Skip to main content

Advertisement

Log in

Sericin Improves Memory Impairment Via Activation of the PKA-CREB-BDNF Signaling Pathway and Suppression of Oxidative Stress in Ovariectomized Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Menopause results in estrogen hormone deficiency which causes changes in brain morphology and cognitive impairments. The risk of breast and ovarian cancer increases with estrogen therapy. Thus, finding a substitute treatment option for women in menopause is necessary. In the current study, the impact of chronic sericin treatment (200 mg/kg/day for 6 weeks, gavage) on memory process, oxidative stress markers, synaptic neurotransmission, and acetylcholinesterase (AChE) activity in the hippocampus (HIP) of ovariectomized (OVX) mice was examined and compared to the effects of 17β-estradiol (Es; 20 µg/kg, s.c.). The results demonstrated that sericin and Es administration improved spatial and recognition memory of the OVX animals in the both Lashley III maze and novel object recognition tests. Moreover, sericin-treated OVX mice showed decreased ROS levels, increased endogenous antioxidant defense capacity, and decreased AChE activity in the HIP. Additionally, sericin and Es therapy up-regulated pre-and-post-synaptic protein markers and increased BDNF, CREB, and protein kinase A (PKA) protein expressions in the HIP of OVX mice. Overall, the activation of the PKA-CREB-BDNF signaling pathway by sericin can provide protection against OVX-induced cognitive dysfunction, making it a potential alternative for managing cognitive deficits in postmenopausal women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study can be obtained from the corresponding author upon reasonable request.

References

  1. Gold EB, A GG (2007) Epidemiology of menopause: demographics, environmental influences, and ethnic and international differences in the menopausal experience. In: Treatment of the Postmenopausal Woman. Elsevier, pp 77–96

  2. Golezar S, Ramezani Tehrani F, Khazaei S, Ebadi A, Keshavarz Z (2019) The global prevalence of primary ovarian insufficiency and early menopause: a meta-analysis. Climacteric 22:403–411

    Article  CAS  PubMed  Google Scholar 

  3. Henderson VW (2008) Cognitive changes after menopause: influence of estrogen. Clin Obstet Gynecol 51:618

    Article  PubMed  PubMed Central  Google Scholar 

  4. Simpkins J, Yang S, Wen Y, Singh M (2005) Estrogens, progestins, menopause and neurodegeneration: basic and clinical studies. Cell Mol Life Sci: CMLS 62:271–280

    Article  CAS  PubMed  Google Scholar 

  5. Khan MM, Dhandapani KM, Zhang Q-g, Brann DW (2013) Estrogen regulation of spine density and excitatory synapses in rat prefrontal and somatosensory cerebral cortex. Steroids 78:614–623

    Article  CAS  PubMed  Google Scholar 

  6. Vegeto E, Benedusi V, Maggi A (2008) Estrogen anti-inflammatory activity in brain: a therapeutic opportunity for menopause and neurodegenerative diseases. Front Neuroendocrinol 29:507–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garcia-Segura LM, Cardona-Gomez P, Naftolin F, Chowen JA (1998) Estradiol upregulates Bcl-2 expression in adult brain neurons. NeuroReport 9:593–597

    Article  CAS  PubMed  Google Scholar 

  8. Adu-Nti F, Gao X, Wu J-M, Li J, Iqbal J, Ahmad R, Ma X-M (2021) Osthole ameliorates estrogen deficiency-induced cognitive impairment in female mice. Front Pharmacol 12:641909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tao X, Yan M, Wang L, Zhou Y, Wang Z, Xia T, Liu X, Pan R, Chang Q (2020) Effects of estrogen deprivation on memory and expression of related proteins in ovariectomized mice. Ann Transl Med 8:356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Altunkaynak B, Unal D, Altunkaynak M, Halici Z, Kalkan Y, Keles O, Aksak S, Selli J, Unal B (2012) Effects of diabetes and ovariectomy on rat hippocampus (a biochemical and stereological study). Gynecol Endocrinol 28:228–233

    Article  CAS  PubMed  Google Scholar 

  11. Sánchez-Rodríguez MA, Zacarías-Flores M, Arronte-Rosales A, Correa-Muñoz E, Mendoza-Núñez VM (2012) Menopause as risk factor for oxidative stress. Menopause 19:361–367

    Article  PubMed  Google Scholar 

  12. Hammond R, Gibbs R (2011) GPR30 is positioned to mediate estrogen effects on basal forebrain cholinergic neurons and cognitive performance. Brain Res 1379:53–60

    Article  CAS  PubMed  Google Scholar 

  13. Batallán Burrowes AA, Olajide OJ, Iasenza IA, Shams WM, Carter F, Chapman CA (2022) Ovariectomy reduces cholinergic modulation of excitatory synaptic transmission in the rat entorhinal cortex. PLoS ONE 17:e0271131

    Article  PubMed  PubMed Central  Google Scholar 

  14. Monteiro SC, Stefanello FM, Vianna LP, Matté C, Barp J, Belló-Klein A, Trindade VM, Wyse AT (2005) Ovariectomy enhances acetylcholinesterase activity but does not alter ganglioside content in cerebral cortex of female adult rats. Metab Brain Dis 20:35–44

    Article  CAS  PubMed  Google Scholar 

  15. Martins DB, Mazzanti CM, França RT, Pagnoncelli M, Costa MM, de Souza EM, Gonçalves J, Spanevello R, Schmatz R, da Costa P, Mazzanti A, Beckmann DV, Cecim MdS, Schetinger MR, Lopes STdA (2012) 17-β estradiol in the acetylcholinesterase activity and lipid peroxidation in the brain and blood of ovariectomized adult and middle-aged rats. Life Sci 90:351–359

    Article  CAS  PubMed  Google Scholar 

  16. Amidfar M, de Oliveira J, Kucharska E, Budni J, Kim Y-K (2020) The role of CREB and BDNF in neurobiology and treatment of Alzheimer’s disease. Life Sci 257:118020

    Article  CAS  PubMed  Google Scholar 

  17. Saura CA, Valero J (2011) The role of CREB signaling in Alzheimer’s disease and other cognitive disorders

  18. Sakuma W, Nakagawasai O, Nemoto W, Odaira T, Ogawa T, Ohta K, Endo Y, Tan-No K (2020) Antidepressant effect of BE360, a new selective estrogen receptor modulator, activated via CREB/BDNF, Bcl-2 signaling pathways in ovariectomized mice. Behav Brain Res 393:112764

    Article  CAS  PubMed  Google Scholar 

  19. Aggarwal A, Sharma N, Sandhir R, Rishi V (2019) S-nitrosoglutathione prevents cognitive impairment through epigenetic reprogramming in ovariectomised mice. Biochem Pharmacol 168:352–365

    Article  CAS  PubMed  Google Scholar 

  20. Pluchino N, Cubeddu A, Begliuomini S, Merlini S, Giannini A, Bucci F, Casarosa E, Luisi M, Cela V, Genazzani AR (2009) Daily variation of brain-derived neurotrophic factor and cortisol in women with normal menstrual cycles, undergoing oral contraception and in postmenopause. Human reproduction (Oxford, England) 24:2303–2309

    Article  CAS  PubMed  Google Scholar 

  21. Bohm-Levine N, Goldberg AR, Mariani M, Frankfurt M, Thornton J (2020) Reducing luteinizing hormone levels after ovariectomy improves spatial memory: possible role of brain-derived neurotrophic factor. Horm Behav 118:104590

    Article  CAS  PubMed  Google Scholar 

  22. Rashidy-Pour A, Bavarsad K, Miladi-Gorji H, Seraj Z, Vafaei AA (2019) Voluntary exercise and estradiol reverse ovariectomy-induced spatial learning and memory deficits and reduction in hippocampal brain-derived neurotrophic factor in rats. Pharmacol Biochem Behav 187:172819

    Article  CAS  PubMed  Google Scholar 

  23. Persson I, Weiderpass E, Bergkvist L, Bergström R, Schairer C (1999) Risks of breast and endometrial cancer after estrogen and estrogen–progestin replacement. Cancer Causes Control 10:253–260

    Article  CAS  PubMed  Google Scholar 

  24. Chen Z, He Y, Song C, Dong Z, Su Z, Xue J (2012) Sericin can reduce hippocampal neuronal apoptosis by activating the Akt signal transduction pathway in a rat model of diabetes mellitus. Neural Regen Res 7:197

    PubMed  PubMed Central  Google Scholar 

  25. Aramwit P, Siritientong T, Srichana T (2012) Potential applications of silk sericin, a natural protein from textile industry by-products. Waste Manage Res 30:217–224

    Article  CAS  Google Scholar 

  26. Yellamma K (2014) Silk protein, sericin as a cognitive enhancer in Alzheimer’s disease. J Alzheimers Dis Parkinsonism 4(2161–0460):1000163

    Google Scholar 

  27. Kunz RI, Brancalhão RMC, Ribeiro LdFC, Natali MRM (2016) Silkworm sericin: properties and biomedical applications. BioMed Res Int

  28. Chaudhary SSAM, Khan AH (2015) Abresham (Bombyx mori cocoon): a house of a worm with immense medicinal value. Research & Reviews: A Journal of Pharmaceutical Science 6(3):30–41p

    Google Scholar 

  29. Peera K, Yellamma K (2016) Evaluation of potential antioxidant activity of silk protein-sericin against Alzheimer’s disease induced rat brain. Science Spectrum 1:384–395

    Google Scholar 

  30. Peera K, Yellamma K (2015) Sericin as a chlinergic modulator in Alzaeimer’s disease induced rat. Int J Pharm Pharm Sci 7:108–112

    CAS  Google Scholar 

  31. Squadrito F, Altavilla D, Squadrito G, Saitta A, Cucinotta D, Minutoli L, Deodato B, Ferlito M, Campo GM, Bova A, Caputi AP (2000) Genistein supplementation and estrogen replacement therapy improve endothelial dysfunction induced by ovariectomy in rats. Cardiovasc Res 45:454–462

    Article  CAS  PubMed  Google Scholar 

  32. Crandall CJ, Hovey KM, Andrews C, Cauley JA, Stefanick M, Shufelt C, Prentice RL, Kaunitz AM, Eaton C, Wactawski-Wende J (2017) Comparison of clinical outcomes among users of oral and transdermal estrogen therapy in the Women’s Health Initiative Observational Study. Menopause (New York, NY) 24:1145

    Article  Google Scholar 

  33. Olié V, Canonico M, Scarabin P-Y (2010) Risk of venous thrombosis with oral versus transdermal estrogen therapy among postmenopausal women. Curr Opin Hematol 17:457–463

    Article  PubMed  Google Scholar 

  34. Mohammed K, Abu Dabrh AM, Benkhadra K, Al Nofal A, Carranza Leon BG, Prokop LJ, Montori VM, Faubion SS, Murad MH (2015) Oral vs transdermal estrogen therapy and vascular events: a systematic review and meta-analysis. J Clin Endocrinol Metab 100:4012–4020

    Article  CAS  PubMed  Google Scholar 

  35. Farajdokht F, Vatandoust SM, Hosseini L, Fekri K, Aghsan SR, Majdi A, Sadigh-Eteghad S, Mahmoudi J (2021) Sericin protects against acute sleep deprivation-induced memory impairment via enhancement of hippocampal synaptic protein levels and inhibition of oxidative stress and neuroinflammation in mice. Brain Res Bull 174:203–211

    Article  CAS  PubMed  Google Scholar 

  36. Mahmoudi J, Hosseini L, Sadigh-Eteghad S, Farajdokht F, Vatandoust SM, Ziaee M (2021) Sericin alleviates thermal stress induced anxiety-like behavior and cognitive impairment through regulation of oxidative stress, apoptosis, and heat-shock protein-70 in the hippocampus. Neurochem Res 46:2307–2316

    Article  CAS  PubMed  Google Scholar 

  37. Hendrix SL (2005) Bilateral oophorectomy and premature menopause. Am J Med 118:131–135

    Article  PubMed  Google Scholar 

  38. Hara Y, Waters EM, McEwen BS, Morrison JH (2015) Estrogen effects on cognitive and synaptic health over the lifecourse. Physiol Rev 95:785–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaidah S (2016) Exercise improves hippocampal estrogen and spatial memory of ovariectomized rats. Bratislava Med J 116(2):94–99

    Article  Google Scholar 

  40. Rocca W, Bower J, Maraganore D, Ahlskog J, Grossardt B, De Andrade M, Lr M (2007) Increased risk of cognitive impairment or dementia in women who underwent oophorectomy before menopause. Neurology 69:1074–1083

    Article  CAS  PubMed  Google Scholar 

  41. Maki PM, Sundermann E (2009) Hormone therapy and cognitive function. Hum Reprod Update 15:667–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hasegawa Y, Hojo Y, Kojima H, Ikeda M, Hotta K, Sato R, Ooishi Y, Yoshiya M, Chung B-C, Yamazaki T (2015) Estradiol rapidly modulates synaptic plasticity of hippocampal neurons: involvement of kinase networks. Brain Res 1621:147–161

    Article  CAS  PubMed  Google Scholar 

  43. Xu Y, Sheng H, Tang Z, Lu J, Ni X (2015) Inflammation and increased IDO in hippocampus contribute to depression-like behavior induced by estrogen deficiency. Behav Brain Res 288:71–78

    Article  CAS  PubMed  Google Scholar 

  44. Feng Z, Zhang J-t (2005) Long-term melatonin or 17β-estradiol supplementation alleviates oxidative stress in ovariectomized adult rats. Free Radical Biol Med 39:195–204

    Article  CAS  Google Scholar 

  45. Chatuphonprasert W, Udomsuk L, Monthakantirat O, Churikhit Y, Putalun W, Jarukamjorn K (2013) Effects of Pueraria mirifica and miroestrol on the antioxidation-related enzymes in ovariectomized mice. J Pharm Pharmacol 65:447–456

    Article  CAS  PubMed  Google Scholar 

  46. Delrobaei F, Fatemi I, Shamsizadeh A, Allahtavakoli M (2019) Ascorbic acid attenuates cognitive impairment and brain oxidative stress in ovariectomized mice. Pharmacol Rep 71:133–138

    Article  CAS  PubMed  Google Scholar 

  47. Seyedaghamiri F, Farajdokht F, Vatandoust SM, Mahmoudi J, Khabbaz A, Sadigh-Eteghad S (2021) Sericin modulates learning and memory behaviors by tuning of antioxidant, inflammatory, and apoptotic markers in the hippocampus of aged mice. Mol Biol Rep 48:1371–1382

    Article  CAS  PubMed  Google Scholar 

  48. Saeed K, Jo MH, Park JS, Alam SI, Khan I, Ahmad R, Khan A, Ullah R, Kim MO (2021) 17β-Estradiol Abrogates Oxidative Stress and Neuroinflammation after Cortical Stab Wound Injury. Antioxidants (Basel, Switzerland) 10

  49. Khan I, Saeed K, Jo MG, Kim MO (2021) 17-β Estradiol Rescued Immature Rat Brain against Glutamate-Induced Oxidative Stress and Neurodegeneration via Regulating Nrf2/HO-1 and MAP-Kinase Signaling Pathway. Antioxidants (Basel, Switzerland) 10

  50. Hao F, Gu Y, Tan X, Deng Y, Wu Z-T, Xu M-J, Wang W-Z (2016) Estrogen replacement reduces oxidative stress in the rostral ventrolateral medulla of ovariectomized rats. Oxid Med Cell Long

  51. Cobley JN, Fiorello ML, Bailey DM (2018) 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 15:490–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tönnies E, Trushina E (2017) Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimer’s Dis: JAD 57:1105–1121

    Article  PubMed  Google Scholar 

  53. Zhong Y, Zhu Y, He T, Li W, Yan H, Miao Y (2016) Rolipram-induced improvement of cognitive function correlates with changes in hippocampal CREB phosphorylation, BDNF and Arc protein levels. Neurosci Lett 610:171–176

    Article  CAS  PubMed  Google Scholar 

  54. Lu B, Nagappan G, Guan X, Nathan PJ, Wren P (2013) BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci 14:401–416

    Article  CAS  PubMed  Google Scholar 

  55. Lalert L, Kruevaisayawan H, Amatyakul P, Ingkaninan K, Khongsombat O (2018) Neuroprotective effect of Asparagus racemosus root extract via the enhancement of brain-derived neurotrophic factor and estrogen receptor in ovariectomized rats. J Ethnopharmacol 225:336–341

    Article  PubMed  Google Scholar 

  56. Lorenzana-Martínez G, Santerre A, Andrade-González I, Bañuelos-Pineda J (2022) Effects of Hibiscus sabdariffa calyces on spatial memory and hippocampal expression of BDNF in ovariectomized rats. Nutr Neurosci 25:670–680

    Article  PubMed  Google Scholar 

  57. Huang Y-y, Wang Y-q, Gao Y-m, Liu Q-z, Ye F-f, Guo B, Wu Y-c, Xue L (2020) BDNF and its multirole function in neurogenesis, synaptic transmission and neurodegenerative diseases. Nano Life 10:2040007

    Article  CAS  Google Scholar 

  58. Vatandoust SM, Meftahi GH (2022) The effect of sericin on the cognitive impairment, depression, and anxiety caused by learned helplessness in male mice. J Mol Neurosci 72:963–974

    Article  CAS  PubMed  Google Scholar 

  59. Fang YY, Zeng P, Qu N, Ning LN, Chu J, Zhang T, Zhou XW, Tian Q (2018) Evidence of altered depression and dementia-related proteins in the brains of young rats after ovariectomy. J Neurochem 146:703–721

    Article  CAS  PubMed  Google Scholar 

  60. O’Leary OF, Wu X, Castren E (2009) Chronic fluoxetine treatment increases expression of synaptic proteins in the hippocampus of the ovariectomized rat: role of BDNF signalling. Psychoneuroendocrinology 34:367–381

    Article  PubMed  Google Scholar 

  61. Marucci G, Buccioni M, Dal Ben D, Lambertucci C, Volpini R, Amenta F (2021) Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 190:108352

    Article  CAS  PubMed  Google Scholar 

  62. Iramain C, Owasoyo J, Egbunike G (1980) Influence of estradiol on acetylcholinesterase activity in several female rat brain areas and adenohypophysis. Neurosci Lett 16:81–84

    Article  CAS  PubMed  Google Scholar 

  63. Acosta JI, Mayer L, Talboom JS, Tsang CWS, Smith CJ, Enders CK, Bimonte-Nelson HA (2009) Transitional versus surgical menopause in a rodent model: etiology of ovarian hormone loss impacts memory and the acetylcholine system. Endocrinology 150:4248–4259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Albrahim T, Alangry R, Alotaibi R, Almandil L, Alburikan S (2023) Effects of regular exercise and intermittent fasting on neurotransmitters, inflammation, oxidative stress, and brain-derived neurotrophic factor in cortex of ovariectomized rats. Nutrients 15

  65. Abdelkader NF, Abd El-Latif AM, Khattab MM (2020) Telmisartan/17β-estradiol mitigated cognitive deficit in an ovariectomized rat model of Alzheimer’s disease: modulation of ACE1/ACE2 and AT1/AT2 ratio. Life Sci 245:117388

    Article  CAS  PubMed  Google Scholar 

  66. Fatahian R, Hosseini E, Fatahian A, Fatahian E, Fatahian H (2022) A review on potential applications of sericin, and its biological, mechanical, and thermal stability characteristics. Int J Eng Technol Sci 9:1–9

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported in part by a grant (no: 63894) awarded to Dr. Javad Mahmoudi from Tabriz University of Medical Sciences (Tabriz, Iran).

Author information

Authors and Affiliations

Authors

Contributions

JM and FF conceived and designed the study. FF, SMV, and JM performed the experiments and collected the data. SSE and PGS analyzed the data. The first draft of the manuscript was written by SM, HF, and LH. All authors commented on previous versions of the manuscript, and reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Javad Mahmoudi.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farajdokht, F., Sadigh-Eteghad, S., Vatandoust, S. et al. Sericin Improves Memory Impairment Via Activation of the PKA-CREB-BDNF Signaling Pathway and Suppression of Oxidative Stress in Ovariectomized Mice. Neurochem Res 49, 1093–1104 (2024). https://doi.org/10.1007/s11064-023-04094-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04094-5

Keywords

Navigation