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Abstract

Conventional meta-analytic procedures assume that effect sizes are independent. When effect sizes are not independent, conclu-
sions based on these conventional procedures can be misleading or even wrong. Traditional approaches, such as averaging the
effect sizes and selecting one effect size per study, are usually used to avoid the dependence of the effect sizes. These ad-hoc
approaches, however, may lead to missed opportunities to utilize all available data to address the relevant research questions.
Both multivariate meta-analysis and three-level meta-analysis have been proposed to handle non-independent effect sizes. This
paper gives a brief introduction to these new techniques for applied researchers. The first objective is to highlight the benefits of
using these methods to address non-independent effect sizes. The second objective is to illustrate how to apply these techniques
with real data in R and Mplus. Researchers may modify the sample R and Mplus code to fit their data.
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A single study rarely provides enough evidence to address
research questions in a particular domain. Replications are
generally the preferred approach for addressing critical scien-
tific questions (e.g., Open Science Collaboration, 2012,
2015). Replications of studies are particularly important, giv-
en that many of the published findings are said to be non-
replicable. When there is a large pool of empirical studies on
a similar topic, a meta-analysis can be used to synthesize these
research findings (Anderson & Maxwell, 2016). Meta-
analysis is generally recognized as the method for synthesiz-
ing research findings in disciplines across the social, behav-
ioral, and medical sciences (e.g., Gurevitch, Koricheva,
Nakagawa, & Stewart, 2018; Hedges & Schauer, 2018;
Hunt, 1997). A few psychological journals, such as
Psychological Bulletin (Albarracin et al., 2018) and
Neuropsychology Review (Loring & Bowden, 2016), are
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dedicated to publishing high-quality systematic reviews and
meta-analyses.

Many books introducing how to conduct a systematic re-
view and meta-analysis have already been published (e.g.,
Borenstein, Hedges, Higgins, & Rothstein, 2009; Card,
2012; Cheung, 2015a; Cooper, Hedges, & Valentine, 2009;
Hedges & Olkin, 1985). Cheung and Vijayakumar (2016)
recently gave a brief introduction to how neuropsychologists
can conduct a meta-analysis. Their introduction assumes that
the effect sizes are independent, which is a crucial assumption
in a meta-analysis. It is rare for primary studies to report only
one relevant effect size. Reported effect sizes are likely to be
non-independent for various reasons. The sampling errors of
the effect sizes may be correlated because the same partici-
pants are involved in calculating the effect sizes. For example,
the same control group is used in calculating the treatment
effects or there is more than one outcome effect size.
Another reason for non-independent effect sizes is that the
effect sizes of the independent samples are nested within a
primary study. This nested structure will create dependence
when a meta-analysis is conducted. Results based on conven-
tional meta-analytic methods are inappropriate or even mis-
leading. Many advances in how to handle non-independent
effect sizes have been made in the past decade. Applied re-
searchers, however, may not be familiar with these advanced
meta-analytic techniques.
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Therefore, the primary objective of this paper is to give an
introduction on how to handle non-independent effect sizes in
a meta-analysis. We will introduce the multivariate meta-
analysis and three-level meta-analysis to handle two types of
non-independence in a meta-analysis. The second objective is
to illustrate how to apply these techniques with real data in the
R statistical platform (R Development Core Team, 2019) and
Mplus (Muthén & Muthén, 2017). Researchers may modify
the sample R and Mplus code to fit their models. In the fol-
lowing sections, we first provide some background on the
problems arising from non-independent effect sizes and how
to address these problems with conventional versus preferred
meta-analytic methods. Two real examples in published meta-
analyses are used to illustrate how to analyze non-independent
effect sizes.

What Are the Key Assumptions
in a Meta-Analysis?

To facilitate the introduction, we first review a standard
random-effects meta-analytic model (e.g., Borenstein et al.,
2009; Hedges & Olkin, 1985). We use y; to represent a generic
effect in the ith study. The effect size can be either a standard-
ized (or raw) mean difference, a correlation coefficient (or its
Fisher’s z transformation), a log-odds ratio, or some other
effect size (e.g., Cheung & Vijayakumar, 2016). The
random-effects meta-analytic model is:

Vi =Brtui+e, (1)

where 0 is the average population effect, Var(u;) = 7 is the
population heterogeneity variance that has to be estimated,
and Var(e;) =v; is the known sampling variance in the ith
study. The heterogeneity variance 7> is an absolute index of
heterogeneity that depends on the type of effect size. That is,
we cannot compare the computed heterogeneity variances
across different types of effect size. We may calculate a rela-
tive heterogeneity index /* to indicate what percentage of the
total heterogeneity is comprised by between-study heteroge-
neity (Higgins & Thompson, 2002). It should be noted that the
value of I is affected by the “typical” within-study sampling
variance, which is affected by the sample sizes in the primary
studies (Borenstein, Higgins, Hedges, & Rothstein, 2017).
Given the same value of 77, > may become larger when the
“typical” within-study sampling variance becomes smaller.

When there is excess variation in the population effect
sizes, researchers may want to explain the heterogeneity in
terms of the characteristics of the study. The model can be
extended to include moderators, say x;, to explain the hetero-
geneity of the effect sizes:

Vi = Bo + Bixi +u;i + e, . (2)
where (3, and [3; are the intercept and regression coefficient,

@ Springer

respectively. Multiple moderators may be included in the
model. When there is a categorical moderator with more than
two categories, dummy coded moderators may be used. In
addition to testing the significance of the moderators, we
may also calculate an R* index to quantify the percentage of
the heterogeneity variance that can be explained by adding the
moderators.

There are two critical assumptions in random- and mixed-
effects meta-analyses. First, the sample effect size y; is condi-
tionally distributed as a normal distribution with a known
sampling variance v;. Several factors may affect the appropri-
ateness of this assumption. The first factor is the type of the
effect size. A raw mean difference, for example, approaches a
normal distribution much faster than would a correlation co-
efficient or an odds ratio. For a correlation coefficient and an
odds ratio, we may apply transformations to “normalize” their
sampling distributions. For example, a log transformation on
the odds ratio and a Fisher’s z transformation on the correla-
tion coefficient are usually applied before a meta-analysis is
conducted. Another factor is the size of the sample. If the
sample size is large enough, the sampling variance of the
effect size can be assumed to be approximately normal and
known. Depending on the types of effect sizes, reasonably
large sample sizes in primary studies are expected in a meta-
analysis. Some (transformed) effect sizes, for example, the
raw mean difference and the Fisher’s z transformed score,
work well even for small sample sizes when the underlying
populations are normally distributed.

The second critical assumption is that the effect sizes are
independent. When the effect sizes in a meta-analysis are not
independent, the estimated standard errors (SEs) on the aver-
age effect are generally under-estimated (Lopez-Lopez, Van
den Noortgate, Tanner-Smith, Wilson, & Lipsey, 2017).
Researchers may incorrectly conclude that the average effect
is very precise. This problem is well known in the context of
multilevel models (Goldstein, 2011; Hox, 2010; Raudenbush
& Bryk, 2002). If we incorrectly treat the non-independent
data as independent, the statistical inferences are likely to be
wrong. Therefore, researchers should not treat non-
independent effect sizes as if they were independent. How to
handle non-independent effect sizes is the focus of this paper.

How Many Types of Non-Independent Effect
Sizes Are There?

We may roughly classify non-independent effect sizes into
multivariate and nested effect sizes. Other more sophisticated
types of non-independence will be addressed in the
Conclusion and Future Directions section. Table 1 shows a
sample data structure of two multivariate effect sizes. y; and
y, represent two different outcome measures, for example,
physical and psychological improvements after a treatment.
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Table1 Sample data structure for a multivariate meta-analysis with two Table 2 Sample data
multivariate effect sizes structure for a three-level Cluster y v
meta-analysis
Study M1 W Vl 1 V21 V22 1 32 .02
1 .54 .02
35 52 .02 .01 .02 1 a1 ol
2 43 NA .03 NA NA 2 06 03
3 NA 27 NA NA .01 5 02 03
3 37 .05

vy and y, are the multivariate effect sizes. Vi1, V>1, and V5, are the known
sampling variances and covariance of y; and y,. NA represents not
available

Both y; and y;, are reported in Study 1, whereas only one of the
two is reported in Studies 2 and 3.

With regard to multivariate effect sizes, the sampling errors
of'the effect sizes are usually conditionally correlated because
the same participants are used when calculating the multiple
effect sizes (e.g., Raudenbush, Becker, & Kalaian, 1988;
Timm, 1999). In Table 1, V,; represents the sampling covari-
ance of y; and y,, which is usually non-zero. For example, the
common practice is to have several treatment groups with one
control group in experimental or intervention studies. The
effect sizes of the treatment groups are calculated against the
same control group. The effect sizes in this setting are non-
independent because the same control group is used to calcu-
late the effect sizes. Studies that employ this approach are
known as multiple-treatment studies (Gleser & Olkin, 2009).

A second example of multivariate effect sizes is the multiple-
endpoint study (Gleser & Olkin, 2009). Abramovitch, Anholt,
Raveh-Gottfried, Hamo, and Abramowitz (2018) investigated
the effects of Obsessive Compulsive Disorder (OCD) on
Intelligence Quotient (IQ). Since IQ scores may be assessed in
terms of Full-Scale IQ, Verbal IQ, and Performance 1Q, the effect
can be conceptualized as three inter-related outcomes. The de-
gree of dependence of the multivariate effect sizes, V; in
Table 1, may be calculated from the summary statistics
(Cheung, 2018; Gleser & Olkin, 2009).

A third example is drawn from the study of Weissberger et al.
(2017), who were interested in examining the accuracy of neu-
ropsychological assessments in detecting mild cognitive impair-
ment (MCI) and Alzheimer’s dementia (AD). The accuracy of
such assessments is usually quantified by the sensitivity and
specificity of the tests that are used to make the assessment.
The sampling errors of the sensitivity and specificity are condi-
tionally independent because there is no overlapping of partici-
pants in the groups with and without condition (or disease; e.g.,
Li & Fine, 2011). The random effects, however, may still be
correlated. Therefore, we should still treat the sensitivity and
specificity as multivariate effect sizes in the analysis.

The second type of dependence is attributable to nested
effect sizes, that is, the effect sizes that are nested within a
unit, for example, a study. Table 2 displays a sample data
structure of nested effect sizes. The label “Cluster” indicates
how the independent effect sizes are grouped together. The

y is the effect size and v is the known sam-
pling variance of y. Cluster indicates how
the effect sizes are grouped

sampling error v of the effect size y is conditionally indepen-
dent. Thus, there is no sampling covariance V5, in the data
structure. Since the effect sizes within a cluster are likely to be
more similar to each other than the effect sizes across clusters,
the population effect sizes may not be independent. This situ-
ation is similar to the case of participants nested within a level-
2 unit in a multilevel model. A study may report multiple
effect sizes from multiple independent samples. These effect
sizes are measuring the same construct relevant to our research
questions, namely, that it is fine to combine these effect sizes
into a single effect size. For example, Mauger et al. (2018)
studied how the Turner syndrome affected executive functions
in children and adolescents. Since more than one effect sizes
on the executive functions were reported in the primary stud-
ies, these authors treated the effect sizes as nested within the
primary studies.

Another example is that we may conceptualize some
higher-level units, for example, country or research groups,
as our unit of analysis. The reported effect sizes (or studies)
are nested within these higher-level units. There are several
such examples in cross-cultural meta-analyses, where the
studies are nested within the countries (Fischer & Boer,
2011; Fischer, Hanke, & Sibley, 2012). Another interesting
example is the single-subject design. In single-subject designs,
effect sizes are calculated for each subject. The effect sizes of
the subjects are nested within studies. When researchers meta-
analyze these effect sizes, they have to take the dependence of
the effect sizes into account (Moeyaert, Ugille, Ferron,
Beretvas, & Van den Noortgate, 2013).

What Are the Common Approaches
to Handling Multivariate Effect Sizes?

We use the example of Abramovitch et al. (2018), which has
been introduced, to start our discussion. These authors extract-
ed 98 studies containing the 1Q scores of OCD patients and
non-psychiatric comparison groups. Since the primary studies
reported some of the Full Scale 1Q, Verbal IQ, and
Performance 1Q scores, three separate effect sizes might be
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calculated in each study. One popular option for dealing with
multivariate effect sizes is to analyze them independently.
Abramovitch et al. (2018) conducted three separate meta-
analyses on Full Scale 1Q, Verbal 1Q, and Performance 1Q.
There are several such examples in the literature (e.g.,
Belleville et al., 2017; Weissberger et al., 2017). This ap-
proach is appealing because no new technique needs to be
used. However, the primary limitation of this approach is that
it does not take into account in the analyses the advantage
arising from the dependence of the effect sizes.

A multivariate meta-analysis is generally recommended for
handling multivariate effect sizes (e.g., Cheung, 2013; Hedges
& Olkin, 1985; Nam, Mengersen, & Garthwaite, 2003;
Raudenbush et al., 1988; Jackson, Riley, & White, 2011). In
this approach, the idea is similar to extending an ANOVA to a
MANOVA to handle more than one dependent variable. Now,
let y; be a vector of p x 1 effect sizes (p is the number of
outcome effect sizes). The meta-analytic model in Eq. (1)
can be extended to handle multivariate effect sizes as follows:

Vi =Bg+ui+e, (3)

where 3y is the vector of the average population effects,
Cov(u;)=T* is the p x p population heterogeneity variance-
covariance matrix that has to be estimated, and Cov(e,) =V;
is the p x p known sampling variance-covariance matrix in the
ith study that is computed from the summary statistics
(Cheung, 2015a, Chapter 3). When the studies report different
numbers of effect sizes, the incomplete effect sizes are filtered
out before the analysis. This equation can easily be extended
to a mixed-effects model, as we did in Eq. (2).

Apart from estimating the average population effects 3z
and their heterogeneity variance-covariance matrix 72, several
interesting research questions can be tested in a multivariate
meta-analysis. Using the study of Abramovitch et al. (2018) as
an example, we may treat the IQ domains (Full Scale IQ,
Verbal 1Q, and Performance 1Q) as multiple outcomes and
compare whether the average means of the OCD patients of
these IQ domains are the same. We may also verify whether
the heterogeneity variances are the same across different 1Q
domains. By inspecting the means and heterogeneity vari-
ances, researchers may get a better idea of what the effect of
the OCD is. Moreover, we may study the correlation between
the population random effects (IQ domains in our example). If
the correlation is high, this indicates that studies with a higher
population effect on one 1Q domain are associated with stud-
ies with a higher population effect on another I1Q domain.

When comparing the univariate and multivariate meta-
analyses, Ishak, Platt, Joseph, and Hanley (2008) have argued
that researchers may conduct univariate meta-analyses with-
out introducing any bias or loss of precision in the fixed-
effects estimates. Several authors (e.g., Demidenko, 2013;
Riley, 2009) have shown that the estimated fixed effects in a
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multivariate meta-analysis usually have smaller SEs. In other
words, we may get more precise estimates (smaller confidence
intervals (Cls)) by using a multivariate meta-analysis.

Two factors may affect the usefulness of multivariate meta-
analyses. The first factor is the correlation between the popu-
lation effect sizes. The presence of a positive (or negative)
association between the effect sizes reduces the uncertainty
of'the estimates of other effect sizes. This is similar to the case
of the MANOVA (see Cheung, 2015a, Section 5.1.2 for a
discussion). The second factor is the number of studies with
complete effect sizes. If there are only a few studies with
complete effect sizes, there would be no information to esti-
mate the correlation among the population effect sizes.
Suppose that all of the primary studies only report either the
Full Scale 1Q, Verbal 1Q, or Performance 1Q, then the estimat-
ed correlation between the population effect sizes would be
zero. Should there be no correlation among the population
effect sizes, the results of the univariate and multivariate
meta-analyses would be the same. Researchers are encour-
aged to apply a multivariate meta-analysis whenever possible
(Jackson et al., 2011) because of the benefits that can be ob-
tained from the correlated effect sizes. In the worst-case sce-
nario where the effect sizes are uncorrelated, the results of the
multivariate meta-analysis would be similar to that which
would be obtained from running several univariate meta-
analyses.

What Are the Common Approaches
to Handling Nested Effect Sizes?

When the effect sizes are nested within some hierarchies, for
example, studies, there is a clear consensus that we should not
ignore the dependence and analyze the data as if they were
independent. If we ignore the dependence, the SEs and the
statistical inferences of the analyses would likely be incorrect.

A three-level meta-analysis was proposed to address the
problems mentioned above (Cheung, 2014;
Konstantopoulos, 2011). The standard meta-analytic model
in Eq. (1) can be extended to handle nested effect sizes. We
use y;; to represent the ith effect size in the jth study. The three-
level meta-analysis is:

Yy = Br + @)y +u); + e, (4)

where (3 and e;; are similarly defined in Equation (1), and Var
(uyy) = 7%2) and Var(u);) = 7%3) are the level-2 and level-
3 heterogeneity variances, respectively. This analysis can eas-
ily be extended to a mixed-effects model, as we did in
Equation (2).

There are several advantages to applying this three-level
meta-analysis on nested effect sizes. First and most important,
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the level-2 heterogeneity variance 7'%2) takes the dependence

into account in the analyses. Results based on a conventional
meta-analysis and a three-level meta-analysis are identical on-
ly when the level-2 heterogeneity variance is zero. Second,
researchers may study the level-2 and level-3 heterogeneity
variances and their /7 counterparts at level-2 and level-3.
Third, researchers may also investigate how the level-2 and
level-3 moderators explain the heterogeneity using R” at level-
2 and level-3. These additional statistical analyses allow re-
searchers to study the heterogeneity at different levels (see
Cheung, 2014).

Before leaving this section, we have to mention another
procedure that is used to handle dependent effect sizes. It is
called the robust variance estimation (Hedges, Tipton, &
Johnson, 2010; Tipton, 2015). Instead of estimating the de-
pendence with the level-2 heterogeneity variance with
Equation (4), this approach ignores the dependence by calcu-
lating an adjusted SE. One advantage of the robust variance
estimation is that it can be applied to both the multivariate and
nested effect sizes (see the discussion in the next section). On
the other hand, the three-level meta-analysis allows re-
searchers to study the heterogeneity variances 7* (and R?) at
different levels, whereas the robust variance estimation com-
bines these effects into one single value.

What Are the Relationships
between a Multivariate Meta-Analysis
and a Three-Level Meta-Analysis?

It is of importance to clarify some key similarities and differ-
ences between a multivariate meta-analysis and a three-level
meta-analysis. A multivariate meta-analysis is conducted
when the sampling covariances are known. That is, the sam-
pling errors are not independent because the same participants
are used in calculating the effect sizes. For example, multiple-
treatment and multiple-endpoint studies are typical applica-
tions of multivariate meta-analysis.

On the other hand, a three-level meta-analysis has another
set of assumptions. The typical application of a three-level
meta-analysis is the scenario where reported effect sizes are
nested within studies. The participants only contribute to one
effect size, that is, there are no repeated measures. Thus, the
sampling errors in a three-level meta-analysis are conditional-
ly independent. The non-independence is primarily intro-
duced due to the nested structure of the effect sizes.

Technically speaking, multivariate effect sizes are also
nested within studies. We may arrange the multivariate effect
sizes in Table 1 to the nested structure in Table 2. The only
uncertain part is how to handle V,; because the sampling
variances are assumed to be independent in the nested effect
sizes in Table 2 (see Cheung, 2013, and Raudenbush et al.,

1988 on how to transform correlated effect sizes into
independent effect sizes). Mathematically, these two models
are closely related. A three-level meta-analysis can be formu-
lated as a special case of a multivariate meta-analysis, whereas
a multivariate meta-analysis can be approximated by a three-
level meta-analysis with some additional assumptions (see
Cheung, 2015a, Section 6.4 for the details). Researchers
may think carefully which technique, whether a multivariate
meta-analysis or a three-level meta-analysis, is the most ap-
propriate to use to analyze the data.

Multivariate effect sizes are probably more common than
nested effect sizes in applications of meta-analysis. One main
difficulty of applying a multivariate meta-analysis is the re-
quirement to calculate the sampling covariances among the
effect sizes. When these correlations are not available, several
options are available to deal with this situation (e.g., Riley,
Thompson, & Abrams, 2008). One popular approach is to
average the effect sizes within a study and use this figure in
subsequent meta-analyses (Borenstein et al., 2009). Averaging
the effect sizes within a study is easy. There are several such
examples of this approach in the literature (e.g., Burmester,
Leathem, & Merrick, 2016; Mewborn, Lindbergh, & Stephen
Miller, 2017; Sherman, Mauser, Nuno, & Sherzai, 2017).
However, it is less straightforward to calculate the sampling
variances of the average effect sizes. In calculating the sam-
pling variances of the average effect sizes, we need to know
the correlations among the effect sizes. Published studies rare-
ly provide information that can be used to estimate these cor-
relations. Researchers usually use either 0 or 1 or some arbi-
trary values in the calculations. The assumed value of the
correlation may affect the subsequent meta-analyses.
Researchers may check the sensitivity of the results by using
a range of possible correlations. The essential idea of a sensi-
tivity analysis is to investigate whether the conclusions would
be different if a different value of correlation is used in the
calculations. If the conclusions are the same, the findings are
robust to the values of the correlation and researchers do not
need to worry about the stability of the findings. On the other
hand, researchers have to interpret the results with caution
when the conclusions vary a great deal and depend on the
values of the correlation.

Another popular alternative is to select one effect size from
the available effect sizes within a study. Several variations
have been used in choosing the effect sizes for meta-analyses.
Some researchers randomly choose one effect size per study,
while others may provide reasons for selecting a particular
scheme. For example, they may choose “popular” measures
or measures with better psychometric properties. If the effect
sizes are randomly chosen, the average effect is unbiased.
Howeyver, the estimates are less efficient because some effect
sizes have been dropped. If there is a selection scheme, for
example, choosing the more popular measures, the results
may be biased towards these measures. This is because studies
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using the most popular measures may not represent the studies
published in the literature.

There are several other limitations to these approaches.
First, they do not utilize all the available data. It is generally
difficult and expensive to extract effect sizes form the source
literature for a meta-analysis. Averaging or selecting one ef-
fect per study means that much valuable information has to be
removed from the analyses. Second, averaging the effect sizes
or selecting one effect size within a study may remove valu-
able within-study variations stemming from potential moder-
ators. For example, the effect sizes within a study may repre-
sent different types of measures and conditions. If we average
these effect sizes into a single value or only select one effect
size, it would not be possible to study whether the measures
and conditions are moderating the effect.

Another option is to treat the multivariate effect sizes as the
nested effect sizes in a three-level meta-analysis. Dummy
codes are used to represent different effect sizes. For example,
we may treat effect sizes on the Full Scale 1Q, Verbal 1Q, and
Performance IQ in a multivariate meta-analysis as nested ef-
fect sizes in a three-level meta-analysis. We may then include
dummy codes to represent the effect sizes. By making a few
additional assumptions, we may analyze a multivariate meta-
analysis as a three-level meta-analysis without knowing the
sampling covariances of the multivariate effect sizes (see
Cheung, 2015a, Section 6.4.2). Computer simulations (e.g.,
Moeyaert et al., 2017; Van den Noortgate, Lopez-Lopez,
Marin-Martinez, & Sanchez-Meca, 2013) usually suggest that
this approach works reasonably well under simulated condi-
tions. Since it is quite likely that the correlations among the
effect sizes are missing in the meta-analyses, many researchers
prefer the three-level meta-analysis to the multivariate meta-
analysis.

Alternatively, the robust variance estimation (Hedges et al.,
2010; Tipton, 2015) can also be applied to effect sizes with
correlated sampling errors where the sampling covariances are
not available. Simulation studies have shown that both the
three-level meta-analysis and the robust variance estimation
work very well in simulated conditions (Moeyaert et al.,
2017).

How to Conduct a Multivariate Meta-Analysis
and a Three-Level Meta-Analysis?

The metaSEM (Cheung, 2015b) and metafor (Viechtbauer,
2010) packages implemented in the R statistical platform
can be used to conduct multivariate and three-level meta-anal-
yses. Mplus may also be used to perform these analyses
(Cheung, 2015a, Chapter 9). In this paper, we will illustrate
the analyses of the multivariate meta-analysis and three-level
meta-analysis with the R statistical platform and Mplus. The
data are available in the metaSEM package, whereas the
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complete R code and the output of the analyses are shown in
the Supplementary Materials. Readers may easily reproduce
and replicate the results. It should be noted that the analyses
here are meant to illustrate the procedures of the multivariate
and three-level meta-analyses. The data and results may be
slightly different from the ones used in the original meta-
analyses because the data were obtained from their published
tables rather than directly from the authors of the meta-analy-
ses. Readers interested in the substantive research questions
may refer to the original meta-analyses.

Multivariate Meta-Analysis The sample data were adopted
from Table 1 of Nam et al. (2003), who studied the effects
of environmental tobacco smoke, or passive smoking, on the
health of children. The effect sizes used in the analyses were
the log-odds ratios of the group with environmental tobacco
smoke against a normal control group in the development of
asthma and lower respiratory disease. Since the correlation
between asthma and lower respiratory disease was not avail-
able in the paper, we used a correlation of 0.5 to calculate the
sampling covariance between the effect sizes. A sensitivity
analysis was also conducted by using a correlation of 0 and .8.

There are a total of 59 studies in the data set “Nam03” in
the metaSEM package. Eight of these studies include both
asthma and lower respiratory disease, while the remaining
studies only include one of these two effect sizes. If we con-
duct two separate meta-analyses, the average effects (and their
SEs) on asthma and lower respiratory disease are 0.23 (0.05)
and 0.30 (0.06), respectively. The estimated heterogeneity var-
iances on asthma and lower respiratory disease are 0.04 and
0.03, respectively. The estimated /> on asthma and lower re-
spiratory disease are 0.73 and 0.92, respectively.

The results of the multivariate meta-analysis on asthma and
lower respiratory disease are 0.27 (0.05) and 0.31 (0.05), re-
spectively. The estimated heterogeneity variances on asthma
and lower respiratory disease are 0.07 and 0.05, respectively.
The estimated /* on asthma and lower respiratory disease are
.82 and .92, respectively. The results of the univariate and
multivariate meta-analyses are comparable in this case.
However, there is no guarantee that the estimated SEs will
be similar. It all depends on the data.

We may take advantage of the multivariate meta-analysis
by testing several additional research questions. First, the es-
timated correlation between the random effects is .96, which
suggests that studies with a large effect on asthma tend to be
associated with studies with a large effect on lower respiratory
disease. Figure 1 shows the forest plots on asthma and lower
respiratory disease and the 95% confidence ellipses on the
average effects (red solid ellipse) and the studies (green
dashed ellipse). Ninety-five percent of the studies likely fall
into the green dashed ellipse. Because of the high correlation
between the random effects (.96), we are more certain about
the position of the studies. If we had only conducted two
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separate univariate meta-analyses, we would not have known
that the effects of asthma and lower respiratory disease are
highly correlated.

In a multivariate meta-analysis, we may test whether the
average effects on asthma and lower respiratory disease are
the same and whether their heterogeneity variances are also
the same. Comparing the models with and without these two
constraints on the means and variances, the y*(df=2)=2.78,
p =.25. Therefore, there is no evidence to reject the null hy-
pothesis that the effects are the same in asthma and lower
respiratory disease.

‘We may further conduct a mixed-effects multivariate meta-
analysis by using the mean age of the participants as a mod-
erator. The estimated regression coefficients on asthma and
lower respiratory disease and their SEs are —0.04 (0.02),
p=.01 and—0.02 (0.01), p=.01, respectively. Their R* are
.59 and .39, respectively. The effect of environmental tobacco
smoke is weaker in studies with older participants. Similarly,
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we may also test whether the regression coefficients on asthma
and lower respiratory disease are the same. By comparing the
models with and without the constraint on the regression co-
efficients, the x*(df= 1) = 0.64, p = .42. Therefore, there is no
evidence to reject the null hypothesis that the moderating ef-
fect of the mean age of the participants is the same in asthma
and lower respiratory disease.

In the above analyses, we used a correlation of .5 to calcu-
late the sampling covariances between the effect sizes of asth-
ma and lower respiratory disease. We conducted a sensitivity
analysis using a correlation of 0 and .8. The results were very
similar. Therefore, our results are robust to the choices of the
correlation in calculating the sampling covariances between
the effect sizes.

Three-Level Meta-Analysis The second example was based on

the data set from Stadler, Becker, Godker, Leutner, and Greiff
(2015), Table 1). These authors investigated the correlation
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between complex problem solving and intelligence. The
authors reported the effect sizes of 60 independent samples
from 47 studies. Therefore, the effect sizes were nested within
the studies. In their Table 1, however, they did not provide
explicit information on how these independent samples were
nested. Stadler et al. (2015) conducted their meta-analysis
without taking the non-independence of the effect sizes into
account. Based on the information on “Authors” and “Year,”
we could only identify 44 clusters. As an illustration, we con-
ducted the three-level meta-analysis with 60 effect sizes
nested within 44 studies. The number of effect sizes per study
varied from 1 to 4.

If we ignore the dependence and conduct the univariate
meta-analysis, the average correlation (and its SE) is .42
(.03). The estimated heterogeneity variance and the /* are
.04 and .96, respectively. Based on the three-level meta-anal-
ysis, the average correlation (and its SE) is .43 (.03). The
estimated level-2 and level-3 heterogeneity variances are .02
and .02, respectively while the estimated level-2 and level-3 F
are .45 and .51, respectively. The three-level meta-analysis
provides more information on how the heterogeneity can be
decomposed into the level-2 and level-3 components. The
results suggest that the study level can account for more het-
erogeneity (51%) than the effect size level does (45%).

In the dataset, the effect sizes are based on two different
intelligence measures (general intelligence, with 21 indepen-
dent samples; and reasoning, with 39 independent samples). It
is of interest to test whether the effects on these intelligence
measures are the same. We include the intelligence measure as
a moderator in the three-level meta-analysis. By comparing
the models with and without the moderator, we find that the
change in the chi-square statistics was x*(df=1)=4.52,
p=.03. The average correlation between complex problem
solving and intelligence is stronger for studies with a reason-
ing measure, at .48 (SE=.04), than for those with a general
intelligence measure, at .35 (SE =.05).

Conclusion and Future Directions

This paper introduced the problems and preferred solutions for
handling non-independent effect sizes in a meta-analysis.
Multivariate meta-analyses and three-level meta-analyses
can handle different types of non-independent effect sizes.
Besides providing valid statistical models to handle non-
independent effect sizes, multivariate and three-level meta-
analyses allow researchers to address new research questions
that cannot be answered in a conventional meta-analysis. In a
multivariate meta-analysis, we may compare the average ef-
fects or heterogeneity variances across different types of effect
sizes. We may also study how the population effect sizes are
correlated. In a three-level meta-analysis, we may investigate
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the heterogeneity variances and explained variances at differ-
ent levels.

A multivariate meta-analysis is usually more challenging to
implement because we need to know the correlation between
the effect sizes. Many primary studies, however, may not in-
clude information on how to estimate this correlation. In con-
trast, it is easier to implement a three-level meta-analysis be-
cause the degree of dependence is estimated from the data. As
we have illustrated in the above example, a three-level meta-
analysis may also be used to handle different types of effect
sizes, namely, the outcome measure in our illustration.

In this paper, we simplify the non-independence into either
multivariate or nested effect sizes. Then a multivariate meta-
analysis and a three-level meta-analysis are used to address the
non-independence of the effect sizes. In applied research, the
type of dependence is usually more complicated than in cases
with either multivariate or nested effect sizes (see, e.g., Prado,
Watt, & Crowe, 2018 for an example). It may involve both
multivariate outcomes and nested structures (e.g., Cheung,
2018; Scammacca, Roberts, & Stuebing, 2014). The effect
sizes can be cross-classified rather than nested (Fernandez-
Castilla et al., 2018). Researchers may need to decide on the
best models to use in analyzing the data.

The effect sizes may still be non-independent even though
each study only contributes to one effect size. For example,
Shin (2009) found that the effect sizes reported by the same
research groups or authors tended to be more similar to each
other than those reported by other research groups or authors.
Moreover, the effect sizes of studies based on the same data
sets are also more similar to each other. If this dependence is
ignored, the estimated uncertainty (SE) may be biased. Ideally,
we may want to model all types of dependence. However, it is
sometimes challenging to do this. Further studies may clarify
when it is acceptable to drop or combine the effect sizes to
simplify the analyses.

Before closing this paper, it is important to discuss a few
issues. First, the selection of effect sizes should be guided by
the research questions. Researchers should not blindly include
all effect sizes simply because the effect sizes are available.
Researchers should carefully define the inclusion and exclu-
sion criteria and use these criteria to determine whether or not
the effect sizes should be included.

Another issue is the number of effect sizes needed to con-
duct a three-level meta-analysis. Similar to a standard meta-
analysis and multilevel model, the fixed-effects estimates are
usually quite stable whereas the stability of the estimated
level-2 and level-3 variance components depends on the num-
ber of effect sizes for the level-2 and level-3 data. For exam-
ple, Lopez-Lopez et al. (2017) showed that the estimated fixed
effects worked very well with four effect sizes per study.
Similar findings were also made in Moeyaert et al. (2017).
Therefore, researchers should apply a three-level meta-analy-
sis even when the number of level-2 effect sizes is smaller.
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When the number of level-2 or level-3 effect sizes is small,
however, researchers should be cautious in interpreting the
estimated level-2 and level-3 variance components.

In conclusion, researchers have to properly incorporate the
dependence in a meta-analysis. The recent development of
multivariate and three-level meta-analyses provides a good
starting point from which to analyze non-independent effect
sizes.
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