0.398, P = 0.098), with low heterogeneity (Q [3] = 3.337, 
P = 0.342, I2 = 10.1%, τ2 = 0.005).

Thirteen datasets from twelve studies (NPD = 702, 
NHC = 422) reported global efficiency Eglob (Abbasi et al., 
2018; Galantucci et al., 2017; Guan et al., 2019; Hu et al., 
2020; Kamagata et al., 2017; Kok et al., 2020; Li et al., 
2017; Nigro et al., 2016; Vriend et al., 2018; Wang et al., 
2019, 2020; Wen et al., 2020). In the main meta-analysis the 
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Table 2   Image acquisition parameters and network construction methods in the 16 diffusion MRI studies

Abbreviations: AAL automated anatomic labeling, ACT​ anatomically constrained tractography, CSA cross-sectional area, CSD constrained spher-
ical deconvolution, DT deterministic tractography, FA fractional anisotropy, FOD fiber orientation distribution, FSL functional MRI of the brain 
(FMRIB) software library, NOS number of streamlines, PT probabilistic tractography, QA quantitative anisotropy, QSDR q-space diffeomorphic 
reconstruction, TA turning angle
a Calculation of network-weighted edges described by Colon-Perez et al. (2018)
b Connection from node i to node j considered to exist if present in > N% of participants
c image acquisition of Dutch dataset (Data-NL)
d image acquisition of Canadian dataset (Data-CA), NA not available

Study Parcellation 
scheme & 
number of 
nodes

Atlas regions 
removed

Tractography Network 
framework
weighting

Scanner 
B0 field

Number of
directions

b-values Threshold of 
fiber tracking

Threshold

Abbasi et al. 
(2018)

AAL 90 Cerebellum DT FA 3.0 T 64 1000 (NA) FA ≥ 0.2, 
TA ≤ 45°

Sparsity, 0.1–0.3 
(0.01)

Colon-Perez 
et al. 
(2018)

Freesurfer 82 DT w(eij)a 3.0 T 6/64 100/1000 (NA) None None

Galantucci 
et al. 
(2017)

Desikan 
(Freesurfer) 
83

DT FA 1.5 T 65 1000 (7 b0) FA ≥ 0.15, 
TA ≤ 45°

Absolute, NOS ≥ 3, 
Edge in ≥ 40%b

Guan et al. 
(2019)

AAL 90 Cerebellum DT FA 3.0 T 32 1000 (NA) FA ≥ 0.2, 
TA ≤ 45°

Sparsity, 0.1–0.3 
(0.02)

Hu et al. 
(2020)

AAL 90 Cerebellum DT ROI-size-
corrected

fiber number

3.0 T 64 1000 (NA) FA ≥ 0.2, 
TA ≤ 45°

Absolute, 
NOS ≥ 1,2,3,4,5, 
respectively

Inguanzo 
et al. 
(2021)

Desikan 
(Freesurfer) 
86

PT NOS 3.0 T 30 1000 (NA) NA Absolute, NOS ≥ 2, 
Edge in ≥ 50%b

Kamagata 
et al. 
(2017)

Desikan 
(Freesurfer) 
84

PT (CSD) NOS 3.0 T 32 1000/2000 (1 
b0)

FOD ≥ 0.06, 
TA ≤ 45°

Sparsity 0.1–0.3 
(0.05)

Koirala et al. 
(2019)

AAL 116 PT NOS 3.0 T 32 1000 (5 b0) NA Absolute, Edge 
in ≥ 5%b

Kok et al. 
(2020)

Desikan 
(Freesurfer) 
87

Ventricles, 
Cerebellum

PT (CSD) FA 3.0 Tc 60 4000 (7 b0) FOD ≥ 0.1, 
TA ≤ 30°

Absolute, Edge 
in ≥ 50%b, Length 
50–500 mm

3.0 Td 32 700 (1 b0)
Li et al. 

(2017)
AAL 90 Cerebellum DT FA 3.0 T 25 1000 (1 b0) FA ≥ 0.2, 

TA ≤ 45°
Absolute, NOS ≥ 5

Nigro et al. 
(2016)

AAL 90 Cerebellum DT NOS × FA 3.0 T 27 1000 (1 b0) FA ≥ 0.1, 
TA ≤ 35°

Absolute, NOS ≥ 3

Vriend et al. 
(2018)

BNA 210 and 
FSL FIRST 
14

PT NOS 3.0 T 30 1000 (5 b0) 5000 
streamlines/
voxel, 
curvature 
threshold 
0.2

Sparsity, 0.1–0.2 
(0.005); Edge 
in > 60%b

Wang et al. 
(2019)

AAL 90 Cerebellum DT NOS 3.0 T 30 1000 (1 b0) FA ≥ 0.2, 
TA ≤ 45°

Absolute, NOS > 10

Wang et al. 
(2020)

AAL 90 Cerebellum DT NOS 3.0 T 25 1000 (1 b0) FA ≥ 0.2, 
TA ≤ 45°

Absolute, NOS ≥ 3

Wen et al. 
(2020)

Destrieux 168 DT (QSDR) QA 3.0 T 102 4000 (NA) QA ≥ 0.02, 
TA ≤ 45°

Absolute, Length 
30–450 mm

Zarkali et al. 
(2020)

Glasser 379 PT (CSD, 
ACT)

NOS × CSA 3.0 T 17/8/64 50/300/
1000/2000

NA None



790	 Neuropsychology Review (2023) 33:783–802

1 3

combined effect size was small but statistically significant 
(g = -0.359, 95% CI: -0.529 to -0.190, P < 0.001), with low 
heterogeneity (Q [12] = 20.981, P = 0.051, I2 = 42.804%, 
τ2 = 0.040) and no evidence of publication bias (P = 0.851, 
Supplementary Fig. S1D). As with Cp, the effect remained 

significant in the drug-naïve/off-state subgroup, and there 
was no significant heterogeneity in the on-state. Meta-
regression analysis of Eglob revealed no effect of potential 
moderators e.g. UPDRS-III scores, H&Y stages, duration, 
age or sex (all P > 0.05).

Table 3   Alterations of graph metrics in the 16 diffusion MRI studies of patients with Parkinson’s disease vs healthy controls

Abbreviations: ↑/↓ graph metrics in PD patients were significantly higher/lower, respectively, than in HC, - no significant difference between 
PD and HC, … metric was not reported, PD-A PD patients with apathy, PD-D PD patients with depression, PD-DY PD patients with dyskinesia, 
PD-MCI PD patients with mild cognitive impairment, PD-MI PD patients with memory impairment, PD-NA PD patients with no apathy, PD-NC 
PD patients with normal cognition, PD-ND PD patients with no depression, PD-NDY PD patients with no dyskinesia, PD-NMCI PD patients 
without mild cognitive impairment, PD-NVH PD patients with no hallucinations, PD-VH PD patients with visual hallucinations, PD-Well PD 
patients without memory impairment, Cp clustering coefficient, Eglob global efficiency, Eloc local efficiency, Lp characteristic path length, γ nor-
malized clustering coefficient, λ normalized characteristic path length, σ small-worldness
a ↑/↓, the former subgroup higher/lower compared with the latter subgroup
b graph metrics of the Dutch dataset (Data-NL)
c graph metrics of the Canadian dataset (Data-CA)

Study Subgroups Cp Lp γ λ σ Eloc Eglob Density Strength Modularity

Abbasi et al. (2018) None ↓ ↑ … … … … ↓ … … …
Colon-Perez et al. (2018) PD-Well - - … … - … … - ↓ …

PD-MI - ↓ … … - … … - ↓ …
Galantucci et al. (2017) PD-NMCI - - … … - … - - … …

PD-MCI ↓ ↑ … … - … ↓ ↓ … …
PD-MCI vs PD-NMCI a ↓ - … … - … ↓ - … …

Guan et al. (2019) None - - … … … - - … … …
Hu et al. (2020) PD-D - ↑ - ↑ ↑ ↑ ↓ … - …

PD-ND - - ↓ - - ↓ - … - …
PD-D vs PD-ND a - - ↑ - ↑ ↑ - … - …

Inguanzo et al. (2021) PD-NMCI … … - - - … … … … -
PD-MCI … … - - - … … … … -

Kamagata et al. (2017) None ↓ ↑ … … ↓ … ↓ … ↓ …
Koirala et al. (2019) None … ↓ … … … … … … … …
Kok et al. (2020) Data NL b … … … … … - - … … …

Data CA c … … … … … - - … … …
Li et al. (2017) None - ↑ - - - - ↓ … … …
Nigro et al. (2016) None ↓ - … … … … ↓ - ↓ …
Vriend et al. (2018) None ↓ … … … … … ↓ … … ↑
Wang et al. (2019) PD-NDY - ↑ … … - - ↓ … … …

PD-DY - - … … - - - … … …
PD-DY vs PD-NDY a ↑ ↓ … … - ↑ ↑ … … …

Wang et al. (2020) PD-NC - - - - - - - … … …
PD-MCI - ↑ ↑ - ↑ - ↓ … … …
PD-MCI vs PD-NC a - - - - - - - … … …

Wen et al. (2020) PD-NA - - … … … - - … … …
PD-A - ↑ … … … - ↓ … … …
PD-A vs PD-NA a - ↑ … … … - ↓ … … …

Zarkali et al. (2020) PD-NVH - - … … … … … … … -
PD-VH - - … … … … … … … -
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Small‑worldness Measures

Eight studies (NPD = 446, NHC = 281) reported the small-
worldness parameter σ (Colon-Perez et al., 2018; Galantucci 
et al., 2017; Hu et al., 2020; Inguanzo et al., 2021; Kamagata 
et al., 2017; Li et al., 2017; Wang et al., 2019, 2020); meta-
analysis revealed no significant difference in σ between PD 
and HC (g = -0.0004, 95% CI: -0.268 to -0.267, P = 0.998), 
with moderate heterogeneity (Q [7] = 21.141, P = 0.004, 
I2 = 66.889%, τ2 = 0.098) and no evidence of publication 
bias (P = 0.193, Supplementary Fig S1E). The effect sizes 
for the on-state and off-state PD subgroups were also not 
significant compared to HC.

Basic Network Measures

Three studies (NPD = 169, NHC = 111) reported network 
density (Colon-Perez et  al., 2018; Galantucci et  al., 
2017; Nigro et al., 2016); the meta-analysis showed no 
significant difference of network density between PD 
and HC (g = -0.064, 95% CI: -0.506 to 0.378, P = 0.776) 
with moderate heterogeneity (Q [2] = 5.965, P = 0.051, 
I2 = 66.5%, τ2 = 0.101). Four studies (NPD = 149, NHC = 137) 
reported network strength (Colon-Perez et al., 2018; Hu 
et al., 2020; Kamagata et al., 2017; Nigro et al., 2016); the 
meta-analysis showed a significant decrease in PD compared 
to HC (g = -0.471, 95% CI: -0.926 to -0.017, P = 0.042), with 

Fig. 2   Results of the meta-
analyses. For each topological 
property named on the vertical 
axis, the figure shows pooled 
effect sizes as Hedges’ g (with 
95% CI bars) in the left panel, 
and heterogeneity values (I2) in 
the right panel (bands are color-
coded as shown in the legend); 
the size of the circles in the 
latter represents number of stud-
ies (3, 4, 8 and 13 from smallest 
to largest, respectively). The 
asterisks denote statistically 
significant effect size. Abbrevia-
tions: Cp, clustering coefficient; 
Eglob, global efficiency; Eloc, 
local efficiency; Lp, character-
istic path length; γ, normal-
ized clustering coefficient; λ, 
normalized characteristic path 
length; σ, small-worldness
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high heterogeneity (Q [4] = 10.383, P = 0.016, I2 = 71.1%, 
τ2 = 0.150). The small number of included studies for 
network density and network strength precluded analysis 
of publication bias, subgroup analysis and meta-regression.

Subgroup Analyses by Methodological Factors

The significantly decreased clustering coefficient Cp in PD 
compared to HC was retained in subgroups for the PT method, 
the FA-weighted network, diffusion gradient directions ≥ 30, 
non-AAL atlas and sparsity threshold, but not for the DT 
method, the NOS-weighted network, directions < 30, AAL 
atlas and absolute threshold (Supplementary Table S4). The 
significantly increased characteristic path length Lp in PD 
compared to HC was retained for the DT method, AAL atlas 
and the FA-weighted network but not for the PT method, non-
AAL atlas and the NOS-weighted network. The significantly 
decreased local efficiency Eloc in PD compared to HC was 
found for the DT method and directions ≥ 30. The significantly 
decreased global efficiency Eglob in PD compared to HC was 
retained for the DT method, the NOS-weighted network and 
diffusion gradient directions ≥ 30 but not for the PT method, 
the FA-weighted network, or directions < 30.

Sensitivity Analyses

Sensitivity analysis indicated that individual study or datasets 
could affect the statistically significant difference in Eloc [when 
Data-CA (the Canadian dataset) of Kok et al. (2020) was 
removed], γ (when Hu et al. (2020) was removed), λ (when 
Inguanzo et al. (2021) was removed) and network strength 
(when Colon-Perez et al. (2018), Kamagata et al. (2017) or 
Nigro et al. (2016) was removed) between PD and HC (for 
details, see Supplementary Fig. S2). In contrast, no individual 
study significantly affected the difference between PD patients 
and HC in Cp, Lp, Eglob, σ, network density or modularity.

Discussion

To the best of our knowledge, this is the first meta-analysis 
assessing the consistency of brain structural topological 
properties in PD based on dMRI studies using GTA. We found 
a significant decrease in Cp, Eglob, and network strength of the 
structural connectome in PD, and a significant increase in Lp. 
In contrast, Eloc, γ, λ, σ, density and modularity showed no 
significant alteration in the structural connectome in PD. In 
subgroup analyses, the statistical difference of Lp between PD 
and HC was maintained in the drug-naïve/off-state patients but 
lost in the on-state patients. Meta-regression analysis revealed 
that sex (male %) was a confounder of Cp in the meta-analysis, 
and age had a negative moderating tendency on Lp.

We discuss the pathophysiological significance of these 
results below, but it is useful first to outline their basic 
network-theory interpretation. In general, decreased clustering 
coefficient Cp implies decreased information segregation, and 
decreased global efficiency Eglob and increased characteristic 
path length Lp both imply decreased network integration. 
There were no significant effects on γ, Eloc or modularity 
(also measures of information segregation) or λ (also a 
measure of integration) or on network density, but for four 
of these the number of studies was very low. A decrease in 
both network segregation and integration is characteristic of 
a ‘weaker small-worldization’ pattern (Suo et al., 2018). The 
small-worldness parameter σ is the ratio of the normalized 
clustering coefficient to the normalized characteristic path 
length: as the absolute clustering coefficient Cp is decreased 
and the absolute characteristic path length Lp is increased, 
one would expect σ to be decreased. However, the parameters 
(γ, λ and σ) might be affected by the normalization processes 
of Cp and Lp. Specifically, γ or λ is normalized relative to 
Cp or Lp of matched random networks that preserve the 
number of nodes and edges of the real network. The results 
of comparing network properties between groups may differ 
from the results of normalized network properties due to the 
different degree of distribution of matched random networks 
across individuals. Such seemingly contradictory results are 
also reported in patients with focal epilepsy (increased γ and 
decreased Cp) (Výtvarová et al., 2017), and patients with 
Alzheimer's disease (decreased λ and increased Lp) (Stam 
et al., 2009).

Weaker Small‑Worldization

Cp is an important global measure of network segregation, 
quantified as the ratio of the number of connections that 
exist between the direct neighbors of a node to the maximum 
number of possible connections, averaged over the network 
(Watts & Strogatz, 1998). The decreased Cp implies poorer 
network segregation resulting in less efficient information 
processing at the local level in functionally specific areas, 
and such a network is less robust to node failure (Bullmore 
& Sporns, 2012; Rubinov & Sporns, 2010). It has been 
reported that PD-MCI showed decreased Cp compared to PD 
without MCI (Galantucci et al., 2017). Our meta-regression 
analysis suggests that decreased Cp was associated with the 
higher percentage of men with PD. Consistent with this, 
male PD patients reportedly show faster progression of daily 
living difficulties and cognitive decline (Bakeberg et al., 
2021; Iwaki et al., 2021), and faster development of impaired 
brain structural impairment by structural MRI and GTA 
(Yadav et al., 2016). The reasons for the high heterogeneity 
are not fully understood, but methodological factors and 
the heterogeneity of PD sample no doubt contribute. These 
factors will be discussed in more detail below.
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For network integration, we considered three measures: 
Lp, λ and Eglob. Integration is a crucial feature of an efficient 
network architecture, allowing for rapid communication of 
information across distributed regions (Sporns, 2013). The 
findings of decreased Eglob and increased Lp in PD relative 
to HC indicate disruption of global network integration. In 
the medication subgroup analysis, the effect of increased 
Lp remained significant in the drug-naïve/off-state patients 
while effect size for on-state patients was not significant. 
These results may be associated with the ‘normalization’ 
effect of dopaminergic medication in PD, as levodopa 
tends to normalize the connectivity of the striato-thalamo-
cortical motor circuits and default mode network, and the 
disrupted network topology (Berman et  al., 2016; Gao 
et  al., 2017; Zhong et  al., 2019). Although medication 
was discontinued at least 12 h before MRI scanning, we 
cannot completely discount potential confounding chronic 
effects of dopaminergic drugs. Our meta-regression results 
suggest that older patients had a lower propensity toward 
Lp in structural network, probably due to a reorganization 
of brain structural connectome in aging. This is supported 
by a study reporting decrease in Lp with age that included 
participants of similar age (average at baseline 63.5 years, 
at follow-up 68.0 years) to the PD patients in this meta-
analysis (Coelho et al., 2021). In one study disease duration 
was positively correlated with Lp and negatively correlated 
with Eglob (Li et al., 2017), although the corresponding 
meta-regressions in the current study did not reveal disease 
duration to have any significant moderating role to influence 
network properties. In various studies of PD patients Lp 
was negatively associated with working memory (Colon-
Perez et al., 2018) and dyskinesia (Wang et al., 2019), and 
positively associated with UPDRS-III scores (Colon-Perez 
et al., 2018); also Eglob was negatively related to motor 
symptoms (Kok et al., 2020) and lower in PD patients with 
MCI compared to those without MCI (Galantucci et al., 
2017), and in MCI compared to HC (Berlot et al., 2016).

In formal terms, the brain’s small-world organization 
strikes an optimal balance between segregation (reflected 
by Cp, γ, Eloc and modularity) and integration (reflected 
by Lp, λ and Eglob) of information processing. This 
organization supports efficient integration and specialized 
information processing at low connection cost (Liao et al., 
2017; Telesford et al., 2011). The small-worldness σ is the 
ratio of γ to λ, and reflects the network showing higher 
clustering and similar path lengths to a network connected 
by randomly assigned edges (Watts & Strogatz, 1998). From 
the perspectives of segregation and integration, altered 
small-world properties in disease fall into four patterns: 
regularization, randomization, and stronger and weaker 
small-worldization (Suo et al., 2018). We found significant 
reduction in Cp and Eglob, and increase in Lp of PD relative 
to HC, which represents lower network segregation and 

integration and indicate weaker small-worldization of the 
structural connectome, although the change did not reach 
statistical significance in σ. Notably, σ in PD patients was 
significantly lower using PT when compared to HC, whereas 
there was no difference in σ calculated by DT (Kamagata 
et al., 2017). Additionally, increased σ might be related to 
depression in PD (Hu et al., 2020). Although no significant 
outcomes were obtained for other metrics, the P-values for 
overall effects of γ, λ and Eloc were less than 0.10. Note that 
leave-one-out sensitivity analysis can yield differing results 
when specific studies are removed. That the Eloc of PD vs 
HC is significantly decreased when the Data-CA set of Kok 
et al. (2020) is removed may be because the small size of the 
Data-CA set (19 PD patients and 18 HC) makes it vulnerable 
to sampling error (Lin, 2018), or because the lower b-values 
(700) and limited number of dMRI diffusion directions were 
sub-optimal for CSD tractography; in any case the effects are 
unsurprisingly exposed when only 4 studies are included in 
the pooled effect estimates for γ, λ and network strength. 
Caution is therefore needed, until additional data can be 
analyzed and reported.

Diagnostic Performance and Mechanistic Insight 
with Graph Theoretical Analysis

Given the many reports of altered GTA parameters in 
PD, the question of their diagnostic power has received 
attention. Some studies have applied support vector machine 
to GTA metrics and matrices to assess their classification 
performance (Kamagata et  al., 2017; Kazeminejad 
et al., 2017; Suo et al., 2021a, b). PD patients could be 
distinguished from HC with 78% accuracy by combining 
five global metrics (Cp, Lp, Eglob, σ and network strength); 
probabilistic multi-shell, multi-tissue CSD tracking 
performed better than deterministic and probabilistic single-
shell, single-tissue CSD tracking (Kamagata et al., 2017). 
GTA metrics could differentiate between early-stage PD 
patients and HC with 73% balanced accuracy (Suo et al., 
2021b). A functional study applied GTA to rs-fMRI to 
distinguish PD patients from HC with accuracy of ~ 95% in 
a leave-one-out cross-validation test (Kazeminejad et al., 
2017). These studies show the limited ability of structural 
measures to identify PD patients, especially given the 
variability in the findings and the additional cost (financial, 
expert time, infrastructure) necessary to obtain these 
metrics. In particular, a study revealed that classification 
accuracy can be improved by multiple kernel support vector 
machine combining GTA metrics with original functional 
connections (Chen et al., 2020). This suggests that GTA 
metrics in combination with other neuroimaging measures 
may help differentiate patients. However, there is a long way 
to go before their clinical application in the PD structural 
connectome.
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From the mechanistic perspective, a critical pathological 
feature of PD is the deposition of fibrillary aggregates 
consisting mainly of α-synuclein within Lewy bodies 
and Lewy neurites (Spillantini et al., 1998). Pathological 
accumulation of α-synuclein can alter synaptic and 
structural plasticity by reducing the activity of N-methyl-
D-aspartate receptors, leading to further disruption of 
synaptic and axonal connections (Bellucci et  al., 2016; 
Braak & Del Tredici, 2008). Consistent with this, we 
found reduced network strength in PD patients in the 
dMRI structural network. The implication is that white 
matter disconnections in the PD structural connectome can 
impair efficient information exchange, resulting in reduced 
network computational efficiency (lower segregation and 
integration). This might not be seen in relatively early 
disease, where synaptic dysfunction leads to minor axonal 
loss, while structural connectivity may not be significantly 
altered.

Methodological Considerations

Many methodological factors may have influenced the 
overall effect sizes in this meta-analysis: parcellation 
schemes, the definition of edges, threshold, and fiber 
tracking technology (shown in Table 2). We consider these 
in turn.

The commonest brain parcellation methods used the 
AAL and Desikan atlas to define the network nodes. None 
of the available parcellation schemes optimally addresses 
all challenges (Arslan et al., 2018). Since the number of 
nodes (82–379) in the included studies is on a similar scale, 
parcellation has less influence on the results of the network 
parameters and allows for cross-study comparisons (Zalesky 
et al., 2010). GTA studies have assessed abnormalities at 
both the global level and the nodal (brain area) level. 
However, because of the complexity and variety of 
parcellation schemes, we could find no robust way to 
conduct a quantitative meta-analysis at the nodal level. Our 
results are therefore only at the whole-brain level. AAL 
atlas (8 studies) was the commonest parcellation method 
in the included studies; however, most did not report the 
detailed value of the nodal parameters. The most commonly 
altered brain areas were in basal ganglia, sensorimotor and 
orbitofrontal areas, which have been related to the motor 
and nonmotor symptoms of PD (Kobayakawa et al., 2017; 
Neumann et al., 2018; Tessitore et al., 2014).

Although the networks constructed in the included studies 
were all of the weighted type, the definitions of the edges 
were diverse, and this is known to affect network efficiency 
estimates (Zhong et al., 2015). Our subgroup analysis found 
differences not only in Eglob, but also in Cp and Lp between 
differently-weighted methods. Therefore, the heterogeneity 
we observed across studies might be, in part, due to 

differences of edge definition. These methodological issues 
are not fully solved, which hampers cross-study comparisons 
of network topology.

Data noise and algorithm errors mean that the raw 
individual networks are likely to contain spurious 
connections, and the purpose of thresholding is to remove 
edges with very small weights that are not physically 
credible (Hagmann et al., 2007). There are two approaches: 
absolute threshold values and sparsity threshold values. 
In the former approach only edges that exceed a certain 
statistical significance (or some other criterion) are retained: 
e.g., retaining only connections with NOS ≥ α (α is a critical 
value selected by the investigator). However, it will retain 
a different number of edges among different individuals, 
leading to biased network properties. In the latter approach 
sparsity threshold values are calculated as the ratio of the 
number of actual connections divided by the maximum 
possible number of connections in the network, which 
normalizes each individual network to the same number of 
nodes and edges. Multiple studies indicate that most network 
attributes are dependent on the sparsity (De Reus & van 
den Heuvel, 2013; Fornito et al., 2013; van Wijk et al., 
2010), so network comparison is still biased by the arbitrary 
choice of the threshold or range of thresholds (Cheng et al., 
2012a, b). In particular, our subgroup analysis showed 
significantly decreased Cp of PD compared to HC using 
sparsity threshold, but showed no significant difference 
using an absolute threshold. This seems to suggest that 
sparsity threshold may be more sensitive than the absolute 
threshold to differences in Cp of PD related to HC, but this 
inference must be treated with caution because of the limited 
number of included articles.

Tractography including DT and PT is required to 
determine if two nodes are anatomically connected in a 
structural network based on dMRI. While DT is most widely 
used, it has a limited capacity for resolving crossing fibers. 
PT characterizes the uncertainty in the local fiber orientation 
estimates, and this is theoretically better than DT in respect 
of inter-individual variability of the tracked streamlines, and 
fiber-crossing issues (Jeurissen et al., 2019; Zalesky et al., 
2016). In fact, one study found PT more sensitive than DT 
in detecting disruptions in structural connections in PD 
(Kamagata et al., 2017). In our study statistically significant 
differences were detected in more network metrics in the DT 
than PT subgroup, although this result should be interpreted 
with caution until more primary studies are published.

Overall, our methodological subgroup analysis reflects 
the absence of a methodological gold standard. Interestingly, 
Eglob, Eloc and Cp maintained statistical differences with ≥ 30 
diffusion gradient directions, but these were lost with < 30 
directions. This probably reflects the fact that abnormalities 
in graph theoretical parameters are better identified using a 
higher number of dMRI directions. Again, because of the 
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low number of studies in each subgroup, the results of our 
analysis should be considered exploratory. Future studies 
should perform subgroup analysis to further confirm the 
impact of different parcellation schemes, definition of edges, 
threshold, and fiber tracking technology.

Limitations

PD patients are clinically heterogeneous. We did not focus 
on a particular subgroup but included patients ranging from 
a de novo state to manifest PD patients with different motor 
subtypes including dyskinesia, tremor-dominant and postural 
instability and gait difficulty subtypes, as well as patients with 
specific non-motor symptoms, e.g., MCI, depression, hyposmia, 
apathy, and visual hallucinations. Although the included studies 
(Galantucci et al., 2017; Inguanzo et al., 2021; Wang et al., 
2020) all evaluated MCI using MDS Task Force level II criteria 
(Litvan et al., 2012), the different scales used for this criterion 
(the cut-off scores are taken as 2 SD in Galantucci et al. (2017) 
and 1.5 SD in Wang et al. (2020) below normative means) may 
have caused inconsistencies among the included MCI patients. 
Additionally, there is substantial heterogeneity in cognitive 
subdomain deficits in PD-MCI. Full study of the different 
subtype profiles will require a stratified statistical analysis 
which is beyond the scope of the current study, although it is 
a focus of ongoing work. This approach allowed us to focus on 
the commonality between patients, rather than the differences 
between subgroups. In any case, the number of subtype studies 
did not meet the minimum requirement of subgroup analyses. 
As studies proliferate, it will be important to investigate global 
topology alterations in different subtypes of PD.

The heterogeneity of medication status might have 
influenced the results; for example, levodopa can alter global 
and local efficiency measures of the functional connectivity 
network in PD (Berman et  al., 2016). We performed 
subgroup analyses to investigate this, but a tightly controlled 
study will be required to explore the effect of levodopa on 
structural topological properties in PD. There were too few 
studies to allow us to control for other confounding factors 
(such as clinical, MRI acquisition and network construction 
methods). Finally, the Egger test indicated a potential 
publication bias in the Cp analysis. Thus, it will be important 
to validate our findings by an updated meta-analysis.

The small number of studies included in some subgroup 
analyses (e.g., tractography methods) is a significant limitation. 
There is no clear consensus for how many studies are needed 
for the meta-analysis (Greco et al., 2013; Müller et al., 2018; 
Pigott, 2012; Valentine et al., 2010): some view 17–20 studies 
are desirable (Eickhoff et al., 2016), while others argue that 
meta-analysis can be conducted with as few as 2 studies which 
meet quality standards and statistical requirements (Pigott, 
2012; Valentine et al., 2010). Müller et al. (2018) stated that 
required number of experiments of a meta-analysis is strongly 

dependent on the expected effect size. Finally, Valentine et al. 
(2010) showed that meta-analysis is a better choice for synthesis 
than alternatives which are typically based on less tenable 
assumptions and less transparent processes. We have therefore 
chosen to proceed by meta-analysis, recognizing that results 
need to be interpreted with caution because of limited statistical 
power; we suggest that our fundings are best used in hypothesis 
generation to underpin future research.

Future Directions

Most of these studies constructed the structural connectome 
using FA to define the edges. Future studies might usefully 
explore other diffusivity parameters (mean diffusivity, and 
axial and radial diffusivity) to provide a more comprehensive 
picture of the underlying mechanisms. Analysis of DTI data 
based on a tensor model and a limited number of diffusion 
directions has limited accuracy in regions of crossing tracts, 
potentially creating false tracts (Alexander et al., 2007). 
Future studies could use more advanced acquisition methods, 
including multi-shell imaging, high-angular-resolution 
diffusion imaging, and neurite orientation dispersion and 
density imaging. In addition, to overcome the limitations of 
diffusion models (Wedeen et al., 2005), diffusion spectrum 
imaging or CSD may be superior approaches for fiber-
specific modeling and network weighting. dMRI has been 
a popular neuroimaging technique, with a well-understood 
methodology to construct the structural connectome. 
With recent methodological advances, structural networks 
constructed by multimodal MRI have proved capable of 
predicting cognitive variation at the individual level (Seidlitz 
et al., 2018). It will be interesting to combine different 
approaches to map the changes in PD. We recommend that 
researchers report data in numerical form, even if the results 
are not statistically significant; this is crucial for secondary 
research. Some studies did not specify whether multiple-
comparison methods in comparing statistical differences; 
given the potential influence on interpretation (Meskaldji 
et  al., 2013), future studies should apply multiple-
comparison corrections, and it should be explicitly stated.

Researchers will need to select more homogeneous (or 
stratified) samples by considering demographic variables in 
more detail. The accumulation of validated evidence from 
connectome studies will help to reveal biological markers of 
specific subtypes (such as PD patients with MCI). Dopamine 
transporter imaging (DAT-SPECT or DAT-PET) can support 
the clinical diagnosis of PD (Liu et al., 2018; Mirpour et al., 
2018; Suwijn et al., 2015), yet only two of the 16 included 
studies performed DAT-SPECT and PD patients enrolled in 
future studies should have this scan when research costs are 
permitted. This meta-analysis focused on cross-sectional 
studies, but longitudinal studies are needed to determine how 
structural connectome may change in symptom remission 
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after clinical treatment. Similar global disruptions of structural 
networks have been identified in other neurodegenerative 
disorders; for example Alzheimer's patients reportedly exhibit 
similarly increased Lp and decreased Eglob (Lo et al., 2010), 
possibly suggesting a shared profile of neurobiological changes 
in the neurodegenerative disorders. Further study is needed 
of the distinct patterns unique to specific neurodegenerative 
diseases.

Conclusion

Despite the inconsistent reports of structural topological 
organization, our meta-analysis provides evidence of 
decreased network segregation (decreased Cp) and 
integration (decreased Eglob and increased Lp), representing 
a shift from a balanced small-world network to a ‘weaker 
small-worldization’ pattern. Abnormalities in the PD 
brain structural connectome provide anatomical insights 
into the pathogenesis of PD, and topological properties 
have the potential to become biomarkers of PD. This 
study contributes to psychoradiology (Gong et al., 2021; 
Li et al., 2021; Lui et al., 2016; Huang et al., 2019; Pan 
et al., 2021; Suo et al., 2022b), an evolving subspecialty 
of radiology guiding diagnostic and therapeutic decision 
making in neuropsychiatric disorders.
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