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Abstract
Currently, there are no effective therapies to cure Parkinson’s disease (PD), which is the second most common neurodegenera-
tive disease primarily characterized by motor dysfunction and degeneration of dopaminergic neurons in the substantia nigra 
pars compacta (SNc). Protopanaxadiols (PPDs), including 20 (R)- protopanaxadiol (R-PPD) and 20 (S)- protopanaxadiol 
(S-PPD), are main metabolites of ginsenosides. The role of ginsenosides in neurodegenerative diseases has been thoroughly 
studied, however, it is unknown whether PPDs can attenuate behavioral deficits and dopaminergic neuron injury in PD model 
mice to date. Here, we administered PPDs to MPTP-induced PD model mice and monitored the effects on behavior and 
dopaminergic neurons to investigate the effects of R-PPD and S-PPD against PD. Our results showed that R-PPD and S-PPD 
(at a dose of 20 mg/kg, i.g.) treatment alleviated MPTP (30 mg/kg, i.p.) induced behavioral deficits. Besides, R-PPD and 
S-PPD protected MPP+-induced neuron injury and mitochondrial dysfunction, and reduced the abnormal expression of Cyt 
C, Bax, caspase-3 and Bcl-2. These findings demonstrate that R-PPD and S-PPD were potentially useful to ameliorate PD.
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Introduction

Parkinson’s disease (PD) is one of the most disabling dis-
eases of the central nervous system (CNS) which affects over 
10 million people worldwide per year [1–3]. Patients with 
PD suffer from both motor symptoms [4–6] (resting tremors, 
rigidity, bradykinesia, postural instability), and non-motor 
impairments [7] (autonomic dysfunction, hyposmia, etc.) 
which occur years before the onset of motor dysfunctions. Its 
neuropathological features include progressive degeneration 

of dopaminergic (DA) neurons, misfolding aggregation 
of α-synuclein, and the formation of Lewy bodies [8, 9]. 
Although the exact pathological mechanisms of PD remains 
unclear, mounting evidence reveals that cell apoptosis [10], 
mitochondrial dysfunction [11], and neuroinflammation 
[12, 13] may contribute to the onset and progression of this 
disease.

Mitochondrial dysfunction leads to oxidative stress and 
excessive release of reactive oxygen species (ROS), causing 
damage of the mitochondrial membrane [14]. The damage 
of mitochondrial membrane activates the apoptotic signal-
ing pathway, resulting the activation of pro-apoptotic pro-
tein Bax and inhibition of anti-apoptotic protein Bcl-2 [15], 
inducing the release of Cyt C from the mitochondria, form-
ing apoptotic bodies or initiating the activation of Caspase 
9 [16, 17]. Once the executioner caspases are activated, they 
degrade cellular proteins through proteolysis, leading to a 
reduction in dopamine neurons and promoting the occur-
rence and development of PD.

Ginsenosides are the main bioactive compounds found 
in Panax ginseng and Panax notoginseng. A variety of gin-
senosides (Rb1, Rb2, etc.) have been isolated and identi-
fied [18]. Due to its steroidal structure, ginsenosides have 
varying degrees of protective effects on the nervous system, 
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digestive system, immune system, and more [19–21]. But its 
hydrophobicity leads to poor absorption through the intes-
tine and low bioavailability [22, 23]. Diol-type ginsenosides 
have various biological activities, including anti-inflamma-
tory, antioxidant, anti-apoptotic, and immune-regulating 
effects, making them natural neuroprotective agents, and 
have been shown to have potential in the treatment of PD 
[24–26]. Most ginsenosides can treat oxidative stress and 
inflammation by targeting Sirtuin 1 signaling pathway. Gin-
senoside Rc reduces mitochondrial damage and apoptosis by 
inducing SIRT. In addition, ginsenoside Re inhibited neu-
roinflammation by down-regulating CAMK/MAPK/NF-κB 
signaling in microglia, thereby exerting a neuroprotective 
effect in LPS-induced microglia model. PPDs is the main 
metabolite of ginsenoside processed by human gut micro-
biota and has high bioavailability [27].Similar to diol-type 
ginsenosides, protopanaxadiols (PPDs, the metabolite of 
diol-type ginsenosides) also exhibit good anti-inflammatory 
[28, 29], antioxidant [22, 30, 31], and immune-regulating 
effects. It has also been found that PPDs have the potential to 
promote neurogenesis in vivo [27, 32]. However, the role of 
PPDs against PD have not been explored to date. Therefore, 
in this study we investigated the effects and possible mecha-
nisms of PPDs administration on behavioral impairments 
and pathological changes using MPTP-induced PD model 
and MPP+-stimulated primary neurons.

Materials and Methods

Reagents

MPTP (M0896) and levodopa (D9628) were purchased 
from Sigma-Aldrich, 20R-PPD and 20S-PPD were obtained 
from Xililife Science (20210510). The following antibod-
ies were purchased from Abcam: anti-TH (ab137869), 
anti-Cytochrome C (ab133504), anti-Bax (ab32503), anti-
caspase-3 (ab184787), Goat Anti-Rabbit IgG & L (HRP) 
(ab6721), and Goat Anti-Mouse IgG H & L (HRP) (ab6789). 
Bcl-2 (AF6139) was purchased from Affinity. Lastly, anti-β-
actin (A5441) was purchased from Sigma-Aldrich.

Animals and Treatment

All C57BL/6 mice (male, weighing 22–25 g) were purchased 
from Department of Zoology & Yunnan Key Laboratory 
of Pharmacology for Natural Products, Kunming Medical 
University (Kunming, China), and housed in a room under 
a 12 h light/dark cycle with free access to food and water. 

Before experiments, all mice were kept for a 1-week accli-
matization period.

To evaluate the effects of 20R-PPD and 20S-PPD on 
MPTP-induced PD mouse model [33, 34], mice were ran-
domly divided into the following five groups: control group 
(saline treated), model group (MPTP-treated, 30 mg/kg, 
i.p.), 20R-PPD group (MPTP and 20R-PPD treated), 20S-
PPD group (MPTP and 20S-PPD treated), levodopa group 
(MPTP and levodopa treated). MPTP-HCL was dissolved in 
normal saline (0.9%) solution and injected intraperitoneally 
for 7 consecutive days. PPDs and levodopa were dissolved in 
0.9% saline and administered by gavage for 14 days at doses 
of 20 mg/kg and 120 mg/kg respectively (Fig. 1A).

Behavioral Testing

Open Field Test (OFT)

The open field test is widely used to assess spontaneous 
locomotor activity in mice. The Open field box consists of 
a plastic box of 50 cm × 50 cm × 50 cm. Mice are placed in 
the center of the open field and behavioral activities were 
videotaped for 5 min [35].

Pole Climbing Test

The pole-climbing experiment is a classic method for evalu-
ating the coordination ability of mice. Mice were placed 
head up on a pole (length: 50 cm, and radius: 0.5 cm). The 
time which mice head turned (T-turn) and the total time from 
the top to the bottom of the pole was recorded.

Cell Culture Treatments

The midbrain of the fetuses was removed from the pregnant 
mice at 18 days of gestation under anesthesia. After the blood 
membranes and blood vessels of the midbrain tissue were 
mechanically stripped off, the cell suspension was obtained 
by adding 0.25% trypsin for 15 min. The neurons were mixed 
with culture medium, evenly planted in 96-well or 6-well 
plate in Neurobasal medium supplemented with 50 × B27 
supplement for a final concentration of 1 × . Then, neurons 
were transferred to the cell culture incubator (37 °C, 5% 
CO2) for further culture, and the medium was changed the 
next day. Neuronal cells mature at 7–8 days. Dopaminergic 
neurons were examined by immunocytochemical staining 
using antibodies against the neuronal marker β-III-tubulin 
and the dopaminergic marker tyrosine hydroxylase (TH).
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Fig. 1   PPDs improve motor 
behavior and the reduction of 
TH protein in MPTP-treated 
mice. Behavioral parameters 
were measured on D 7 (n = 9) 
and D 14 to assess motor 
function in different treatment 
groups (n = 6). A Timeline of 
the experimental procedure in 
the MPTP-induced mouse PD 
model. B and C Day 7 open 
field test. D and E Day 7 pole 
test. F and G TH expression 
on Day 7 (n = 3). H and I Day 
14 open field test. J and K 
Day 14 pole test. L and M TH 
expression on Day14 (n = 3). 
Quantified data are normal-
ized to the control group (the 
control group value is equal 
to 1). Data are expressed as 
means ± S.E.M, (n = 6). Statisti-
cal significance was determined 
by one-way ANOVA followed 
by Tukey’s post hoc analysis 
where #P < 0.05, ##P < 0.01 rep-
resents control vs. MPTP group, 
*P < 0.05, **P < 0.01 represents 
MPTP vs. MPTP + protopanax-
adiols or L-DOPA
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CCK‑8 Assay of Cell Viability

The effect of PPDs on neurons viability was detected using a 
cell counting kit (CCK8) (C8022, Adamas life). Briefly [36], 
primary neurons were seeded in 96 well plates. After exposure 
to different concentrations of PPDs (5, 10, 20 μmol/L) and 
MPP+ (30 μmol/L) for 24 h, 10 μL of CCK8 solution was 
added to each well and incubated for 2 h. Finally, the absorb-
ance was detected at 450 nm.

Cell ROS

The intracellular ROS levels were measured using the DCFH-
DA assay kit [37]. Cells pretreated with (or without) PPDs 
(10 μmol/L) were primed with MPP+ (30 μmol/L, 24 h). 
10 μmol/L of DCFH-DA reagent was added and incubated 
at 37 °C for 20 min. After that, cells were washed three times 
with PBS. The fluorescence intensity was observed under a 
fluorescence microscope and images were captured.

Mitochondrial Membrane Potential

The JC-1 mitochondrial membrane potential fluorescence 
probe was used to detect changes in mitochondrial mem-
brane potential. After 24 h of PPDs (10 μmol/L) and MPP+ 
(30 μmol/L) treatment, 10 µg/mL JC-1 working solution was 
added and incubated for 20 min at 37 °C, followed by wash-
ing with PBS for three times. The fluorescence intensity was 
observed under a fluorescence microscope and photographed 
or the absorbance was detected by a fluorescent microplate 
reader.

Western Blot Analysis

The proteins from cell or tissue samples were separated by 
SDS-PAGE polyacrylamide gel and transferred onto a poly-
vinylidene difluoride (PVDF) membrane. The membrane was 
blocked in 5% skim milk for 2 h, followed by overnight incu-
bation with protein-specific antibodies on a shaker at 4 °C. 
After incubation with HRP-conjugated secondary antibodies 
for 2 h, chemiluminescent substrate was evenly added onto the 
PVDF membrane containing the target protein, and chemilu-
minescent imaging was performed using a chemiluminescent 
imaging system.

Data Statistics and Analysis

The data were tested for homogeneity of variance and normal 
distribution, difference between groups was analyzed with 
one-way ANOVA followed by a Tukey’s post hoc test. The 
data results were presented as mean ± standard error of the 
mean (Mean ± SEM). A P-value of < 0.05 is considered sta-
tistically significant.

Results

PPDs Ameliorate Motor Deficits and TH Reduction 
in MPTP‑Administered miCe

Behavioral tests were conducted on Day 7 and Day 14 to 
assess the motor symptoms of the mice. The open field 
test was used to evaluate the mice’s spontaneous activity 
and motor impairment. Compared to the control group, 
MPTP mice exhibited a significant decrease in the distance 
traveled in the open field on Day7 and 14 (Fig. 1B and C, 
H–I). The pole test was done to assess motor coordination. 
Compared to the control group, MPTP mice spent more 
time for both t-turn and t-total on Day 7 (Fig. 1D and E) 
and 14 (Fig. 1J and K), indicating severe impairment in 
motor coordination. Compared to MPTP mice, PPDs at 
a dose of 20 mg/kg body weight significantly alleviated 
motor impairment of MPTP-induced PD model mice in the 
pole climbing and open field tests on Day 7 and Day 14.

Tyrosine hydroxylase (TH) is a key enzyme in 
the dopamine (DA) biosynthetic pathway. PD is a 
neurodegenerative disorder caused by a severe deficiency 
of DA in the substantia nigra and striatum. Therefore, TH 
plays an important role in the biosynthesis of dopamine, 
and the changes of TH content are closely related to the 
occurrence and development of PD. We detected the 
expression levels of TH protein by western blot. The 
results showed that the expression of TH protein was 
reduced in MPTP-treated mice, while PPDs treatment 
significantly increased TH expression (Fig. 1F and G, L 
and M).

PPDs Attenuate MPP+‑Induced Primary Neurons 
Injury and Mitochondrial Deficits

To evaluate the effects of PPDs on the survival of primary 
neurons, primary neurons were pretreated with different 
concentrations of PPDs for 2 h, followed by treatment with 
MPP+ (30 μmol/L) for 24 h, and a CCK-8 assay was deter-
mined neuron viability. As shown in 2A and B, compared 
to the control group, the neuron viability was significantly 
lower in the MPP+ group. While, in the 20R-PPD and 20S-
PPD groups, the cell viability was significantly higher than 
in the MPTP group (Fig. 2A andB). These results indicated 
that PPDs protected MPTP-induced neuron injury.

In order to check the effects of PPDs on mitochondrial 
deficits, mitochondrial membrane potential and cytoplas-
mic ROS were measured. As shown in Fig. 2C–F, MPP+ 
treatment impaired mitochondrial membrane potential 
and induced ROS production, whereas PPDs treatment 
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Fig. 2   The effects of PPDs on MPP+-induced neuronal injury and 
mitochondrial deficits. A R-PPD. B S-PPD. A and B Primary neurons 
were pretreated with R-PPD and S-PPD for 2 h, followed by MPP+ 
treatment for 24 h, and the cell viability was measured by CCK8. C 
Mitochondrial membrane potential was measured by JC-1. In healthy 
cells, JC-1 monomers aggregate to form polymers, and mitochondria 
exhibit intense red fluorescence. JC-1 is present as a monomer in 
apoptotic or necrotic cells, and mitochondria are strongly green fluo-
rescence. Scale bars, 25 μm. D The absorbance of JC-1 was detected 
by fluorescent microplate reader. The ratio of red fluorescence sig-

nal to green fluorescence signal was calculated to judge the health of 
mitochondrial membrane potential. E The DCFH-DA method meas-
ures intracellular reactive oxygen species (ROS) accumulation and is 
monitored by fluorescence microscopy. Scale bars, 200  μm. F ROS 
fluorescence intensity was analyzed and quantified. Quantified data 
are normalized to the control group (the control group value is equal 
to 1). Statistical significance was determined by one-way ANOVA 
followed by Tukey’s post hoc analysis where #P < 0.05, ##P < 0.01 
represents control vs. MPP+ group, *P < 0.05, **P < 0.01 represents 
MPP+ vs. MPP+  + protopanaxadiols
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restored mitochondrial membrane potential and inhibited 
the increase in cellular ROS levels.

PPDs Administration Rescues MPTP‑Induced 
the Abnormal Expression of Mitochondria‑Mediated 
Apoptosis Proteins

Mitochondrial pro-apoptotic factor release into the cyto-
plasm plays a crucial role in mediating apoptosis in the 
occurrence and development of PD. In order to investigate 
the effects of PPDs on apoptosis, apoptosis-related pro-
teins were extracted for detection. Compared to the control 
group, the expression of Cyt C increased in MPTP mice, 
and the expression of apoptosis-related proteins Bax and 
caspase-3 significantly increased, while the expression of 
anti-apoptotic protein Bcl-2 significantly decreased. While, 
after PPDs treatment, the expression of anti-apoptotic pro-
tein Bcl-2 increase, and the expression of apoptosis proteins 
Bax and caspase-3 increase (Fig. 3A–J). In conclusion, our 
results suggest that PPDs inhibit mitochondria-mediated cell 
apoptosis.

PPDs Rescue MPP+‑Induced the Abnormal 
Expression of Proteins Related 
to Mitochondria‑Mediated Apoptosis

In order to support the experimental results in MPTP-
induced mice model, the MPP+ -induced primary neuronal 
model was analyzed. The results of the experiment showed 
that after treatment with MPP+, the levels of Cyt C signifi-
cantly increased, as well as the levels of apoptotic proteins 
Bax and caspase-3, while the expression of anti-apoptotic 
protein Bcl-2 decreased. However, when we treated the cells 
with PPD, these changes were reversed (Fig. 4A–E).

Discussion

According to epidemiological studies, apoptosis and the 
development of PD are associated with impaired mitochon-
drial complex I activity and REDOX state imbalance [3, 38]. 
Although there are many kinds of drugs used in the clinical 
treatment of PD, there is no drug that can completely cure 
PD [39]. In recent years, with the increasing attention paid 
to traditional medicine and natural medicine, natural medi-
cine for the treatment of diseases has received considerable 
attention. Therefore, the present study aimed to investigate 
the protective effect of protopanaxadiols (metabolites of gin-
senoside) on motor deficits and mitochondrial dysfunction 
in MPTP-induced PD mice.

The main pathological manifestations of PD are 
movement disorders such as resting tremor, myotonia, 
bradykinesia, postural balance disorder and so on [40–42]. 

To investigate the effect of Protopanaxadiols in vivo, we 
induced a subacute PD model in mice by administering 
MPTP for 7 consecutive days, which resulted in significant 
motor impairment and reduced expression of TH protein 
[33–35]. In addition, MPTP is converted to 1-methyl-4-
phenylpyridine (MPP+) in glial cells, which blocks complex 
I of the electron transport chain, reduces ATP production 
and increases ROS production, resulting in mitochondrial 
dysfunction [43, 44]. When mitochondrial function is 
impaired, a series of signaling molecules is released, among 
them Cyt C and apoptosis-inducing factors [21, 45], which 
can activate the apoptotic pathway, which is consistent 
with previously reported inhibition [46–48]. Treatment 
with Protopanaxadiols ameliorated MPTP-induced 
dyskinesia, improved motor coordination and spontaneous 
movements, and increased TH protein expression in PD 
mice. Meanwhile, MPTP-induced increase of Bax, caspase-3 
and Cyt C protein expression and decrease of Bcl-2 protein 
expression were reversed.

The mitochondria are critical regulators of function and 
survival within neurons in the brain, playing a vital role 
in maintaining neuronal energy balance and preventing 
apoptosis [49–51]. In pathological autopsies of PD animal 
models and PD patients, a large number of enlarged and 
damaged mitochondria were found in neurons, indicating 
that dysfunctional mitochondria were accumulated in the 
body [52, 53]. Existing studies have shown that the increase 
of ROS and the decrease of ATP caused by mitochondrial 
dysfunction promote oxidative stress response, aging and 
neurodegenerative changes, which promote the occurrence 
and development of PD [54, 55]. MPP+ inhibits the function 
of respiratory complex I, interferes with the mitochondrial 
electron transport chain, and eventually leads to the decrease 
of mitochondrial membrane potential, the increase of ROS, 
and mitochondrial damage [55, 56]. We observed that PPDs 
treatment restored mitochondrial membrane potential and 
reduced ROS accumulation, suggesting that PPDs could 
rescue mitochondrial dysfunction. In addition, the in vitro 
findings were consistent with those in vivo, where PPDs 
inhibited mitochondria-mediated apoptosis and reversed the 
MPP+-induced abnormal increase in Bax, caspase-3, and 
Cyt C protein expression and abnormal decrease in Bcl-2 
protein expression.

In Parkinson’s disease, levodopa, the precursor of 
dopamine, is a key component in the treatment of PD. It 
is often used to treat motor symptoms of PD. Studies 
have shown that levodopa therapy increased dopamine 
release and alleviated motor symptoms, it did not appear 
to affect the progression of the disease itself [57]. In our 
study, we observed that levodopa abolished the effect of 
MPTP on apoptotic factors, which contradicts the literature 
reports on the neuroprotective effects of levodopa. A 
possible explanation may be related to the complexity of 
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PD pathogenesis. Existing studies found that Levodopa 
increased the activity of Mn-SOD and mitochondrial 
complex I when administered simultaneously with 

MPTP [58], this is consistent with previous reports [59]. 
In addition, Levodopa can upregulate neuronal growth 
and repair processes [60]. In the Rotenone-induced PD 

Fig. 3   Effect of PPDs on MPTP-induced mitochondria-mediated 
apoptosis proteins. A–E The expressions of Bcl-2, Bax, caspase-3 
and Cyt C were detected by western blot on Day7. F–J The expres-
sions of Bcl-2, Bax, caspase-3 and Cyt C were detected by west-
ern blot on Day14. Quantified data are normalized to the control 
group (the control group value is equal to 1). Data are expressed 

as means ± S.E.M, (n = 3). Statistical significance was determined 
by one-way ANOVA followed by Tukey’s post hoc analysis where 
#P < 0.05, ##P < 0.01 represents control vs. MPTP group, *P < 0.05, 
**P < 0.01 represents MPTP vs. MPTP + protopanaxadiols or Levo-
dopa
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model, administration of Levodopa significantly reduced 
the activity levels of Bax and caspase-3 and increased the 
level of Bcl-2 [61, 62]. Mitochondria play an important 
role in regulating apoptosis and the pathogenesis of 
PD. Bax promotes apoptosis by inducing mitochondrial 
membrane depolarization and Cyt C release, while Bcl-2 
inhibits apoptosis by preventing mitochondrial membrane 
depolarization [63]. Thus, while levodopa primarily treats 
motor symptoms through dopamine supplementation, the 
disease involves a complex interplay of multiple molecular 
and cellular pathways in addition to dopamine modulation, 
demonstrating the complexity of PD and the need for a 
comprehensive approach when investigating its mechanisms 
and potential treatments.

Therefore, our research demonstrates that PPDs improve 
motor dysfunction and restore mitochondrial dysfunction in 
PD model mice, thus suggesting potential use of PPDs for 
PD therapy.
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