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Abstract
Huntington’s disease (HD) is an autosomal-dominant neurodegenerative disorder characterized by motor, psychiatric and 
cognitive symptoms. Injection of 3-nitropropionic acid (3-NP) is a widely used experimental model for induction of HD. The 
current study aimed to inspect the potential neuroprotective properties of azilsartan (Azil), an angiotensin II type 1 receptor 
blocker (ATR1), in 3-NP-induced striatal neurotoxicity in rats. Rats were randomly allocated into five groups and treated for 
14 days as follows: group I received normal saline; group II received Azil (10 mg/kg, p.o.); group III received 3-NP (10 mg/
kg, i.p); group IV and V received Azil (5 or 10 mg/kg, p.o, respectively) 1 h prior to 3-NP injection. Both doses of Azil 
markedly attenuated motor and behavioural dysfunction as well as striatal histopathological alterations caused by 3-NP. In 
addition, Azil balanced striatal neurotransmitters levels as evidenced by the increase of striatal gamma-aminobutyric acid 
content and the decrease of glutamate content. Azil also amended neuroinflammation and oxidative stress via modulating 
IĸB/NF-ĸB and KEAP1/Nrf2 downstream signalling pathways, as well as reducing iNOS and COX2 levels. Moreover, Azil 
demonstrated an anti-apoptotic activity by reducing caspase-3 level and BAX/BCL2 ratio. In conclusion, the present study 
reveals the neuroprotective potential of Azil in 3-NP-induced behavioural, histopathological and biochemical changes in 
rats. These findings might be attributed to inhibition of ATR1/NF-κB signalling, modulation of Nrf2/KEAP1 signalling, 
anti-inflammatory, anti-oxidant and anti-apoptotic properties.
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Introduction

Huntington’s disease (HD) is an autosomal-dominant neuro-
degenerative disorder caused by the expansion of the CAG 
trinucleotide repeat in the Huntingtin (Htt) gene leading to 
the production of a mutant huntingtin protein (mHtt) [1–3]. 
Clinical symptoms of HD include motor, psychiatric and 
cognitive [4–6]. 3-Nitropropionic acid (3-NP) is a mito-
chondrial toxin that can effectively produce the symptoms 
of HD in animals and serve as an experimental model of 
HD [7, 8]. 3-NP can cross the blood–brain barrier (BBB) 
and inhibit succinate dehydrogenase (SDH) enzyme irre-
versibly, blocking the electron transport chain and leading 
to ATP depletion, up-surge in reactive oxygen species (ROS) 
and depletion of endogenous antioxidants thus producing 
mitochondrial dysfunction and neuronal apoptosis [9–11].

Nuclear factor-kappa B (NF-κB) is a transcription fac-
tor principally involved in immune, inflammatory, and 
stress responses [12]. NF-κB is also involved in neuronal 
injury, making it a potential therapeutic target for manag-
ing neurodegenerative disorders [13]. Besides its role in 
the regulation of the transcription of the genes responsi-
ble for inflammation, NF-κB regulates the transcription 
of genes implicated in the apoptotic process [14]. In the 
basal status, NF-κB is maintained in an inactive form in 
the cytosol by binding to a repressive protein, an inhibitor 

of nuclear factor kappa B (IκB), to form an inactive protein 
complex that inhibits the nuclear translocation of NF-κB 
[15]. Numerous pro-inflammatory stimuli can activate 
NF-κB, mainly through inhibitor of κB kinase (IKK)-
based phosphorylation and degradation of IκB proteins 
[16], where such inflammatory stimuli as well as, cellular 
stresses result in IκB phosphorylation by IKK leading to 
the activation and nuclear translocation of NF-ĸB [17, 18]. 
Then, NF-κB activates the transcription of growth factors, 
chemokines, cytokines and pro-apoptotic factors-encoding 
genes [19, 20].

The nuclear factor erythroid 2-related factor 2 (Nrf2) is 
considered a vital controller of redox homeostasis that coor-
dinates the endogenous antioxidant cellular response [21, 
22]. In normal circumstances, Nrf2 levels are preserved low 
in the cytoplasm by binding to Kelch-like ECH-associated 
protein 1 (KEAP1). Exposure to ROS disrupts the KEAP1-
Nrf2 complex with consequent release of Nrf2 which trans-
locates into the nucleus to bind to antioxidant response 
elements (ARE) promoting the transcription of numerous 
antioxidative stress-related genes including haem oxyge-
nase-1 (HO-1) and NAD(P)H: quinone oxidoreductase-1 
(NQO-1) [23, 24]. The Nrf2 signalling pathway is also 
involved in the inhibition of NF-ĸB as well as, its down-
stream inflammatory cytokines [25]. The key role of Nrf2 in 
hindering oxidative stress in HD has been suggested because 
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Nrf2 knocked out mice proved to be more susceptible to 
striatal lesions induced by 3-NP [26].

Azilsartan (Azil) is an angiotensin II type 1 receptor 
blocker (ARB) that is used as an antihypertensive drug [27]. 
Azil has been shown to possess anti-inflammatory, anti-oxi-
dant and anti-apoptotic effects that are associated with neu-
roprotection via blocking brain angiotensin II type 1 recep-
tors (AT1R) [28–31]. Besides, the downstream signalling 
pathway of renin–angiotensin–aldosterone system (RAS) has 
been associated with NF-kB activation [32]. Thus, the cur-
rent study aimed to investigate the potential neuroprotective 
effect of Azil against 3-NP-induced neurotoxicity in rats via 
assessing various behavioural, biochemical, and histopatho-
logical parameters. Moreover, we also investigated the effect 
of Azil on the interplay between IĸB/NF-ĸB and KEAP1/
Nrf2 signalling pathways.

Material and Methods

Animals

Adult male Wistar rats (200–250 g) were purchased from the 
animal colony of the Faculty of Pharmacy, Cairo University, 
Egypt. Rats were kept under the proper conditions of suita-
ble humidity (60–70%), ventilation (10–20 changes/h), tem-
perature (25 ± 2 °C), and constant 12/12 h light/dark cycle 
with free access to a standard rodent chow diet and water. 
The study adheres to the Guide for Care and Use of Labo-
ratory Animals published by the US National Institutes of 
Health (NIH Publication No. 85-23, revised 2011) and was 
approved by the Ethics Committee for Animal Experimen-
tation at the Faculty of Pharmacy, Cairo University (Permit 
Number: PT 2503).

Drugs and Chemicals

3-NP was bought from Sigma-Aldrich Chemical Co. (St. 
Louis, MO, USA), while Azil was procured from Rameda 
Pharmaceutical (Egypt). 3-NP and Azil were dissolved in 
normal saline (0.9%) for intraperitoneal (i.p.) injection and 
oral (p.o.) administration, respectively. All other chemi-
cals used in the study were from the top grade available 
commercially.

Experimental Design

As depicted in Fig. 1, rats were randomly assigned into 5 
groups, 9 rats per group and treated for 14 days as follows: 
Group I (Control) received i.p. injection of normal saline 
and served as the normal control group; Group II (Azil) 
received Azil (10 mg/kg, p.o.); Group III (3-NP) received 
i.p. injection of 3-NP (10 mg/kg/day, i.p.) [33]; Group IV 

(3-NP + Azil 5) received azil (5 mg/kg, p.o.) [34] 1 h before 
3-NP injection and Group V (3-NP + Azil 10) received Azil 
(10 mg/kg, p.o.) [35] 1 h before 3-NP injection.

Behavioral Assessments

Twenty-four hours after the last 3-NP injection, rats were 
subjected to behavioural tests namely; open field and grip 
strength tests.

Open Field Test

Open field test was done to assess behavioural responses like 
spontaneous locomotor activity and exploratory behaviour 
of rats [36]. The test was done in an 80 × 80 cm wooden box 
with a height of 40 cm. The floor of the box was divided into 
16 squares with white lines separating them. The test was 
done in a quiet room under white light. Each rat was placed 
in the centre of the open field box gently and the locomotor 
activity was recorded for 3 min. The box was cleaned with 
10% isopropyl alcohol and dried carefully for each animal to 
avoid any disturbing substances left by the previous animal. 
The following parameters were recorded for each animal 
during the 3 min assessment period [37, 38].

(a)	 The latency time: time passed until the animal decides 
to move from the starting point (the central area) meas-
ured in seconds.

(b)	 Ambulation frequency: the number of squares crossed 
over by the animals.

(c)	 Rearing frequency: number of times the animal stood, 
stretched on its hind limbs with or without the support 
of the forelimb.

Grip Strength Test

The grip strength of rats was evaluated by a rat grip strength 
meter (Model 47200, Ugo Basile, Comerio, Italy) [39]. Rats 

Fig. 1   Timeline of the experimental design. 3-NP 3-nitropropionic 
acid, Azil azilsartan
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were carefully placed over a base plate forward-facing a tri-
angle bar. When the rat gripped the bar by its forelimbs, it 
was gently dragged by its tail horizontally backward away 
from the triangle bar until its forelimbs are released. The 
maximum pulling force (g) was recorded when the animal 
lost its grip on the grasping bar (when its front paws grasp-
ing the bar were released). For each rat, the average of three 
values was recorded.

Brain Processing

After the behavioural assessments, rats were sacrificed by 
decapitation under anaesthesia with thiopental. Brains were 
quickly removed and rinsed with ice-cold saline. Two sets 
of rats were designated for each group: one for histological 
examination and the other for biochemical parameters. In 
the first set of samples (n = 3), brains were fixed in 10% 
(v/v) buffered formalin for 72 h to perform staining with 
haematoxylin and eosin (H&E) for the histopathological 
examination. In the second set of samples (n = 6), right stri-
atum was properly separated and homogenized in ice-cold 
saline to prepare a 10% homogenate for the assessment of 
malondialdehyde (MDA), succinate dehydrogenase (SDH) 
by colorimetric technique, glutamate, gamma-aminobutyric 
acid (GABA), haem oxygenase-1 (HO-1), NAD(P)H: qui-
none oxidoreductase-1, tumor necrosis factor-alpha (TNF-
α), interleukin-1 beta (IL-1β), cyclooxygenase-2 (COX-2), 
inducible nitric oxide synthases (iNOS), caspase-3, Bcl-
2-associated X protein (BAX) and B-cell lymphoma 2 
(BCL2) by using rat ELISA kits. Left striatum of the second 
set was used for assessment of IκB, NF-κB p65, KEAP1 
and Nrf2 by Western blot analysis as well as AT1R using 
RT-PCR.

Biochemical Parameters

Colorimetric Assay

MDA content and SDH activity were determined in the stri-
atal homogenate colorimetrically using a specific kit (Bio-
diagnostic, Egypt, Cat. No. MD25 28 and Biovision, USA, 
Cat. No. K660-100), respectively.

Enzyme‑Linked Immunoassay (ELISA) Technique

In ice-cold phosphate-buffered saline, striata were homog-
enized to yield 10% homogenates and the content of each 
parameter in the striatum was determined using the match-
ing rat-specific commercial kits according to the manu-
facturer’s instructions. TNF-α, BAX, and BCL2 were 
assessed using Cusabio (Wuhan, China) ELISA kits (Cat. 
No. CSB-E11987r, CSB-EL002573RA and CSB-E08854r, 
respectively). Moreover, MyBiosource (San Diego, CA, 

USA) ELISA kits were used for determination of gluta-
mate, GABA, IL-1β, NQO1, HO-1, COX-2, caspase-3 and 
iNOS (Cat. No. MBS756400, MBS045103, MBS825017, 
MBS7606601, MBS 764989, MBS 266603, MBS7244630 
and MBS 263618, respectively).

Western Blot Technique

Using RIPA lysis buffer, the separated striatal tissues were 
lysed and their protein content was determined using the 
Bradford protein assay kit (Thermo Fisher Scientific Inc., 
MA, USA) according to the method of Bradford [40]. After 
protein quantification of striata, 10 μg of total protein was 
separated by Sodium Dodecyl Sulfate PolyAcrylamide Gel 
Electrophoresis gel (SDS-PAGE) and transferred onto pol-
yvinylidene difluoride membranes (Pierce, Rockford, IL, 
USA). To block the non-specific binding sites, membranes 
were soaked in tris-buffered saline with Tween 20 (TEST) 
buffer and 3% bovine serum albumin (BSA) at room temper-
ature for 1 h. Afterward, membranes were incubated over-
night at 4 °C with the primary antibodies directed against 
IκB (Cat. no. MA5-15132), NF-κB p65 (Cat. no. 436700), 
KEAP1 (Cat. no. PA5-99434), Nrf2 (Cat. no. PA5-27882) 
and β-actin (Cat. no. MA5-15,739). The blots were incu-
bated with horseradish peroxidase-conjugated secondary 
antibody (Dianova, Hamburg, Germany) at 37 °C and left 
for 1 h after washing them many times. Protein bands were 
obtained by an enhanced chemiluminescence substrate reac-
tion (Amersham Biosciences, Arlington Heights, IL, USA). 
Using densitometric analysis utilizing a scanning laser den-
sitometer (Biomed Instrument, Inc., CA, USA), the corre-
sponding intensities of the protein bands were measured. 
The results were expressed as arbitrary units relative to the 
intensity of the corresponding β-actin bands.

Quantitative Real Time‑PCR (qRT‑PCR)

Striatal AT1R gene expression was detected by RT-PCR. 
SV total RNA extraction kit (Invitrogen, CA, USA) was 
used to extract RNA from the striatal tissues. The extracted 
RNA was reverse transcribed into cDNA using RT-PCR kit 
(Thermo Fisher Scientific, MA, USA) according to the man-
ufacturer’s instructions. The primer sequences were as fol-
lows: AT1R, F: GCA​CAC​TGG​CAA​TGT​AAT​GC, R: GTT​
GAA​CAG​AAC​AAG​TGA​CC and ß-Actin, F: CCC​ATC​TAT​
GAG​GGT​TAC​GC, R: TTT​AAT​GTC​ACG​CAC​GAT​TTC. 
The PCR reactions were set up in 50 µl reaction mixtures, 
which contained 25 μl SYBR green mix, 0.5 μl cDNA, 2 μl 
primer pair mix (5 pmol/μl each primer) and 22.5 μl RNAse 
free water. PCR program was set up as follows: 95 °C for 
10 min, followed by 45 cycles of 15 s (denaturation) and 
1 min at 60 °C (annealing/extension). The target gene’s rela-
tive expression was estimated using the 2 − ΔΔCT formula. 



1021Neurochemical Research (2024) 49:1017–1033	

β-Actin was used as a housekeeping gene to normalize the 
mRNA levels of the target gene.

Histopathological Examination

Brains were washed and fixed in 10% (v\v) buffered formalin 
for 72 h. Then, samples were processed to be embedded in 
paraffin with the preparation of 3 μm sections. Tissue sec-
tions were stained by hematoxylin and eosin (H&E) as a 
general staining method and inspected microscopically by 
light microscope (magnification × 200 and × 400). Images 
were captured and processed using Adobe Photoshop (ver-
sion 8.0).

Immunohistochemical staining of glial fibrillary acidic 
protein (GFAP) was performed using a rat monoclonal anti-
body (Santa Cruz Biotechnology, TX, USA). All procedures 
were performed according to the manufacturer’s instruc-
tions. The extent of positive immunostaining in five random 
non-overlapping fields per tissue section was calculated as 
the area percentage of expression using cellSens Dimension 
software (Olympus software).

Statistical Analysis

The results were analysed by one-way ANOVA followed 
by Tukey's multiple comparisons tests, except for the 
GFAP area%, which were analysed using Kruskal–Wallis 
ANOVA followed by Dunn's multiple comparison test. All 
results were expressed as mean ± S.D. Statistical analysis 
was achieved using GraphPad Prism software (version 6). 
A probability level of < 0.05 was accepted in all statistical 
tests as statistically significant.

Results

Noteworthy, no significant difference was detected between 
normal control rats and those that received Azil alone in all 
assessed parameters.

Effect of Azil (5 or 10 mg/kg) on 3‑NP‑Induced 
Behavioral Abnormalities

As shown in Fig. 2, 3-NP-intoxicated animals displayed 
behavioral and motor deteriorations, as evidenced by the 
open field (latency time, ambulation frequency and rear-
ing frequency) and grip strength tests. 3-NP injected rats 
showed a significant increase of the latency time (about 
10 -folds that of the control group), F (4, 40) = 76.45, 
P < 0.0001. Moreover, 3-NP group rats exhibited a marked 
decrease in ambulation frequency (12.99% of control 
group), rearing frequency (23.46% of control group), and 
grip strength (61.38% of control group), F (4, 40) = 21.66, 

32.04, and 22.42 (P < 0.0001), respectively. Treatment 
with Azil (5 mg/kg) produced a significant decrease in 
the latency time (17.80% of 3-NP group) along with an 
increase in ambulation frequency, rearing frequency, 
and grip strength (about 6-, 3- and 1.6- folds that of the 
3-NP group, respectively). Similarly, administration of 
Azil (10 mg/kg) ameliorated the aforementioned behav-
ioral changes as evidenced by a decrease of latency time 
(12.32% of 3-NP group), meanwhile the ambulation, rear-
ing frequencies as well as the grip strength were markedly 
increased (about 7-, 3- and 1.7-folds that of 3-NP-treated 
rats, respectively).

Effect of Azil (5 or 10 mg/kg) on 3‑NP‑Induced 
Changes in Striatal Neurotransmitters

As depicted in Fig. 3, 3-NP-treated rats displayed GABA 
and glutamate striatal imbalance as shown by the significant 
rise in glutamate level (about fivefolds that of the control 
group) and the prominent reduction in GABA level (25.88% 
of the control rats), F (4, 25) = 628.3 and 96.37, P < 0.0001, 
respectively. Conversely, Azil (5 mg/kg) administration 
succeeded to decrease the glutamate level (61.10% of 3-NP 
group) and replenishing the GABA level (about 2.3-folds 
that of 3-NP-treated animals). Meanwhile, administration 
of Azil (10 mg/kg) showed more significant decrease in the 
elevated glutamate level (34.14% of 3-NP group) and also 
raised the GABA level to reach (about threefolds that of the 
3-NP-treated rats).

Effect of Azil (5 or 10 mg/kg) on 3‑NP‑Induced 
Alterations of Striatal AT1R Expression and NF‑ĸB 
Signalling Pathway Parameters

As presented in Fig. 4A and B, the expression of AT1R and 
NF-κB p65 were significantly elevated in 3-NP-treated rats 
(about 6.5-folds that of the control rats, respectively), F (4, 
10) = 56.86 and F (4, 25) = 118.6, respectively. In contrast, 
3-NP intoxication caused a down-regulation of IκB expres-
sion to (30.57% that of the control rats), F (4, 25) = 281, 
(P < 0.0001) (Fig. 4C). However, 3-NP-induced increment 
in AT1R and NF-κB p65 expression were hampered by Azil 
(5 mg/kg) (51.84% and 40.79% of the 3-NP-treated rats’ 
values, respectively). Moreover, treatment with Azil (5 mg/
kg) mitigated the depletion of the IκB expression (about 2.5-
folds the 3-NP-treated rats’ values). The striatal levels of 
AT1R and NF-κB p65 expression were markedly reduced 
by Azil (10 mg/kg) administration (40.62% and 31.59% of 
the 3-NP-treated rats’ values, respectively). Meanwhile, 
treatment with Azil (10 mg/kg) significantly raised the IκB 
expression (about threefolds that of 3-NP-treated rats).
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Effect of Azil (5 or 10 mg/kg) on 3‑NP‑Induced 
Alterations of Striatal Inflammatory Parameters

As presented in Fig. 4D–G, 3-NP intoxication increased the 
striatal levels of TNF-α, IL-1β, COX2 and iNOS (about 5.3-, 
3-, 4.6- and 4.3-folds that of the control rats, respectively), F 
(4, 25) = 511.1, 383.8, 175.3 and 104.4, respectively. How-
ever, 3-NP-induced increment in TNF-α, IL-1β, COX-2 and 
iNOS was hampered by Azil (5 mg/kg) (41.12%, 51.53%, 
41.66% and 50.34% of the 3-NP-treated rats’ values, respec-
tively). Meanwhile, the striatal levels of TNF-α, IL-1β, 
COX2 and iNOS were markedly reduced by Azil (10 mg/

kg) administration (31.60%, 43.49%, 29.45% and 28.55% 
of the 3-NP-treated rats’ values, respectively).

Effect of Azil (5 or 10 mg/kg) on 3‑NP‑Induced 
Changes in Striatal Nrf2 Signalling Pathway 
Parameters

Data in Fig. 5 shows that 3-NP injection produced a signifi-
cant upsurge in striatal MDA content and KEAP1 expression 
(about 4- and 4.8-folds that of the control group, respec-
tively), F (4, 25) = 388.1 and 400.8 P < 0.0001, respectively. 
However, 3-NP depleted striatal SDH activity, NQO-1, and 
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HO-1 contents as well as Nrf2 expression (38.62%, 46.70% 
and 29.25%, and 20.73% that of the control group, respec-
tively), F (4, 25) = 92.34, 591.3, 138.8, 253.7, P < 0.0001, 
respectively. Interestingly, Azil (5 mg/kg/day) administra-
tion hampered 3-NP-induced elevation in MDA content and 
KEAP1 expression (51.20% and 46.90% that of 3-NP group 
values, respectively). Moreover, striatal SDH, NQO-1, and 
HO-1 as well as Nrf2 expression were remarkably up-regu-
lated in Azil 5 mg-treated rats (about 2.2-, 2-, 2.5- and 3.2-
folds that of 3-NP group values, respectively). Meanwhile, 
administration of Azil (10 mg/kg) decreased MDA striatal 
content and KEAP1 expression (38.74% and 36.98% that of 
the 3-NP-treated rats, respectively). Moreover, striatal con-
tents of SDH, NQO1 and HO1 as well as Nrf2 expression 
was significantly elevated in Azil 10 mg-treated rats (2.3-, 
2-, 3- and 4-folds, that of 3-NP group values, respectively).

Effect of Azil (5 or 10 mg/kg) on 3‑NP‑Induced 
Changes in Striatal Apoptosis

Figure 6 reveals that 3-NP markedly increased striatal cas-
pase-3 and BAX content (about 5.4-and 2.4-folds that of the 
control group, respectively), F (4, 25) = 215.3 and 574.3, 
respectively, while increasing Bcl2 content (45.83% of the 
control), F (4, 25) = 258.2, P < 0.0001, producing a marked 
elevation in the BAX/BCL2 ratio (about 5-folds that of the 
control), F (4, 25) = 360.6. On the other hand, treatment with 

Azil (5 mg/kg) succeeded in reversing the increase in cas-
pase-3, BAX and BAX/BCL2 ratio (54.39%, 56.82% and 
34.78% that of the 3-NP-treated group, respectively). Moreo-
ver, Azil (5 mg/kg)-treated rats exhibited a 1.7-folds increase 
in BCL2 as compared to 3-NP-treated rats. Meanwhile, Azil 
(10 mg/kg)-treated rats demonstrated a decline in striatal cas-
pase-3, BAX as well as, BAX/BCL2 (31.68%, 48.02% and 
26.87% that of 3-NP-treated rats, respectively). Furthermore, 
Azil (10 mg/kg)-treated rats exhibited a 1.8-folds increase in 
BCL2 as compared to 3-NP-treated animals.

Effect of Azil (5 or 10 mg/kg) on 3‑NP‑Induced 
Histopathological Changes

Microscopic examination of the striatum region of the brain 
from the control group (Fig. 7 and B) and Azil group (Fig. 7C 
and D) showed normal striatal structure. However, brain 
sections of the 3-NP-treated group (Fig. 7E and F) revealed 
congested blood vessels with focal gliosis, numerous dark 
degenerating neurons, and numerous dilated vessels with 
perivascular and neural edema. On the other hand, brain sec-
tions from 3-NP rats treated with Azil (5 mg/kg) (Fig. 7G and 
H) showed few degenerating cells and mild neuronal edema. 
Besides, brain sections from 3-NP rats treated with Azil (10 
mg/kg) (Fig. 7I and J) showed normal structure with no histo-
pathological changes.
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nificantly different from the control group at P ≤ 0.05. b: significantly 
different from 3-NP-treated group at P ≤ 0.05. c: significantly differ-
ent from Azil (5 mg/kg)-treated group at P ≤ 0.05. Azil Azilsartan, 
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Effect of Azil (5 or 10 mg/kg) on 3‑NP‑Induced 
Changes in GFAP Expression

Control group showed mild GFAP expression in the striatum 
region (Fig. 8A). Similarly, Azil group exhibited mild GFAP 
positive staining (Fig. 8B). In contrast, 3-NP-treated rats 
exhibited significant increase in GFAP expression (Fig. 8C). 
However, 3-NP rats treated with Azil (5 mg/kg) showed 
less expression levels of GFAP (Fig. 8D). Similarly, 3-NP 
rats treated with Azil (10 mg/kg) demonstrated less GFAP 
expression (Fig. 8E).

Discussion

The current study verified the potential neuroprotective 
effect of both doses of Azil (5 or 10 mg/kg) in 3-NP-induced 
neurotoxicity in rats. This notion is evidenced by (i) an 
improvement in 3-NP-induced motor dysfunction; (ii) the 
increase of striatal GABA content and the decrease of glu-
tamate content; (iii) the mitigation of 3-NP-induced striatal 
inflammation evidenced by the inhibition of NF-κB with 
its downstream inflammatory pathway, (v) the alleviation 
of 3-NP-induced striatal oxidative stress evidenced by the 
activation of Nrf2 with its downstream anti-oxidant pathway 
(vi) the improvement of 3-NP-induced striatal apoptosis and 
(vii) the improvement in striatal histopathological changes 
mediated by 3-NP.

Injection of 3-NP to rats is considered as a well-estab-
lished experimental model of HD. When given systemically, 
3-NP can easily cross the BBB [41] and cause bilateral stri-
ata lesions [42] and therefore, mimics the symptoms and 
neuropathology of HD in humans [43–45]. Herein, 3-NP 
intoxication resulted in diminished locomotor activity and 
loss of grip strength as proved by the results of the open 
field and grip strength tests, indicating motor impairment 
and striatal neurodegeneration, like that established in the 
late stages in HD patients [46]. These results go in line with 
previous studies demonstrating similar pattern of behav-
ioural and motor abnormalities after 3-NP injection [47–49]. 

3-NP-induced neurodegeneration was further confirmed by 
the histopathological examination, where the striatum of 
3-NP-treated rats presented numerous degenerating neurons 
and congested blood vessels with focal gliosis, confirmed by 
the significant increase in GFAP immunoexpression. GFAP 
is an acidic protein that exclusively exists in the astrocytes 
and plays a significant role in astrogliosis in central nervous 
systems injuries and neurodegeneration [50]. Such neuronal 
damage is similar to what reported by prior studies [49, 51, 
52]. However, Azil administration 1 h before 3-NP success-
fully diminished the striatal degeneration as well as motor 
impairment induced by 3-NP. These were evidenced by the 
marked improvement of locomotor activity and grip strength 
of those rats as compared to 3-NP-treated rats. Moreover, 
Azil prevented 3-NP-induced histopathological changes, 
where sections from stria of treated rats were apparently 
normal with no pathological changes and demonstrated less 
striatal GFAP expression. The neuroprotective effect of Azil 
was previously reported against rotenone-induced rat model 
of Parkinson’s disease [34], cerebral ischemia rat model [52] 
and aluminium chloride-induced neurobehavioral and patho-
logical changes in rats [53].

The involvement of striatal neurotransmitters, GABA 
and glutamate, in HD pathogenesis as well as in 3-NP-
induced experimental neurotoxic model is well reported 
[54]. 3-NP-induced neurotoxicity is known to be selective 
to the GABAergic neurons of the striatum [22]. Moreover, it 
is well recognized that 3-NP-triggered neurotoxicity incor-
porates glutamate-related excitotoxicity [55], where 3-NP 
was reported to produce an excessive release of glutamate in 
experimental rat striatal tissues [51]. Taken together, 3-NP-
induced neurotoxicity could partially be due to the imbal-
ance between the excitatory glutamate and the inhibitory 
GABA neurotransmitter in the striatum. This complies with 
the outcomes of the present study, where 3-NP-treated rats 
demonstrated elevation of striatal glutamate content along 
with decline of GABA content in the striatum. In contrast, 
Azil succeeded to restore the neurotransmitters balance, 
further confirming its neuroprotective potential in 3-NP-
induced neurotoxicity.

The dysregulation of RAS was reported to be implicated 
in several neurodegenerative disorders [56, 57]. The mRNA 
expression of AT1R is reported to be elevated in all brain 
areas in a transgenic model of HD [57]. Similarly, in the 
current study, the expression of AT1R was significantly 
increased in 3-NP-treated rats. NF-ĸB is a critical player in 
the pathogenesis of several neurodegenerative disorders [58, 
59]. The downstream signalling of AT1R is proven to lead to 
the activation of NF-κB [60]. In addition, it was reported that 
NF-κB activity is significantly up-regulated in the striatum 
of wild-type animals following 3-NP intoxication [33, 61] 
and in cultured mHtt-expressing cells [62]. Therefore, block-
ing NF-κB signal pathway is believed to be a potential target 

Fig. 4   Effect of azilsartan (5 or 10 mg/kg) on 3-NP-induced changes 
in striatal NF-κB signalling pathway parameters. A Densitometric 
analysis of the Western blots, B ATR1 mRNA expression, C NF-κB 
p65 expression, D IκB expression, E TNF-α content, F IL-1β con-
tent, G COX-2 content, and H iNOS content. Each bar represents 
mean ± S.D. (n = 6). Statistical analysis was carried by one-way 
ANOVA followed by Tukey’s multiple comparisons test. a: signifi-
cantly different from the control group at P ≤ 0.05. b: significantly 
different from 3-NP-treated group at P ≤ 0.05. c: significantly dif-
ferent from Azil (5  mg/kg)-treated group at P ≤ 0.05. Azil Azilsar-
tan, 3-NP 3-nitropropionic acid, AT1R angiotensin II receptor type 
1, IκB inhibitor of kappa-B, NF-κB nuclear factor kappa-b P65, 
TNF-α tumor necrosis factor-alpha, IL-1β interleukin-1 beta, COX-2 
cyclooxygenase-2 and iNOS inducible nitric oxide synthases
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that could partially diminish 3-NP-induced striatal toxicity. 
In the resting state, NF-ĸB is held in the cytoplasm through 
association with IĸB proteins. Stimuli that trigger the stimu-
lation of the IKK, result in phosphorylation and degrada-
tion of IĸB proteins with the consequent translocation of 
NF-ĸB to the nucleus, where it indorses the transcription 
of target genes encoding pro-inflammatory cytokines such 
as IL-1β, TNF-α and IL-6 [63]. It is also described that the 
elevation in TNF-α can also induce NF-κB activation [64, 
65]. The results of the present study confirmed the implica-
tion of neuroinflammation initiated by AT1R/NF-ĸB path-
way activation in 3-NP-induced neurotoxicity. 3-NP-treated 
rats showed elevated expression of AT1R and NF-ĸB p65 
along with diminished IκB expression in the striatum with 
the consequent elevation of downstream pro-inflammatory 
cytokines including TNF-α and IL-1β. These results are in 
line with previous ones demonstrating significant elevation 
of NF-ĸB and pro-inflammatory mediators in 3-NP-treated 
rats [66, 67]. However, Azil showed an anti-inflammatory 
activity via reducing the AT1R and NF-ĸB p65 expression 
and the TNF-α and IL-1β levels along with increasing the 
expression of IκB. In line, Azil was previously reported to 
inhibit NF-κB and its downstream inflammatory mediators 
in renal ischemia reperfusion rat model [30].

The up-regulated expression of COX-2 has been consid-
ered as a significant cause of the neurotoxicity accompa-
nied with inflammation [68, 69]. Herein, 3-NP-treated rats 
demonstrated significant elevation in striatal COX-2 content, 
which is in line with previous results [59, 70]. However, 
treatment with Azil lead to suppression of striatal COX-2 
level as compared with 3-NP group. In agreement, Azil was 
previously reported to down-regulate COX-2 in a rat model 
of experimental periodontitis [28] and endometriosis [71]. 
Since it is well identified that COX-2 expression is mediated 
by NF-ĸB activation [72], the suppressing effect of Azil on 
COX-2 level could be explained by its NF-ĸB inhibitory 
action and this effect also contributes to its anti-inflamma-
tory properties.

Additionally, iNOS is an enzyme which is induced dur-
ing inflammatory conditions and it has been reported to be 

involved in neurodegenerative diseases [73]. iNOS can binds 
to COX-2 and boost its activity [74]. Thus, increased iNOS 
level, as reported herein in 3-NP-treated rats, leads to rise in 
COX-2 activation. In parallel, increased iNOS striatal con-
tent was previously reported in 3-NP-induced neurotoxic-
ity in rats [75]. However, treatment with Azil successfully 
down-regulated iNOS expression compared to 3-NP-treated 
rats. Therefore, iNOS inhibition by Azil may have further 
reduced COX-2 level as well as inflammatory deterioration 
in striatum. A previous study reported that Azil suppress 
iNOS expression in lipopolysaccharide-activated microglia 
[76].

Mitochondrial dysfunction is a major hallmark of HD 
in human and it is considered as one of the key features of 
3-NP-induced HD in animal models [49, 77]. 3-NP irrevers-
ibly inhibits SDH enzyme which is a crucial enzyme in the 
electron transport chain, Krebs cycle and superoxide control 
[78]. Inhibition of SDH leads to impeding energy produc-
tion [7, 79, 80], triggers mitochondrial dysfunction [47], and 
causes excessive oxidative stress response that consequently 
leads to neuronal injury [22]. Since striatal neurons are 
extremely sensitive to derangement in energy metabolism, 
such mitochondrial dysfunction increase the susceptibility 
of striatum to acute intoxication with mitochondrial toxins 
such as 3-NP in both experimental and clinical studies [80]. 
Herein, 3-NP administration was associated with inhibition 
of striatal SDH activity in rats which go in line with previ-
ous studies [49, 67, 80], an effect that was reversed by Azil 
restoring mitochondrial activity. These findings comply with 
previous ones demonstrating that treatment with Azil signifi-
cantly decreased the activity of SDH in high-fat diet (HFD)-
induced sarcopenic obesity in rats [81]. Azil has been also 
reported to attenuate oxidative injury in brain endothelial 
cells via regulating mitochondrial activity [29]. A previous 
study also showed that pretreatment with Azil restores mito-
chondrial viability as well as the activities of mitochondrial 
complexes in cerebral ischemia in rats [52].

Further, the 3-NP-triggered oxidative stress was evident 
in the current study by the increased MDA striatal level sig-
nifying elevated lipid peroxidation. However, treatment with 
Azil reduced MDA level in striatum of 3-NP-treated rats, 
demonstrating its anti-oxidant properties that could con-
tribute to its neuroprotective potential. Azil was previously 
reported to ameliorate oxidative stress in ethanol-induced 
gastric ulcers in rats [82] and cerebral ischemia reperfusion 
at model [83].

The oxidative stress injurious effects are usually offset 
by Nrf2, which is a major controller of the antioxidant-
response that up-regulates genes of phase II detoxifying 
enzymes, such as HO-1 and NQO-1 [84]. These enzymes 
guard against the ROS-induced body damage [85]. Ubiquit-
ination and degradation of Nrf2 in the cytoplasm is mediated 
by KEAP1, so that activation of Nrf2 depends on KEAP1 

Fig. 5   Effect of Azil (5 or 10  mg/kg) on 3-NP-induced changes in 
striatal Nrf2 signalling pathway parameters. A Densitometric analy-
sis of the Western blots, B MDA content, C SDH activity, D KEAP1 
expression, E Nrf2 expression, F NQO-1 content, and G HO-1 
content. Each bar represents mean ± S.D. (n = 6). Statistical analy-
sis was carried by one-way ANOVA followed by Tukey’s multiple 
comparisons test. a: significantly different from the normal control 
group at P ≤ 0.05. b: significantly different from 3-NP-treated group 
at P ≤ 0.05. c: significantly different from Azil (5 mg/kg)-treated 
group at P ≤ 0.05. Azil Azilsartan, 3-NP 3-nitropropionic acid, MDA 
malondialdehyde, SDH succinate dehydrogenase, KEAP1 Kelch-like 
ECH-associated protein -1, Nrf2 nuclear factor erythroid 2-related 
factor 2, NQO-1: NAD(P)H quinone oxidoreductase-1and HO-1: 
heme oxygenase-1
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dissociation [86]. Upon activation, Nrf2 translocates into the 
nucleus and binds to antioxidant response elements (ARE) 
promoting the transcription of many antioxidant-related 
genes [87]. The vital role of Nrf2 signalling in hampering 
oxidative stress in HD animal models has been reported 
[26, 88]. In the present study, striatum of 3-NP-treated rats 
showed suppression of Nrf2 expression and up-regulation 
of KEAP1 expression along with decrease in level of Nrf2-
targeted anti-oxidant enzymes (HO-1 and NOQ-1). This 
finding is consistent with a preceding study reporting that 

Nrf2 expression was significantly diminished in the stria-
tum of 3-NP rats [75]. Contrariwise, Azil administration 
was associated with a significant decrease of the repres-
sor KEAP1 and increase in Nrf2 expression compared to 
3-NP treated group. This increase in Nrf2 expression was 
accompanied by an increase in HO-1 and NOQ-1 levels. In 
line with those results, it was reported that Azil diminishes 
lipopolysaccharide-induced acute lung injury in mice via 
increasing the expression of both Nrf2 and HO-1 [89]. These 
results suggest that activation of Nrf2 signalling pathway 
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Fig. 6   Effect of azilsartan (5 or 10 mg/kg) on 3-NP-induced changes 
in striatal apoptosis. A caspase-3 content, B BAX content, C BCL2 
content, and D BAX/BCL2 ratio. Each bar represents mean ± S.D. 
(n = 6). Statistical analysis was carried out by one-way ANOVA fol-
lowed by Tukey’s multiple comparisons test. a: significantly differ-

ent from the normal control group at P ≤ 0.05. b: significantly dif-
ferent from 3-NP-treated group at P ≤ 0.05, c: significantly different 
from Azil (5 mg/kg)-treated group at P ≤ 0.05. Azil Azilsartan, 3-NP 
3-nitropropionic acid, BAX Bcl-2-associated X protein and BCL2 
B-cell lymphoma 2
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may be a possible mechanism by which Azil can alleviate 
oxidative stress.

Nrf2 and NF-κB signalling pathways are engaged in 
functional cross-talk [90]. For instance, the absenteeism 
of Nrf2 can aggravate NF-κB stimulation which leads to 

amplified cytokine production, while NF-κB can regulate 
the transcription and activity of Nrf2 [90] and thus can 
affect the antioxidant machinery [72]. Both of those tran-
scription factors can form a crossing point to control the 
expression of many target proteins [91, 92]. Therefore, 

Fig. 7   Effect of Azil (5 or 10 mg/kg) on 3-NP-Induced Histopatho-
logical Changes. Photomicrographs of sections A and B show normal 
histological structure of the striatum of rats receiving saline (control 
group). Photomicrographs of sections C and D show the normal his-
tological structure of the striatum of rats receiving Azil alone. Photo-
micrograph of sections E of 3-NP treated rats shows congested blood 

vessels (arrow) with focal gliosis and F neuronal and perivascular 
lymphocytic infiltration and edema (arrow). Photomicrograph of sec-
tions G and H of Azil 5 mg-treated rat shows few degenerating cells 
(arrow) and H mild neuronal edema. Photomicrograph of section 
I and J of Azil 10 mg-treated rat shows apparently normal striatum 
with no histopathological changes

Fig. 8   Effect of Azil (5 or 10 mg/kg) on 3-NP-induced changes in 
GFAP expression. Control (A) and Azil (B) groups exhibited mild 
GFAP expression in the striatum region. In contrast. 3-NP group (C) 
exhibited significant increase in GFAP expression. Lower expres-
sion levels were detected in 3-NP + Azil 5 (D) and 3-NP + Azil 10 
(E) groups. F: GFAP immunostaining area %. Each bar represents 
mean ± S.D. (n = 3). Statistical analysis was carried out by Kruskal–

Wallis ANOVA followed by Dunn’s multiple comparison test. a: 
significantly different from the normal control group at P ≤ 0.05. b: 
significantly different from 3-NP-treated group at P ≤ 0.05, c: signifi-
cantly different from Azil (5  mg/kg)-treated group at P ≤ 0.05. Azil 
Azilsartan, 3-NP 3-nitropropionic acid, GFAP glial fibrillary acidic 
protein
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the neuroprotective effect showed by Azil in the current 
study could be, in part, attributed to the cross talk between 
NF-ĸB and Nrf2 signalling pathways.

Additionally, our results displayed that 3-NP injection 
potentiated striatal apoptosis as indicated by the upsurge 
in the level of caspase-3 and BAX/BCL2 ratio, which 
is in line with former studies [22, 47]. The potentiated 
apoptotic pathway associated with 3-NP administration 
could be attributed to generation of superoxide radicals 
following SDH inhibition [93]. In contrast, administration 
of Azil controlled the level of these apoptotic proteins in 
the striatum indicating a significant anti-apoptotic effect. 
The anti-apoptotic potential of Azil was also previously 
reported in renal ischemia reperfusion injury in rat [30]

Finally, our study is limited by the idea that the blood 
vessels congestion in brain striatum elicited by 3-NP could 
have facilitated the access of Azil into brain striatum. 
Additionally, Azil might be protective against the diffusion 
of 3-NP into the striatum of the rat brains analysed in the 
present study. These assumptions need to be investigated 
in future studies.

In conclusion, the current study demonstrates the poten-
tial neuroprotective effects of Azil, an ARB, against 3-NP-
induced behavioural, histopathological, and biochemical 
changes in the striatum of rats. These findings might be 
attributed to inhibition of ATR1/NF-κB signalling, modu-
lation of Nrf2/KEAP1 signalling, anti-inflammatory, anti-
oxidant, and anti-apoptotic properties.
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