Skip to main content

Advertisement

Log in

CircRNA and Stroke: New Insight of Potential Biomarkers and Therapeutic Targets

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Stroke, the second-largest cause of death and the leading cause of disability globally, presents significant challenges in terms of prognosis and treatment. Identifying reliable prognosis biomarkers and treatment targets is crucial to address these challenges. Circular RNA (circRNA) has emerged as a promising research biomarkers and therapeutic targets because of its tissue specificity and conservation. However, the potential role of circRNA in stroke prognosis and treatment remains largely unexplored. This review briefly elucidate the mechanism underlying circRNA’s involvement in stroke pathophysiology. Additionally, this review summarizes the impact of circRNA on different forms of strokes, including ischemic stroke and hemorrhagic stroke. And, this article discusses the positive effects of circRNA on promoting cerebrovascular repair and regeneration, maintaining the integrity of the blood-brain barrier (BBB), and reducing neuronal injury and immune inflammatory response. In conclusion, the significance of circRNA as a potential prognostic biomarker and a viable therapeutic target was underscored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Diener HC, Hankey GJ (2020) Primary and secondary Prevention of ischemic Stroke and Cerebral Hemorrhage: JACC Focus Seminar. J Am Coll Cardiol 75(15):1804–1818

    Article  PubMed  Google Scholar 

  2. Dou Z, Yu Q, Wang G, Wu S, Reis C, Ruan W, Yan F, Chen G (2020) Circular RNA expression profiles alter significantly after intracerebral Hemorrhage in rats. Brain Res 1726:146490

    Article  CAS  PubMed  Google Scholar 

  3. Goldstein LB (2007) Acute ischemic Stroke treatment in 2007. Circulation 116(13):1504–1514

    Article  PubMed  Google Scholar 

  4. Lee H, Yun HJ, Ding Y (2021) Timing is everything: Exercise therapy and remote ischemic conditioning for acute ischemic Stroke patients. Brain Circ 7(3):178–186

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mehta SL, Pandi G, Vemuganti R, Circular RNA (2017) Expression profiles alter significantly in mouse brain after transient focal ischemia. Stroke 48(9):2541–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tan KS, Armugam A, Sepramaniam S, Lim KY, Setyowati KD, Wang CW, Jeyaseelan K (2009) Expression profile of MicroRNAs in young Stroke patients. PLoS ONE 4(11):e7689

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  7. Wang XZ, Li S, Liu Y, Cui GY, Yan FL (2022) Construction of circRNA-Mediated Immune-related ceRNA Network and Identification of circulating circRNAs as diagnostic biomarkers in Acute ischemic Stroke. J Inflamm Res 15(17):4087–4104

    Article  PubMed  PubMed Central  Google Scholar 

  8. Han B, Zhang Y, Zhang Y, Bai Y, Chen X, Huang R, Wu F, Leng S, Chao J, Zhang JH, Hu G, Yao H (2018) Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic Stroke. Autophagy 14(7):1164–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li L, Si X, Ruan J, Ni Z, Li X, Sang H, Xia W, Huang J, Liu K, Lu S, Jiang L, Shao A, Yin C (2022) Circular RNA hsa_circ_0003574 as a biomarker for prediction and diagnosis of ischemic Stroke caused by intracranial atherosclerotic stenosis. Front Pharmacol 13(26):961866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Salzman J, Circular RNA, Expression (2016) Its potential regulation and function. Trends Genet 32(5):309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I, Yarden Y (2016) Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res 44(3):1370–1383

    Article  CAS  PubMed  Google Scholar 

  12. Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR, Lai EC (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9(5):1966–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei F, Zhang X, Kuang X, Gao X, Wang J, Fan J (2022) Integrated Analysis of circRNA-miRNA-mRNA-Mediated Network and its potential function in Atrial Fibrillation. Front Cardiovasc Med 9:883205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sandoval KE, Witt KA (2008) Blood-brain barrier tight junction permeability and ischemic Stroke. Neurobiol Dis 32(2):200–219

    Article  CAS  PubMed  Google Scholar 

  15. Zipser BD, Johanson CE, Gonzalez L, Berzin TM, Tavares R, Hulette CM, Vitek MP, Hovanesian V, Stopa EG (2007) Microvascular injury and blood-brain barrier leakage in Alzheimer’s Disease. Neurobiol Aging 28(7):977–986

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Li Y, Zang J, Zhang T, Li Y, Tan Z, Ma D, Zhang T, Wang S, Zhang Y, Huang L, Wu Y, Su X, Weng Z, Deng D, Tsang CK, Xu A, Lu D (2022) CircOGDH is a Penumbra Biomarker and Therapeutic Target in Acute ischemic Stroke. Circ Res 130(6):907–924

    Article  CAS  PubMed  Google Scholar 

  17. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang Su X, Lv W, Yin L, Zhou ZYHA, Qi F (2019) CircRNA Cdr1as functions as a competitive endogenous RNA to promote hepatocellular carcinoma progression. Aging 11(1):8183–8203

    PubMed  Google Scholar 

  19. Joaquim VHA, Pereira NP, Fernandes T, Oliveira EM (2023) Circular RNAs as a Diagnostic and Therapeutic Target in Cardiovascular Diseases. Int J Mol Sci 24(3):2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi X, Yang J, Liu M, Zhang Y, Zhou Z, Luo W, Fung KM, Xu C, Bronze MS, Houchen CW, Li M (2022) Circular RNA ANAPC7 inhibits Tumor Growth and muscle wasting via PHLPP2-AKT-TGF-beta Signaling Axis in Pancreatic Cancer. Gastroenterology 162(7):2004–2017 e2

    Article  CAS  PubMed  Google Scholar 

  21. Song C, Zhang Y, Huang W, Shi J, Huang Q, Jiang M, Qiu Y, Wang T, Chen H, Wang H, Circular RNA (2022) Cwc27 contributes to Alzheimer’s Disease pathogenesis by repressing pur-alpha activity. Cell Death Differ 29(2):393–406

    Article  CAS  PubMed  Google Scholar 

  22. Wujun ML, Zhao S, Wang Z, Li Han Li 1, Shaoyi Li CircRNA SRRM4 affects glucose metabolism by regulating PKM alternative splicing via SRSF3 deubiquitination in Epilepsy, Neuropathol Appl Neurobiol 49(1) e12850

  23. Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44(6):2846–2858

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S (2014) circRNA Biogenesis Competes with Pre-mRNA Splicing, Molecular Cell 56(1) 55–66

  25. Wang Y, Wang Z (2015) Efficient backsplicing produces translatable circular mRNAs, RNA 21(2) 172-9

  26. Chen C-K, Cheng R, Demeter J, Chen J, Weingarten-Gabbay S, Jiang L, Snyder MP, Weissman JS, Segal E, Jackson PK, Chang HY (2021) Structured elements drive extensive circular RNA translation. Mol Cell 81(20):4300–4318e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, Wong CC, Xiao X, Wang Z (2017) 32 extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res 27(5):626–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, Wong CC, Xiao X, Wang Z (2017) Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res 27(5):626–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ergul A, Wolf V (2021) 34 Progress and challenges in preclinical Stroke recovery research, Brain Circulation 7(4)

  30. Xiao Q, Hou R, Li H, Zhang S, Zhang F, Zhu X, Pan X (2021) Circulating exosomal circRNAs contribute to potential diagnostic value of large artery atherosclerotic Stroke. Front Immunol 12:830018

    Article  CAS  PubMed  Google Scholar 

  31. Li S, Hu W, Deng F, Chen S, Zhu P, Wang M, Chen X, Wang Y, Hu X, Zhao B, Zhong W, Ma G, Li Y (2021) Identification of circular RNA hsa_circ_0001599 as a Novel Biomarker for large-artery atherosclerotic Stroke. DNA Cell Biol 40(3):457–468

    Article  CAS  PubMed  Google Scholar 

  32. Liu W, Jia C, Luo L, Wang HL, Min XL, Xu JH, Ma LQ, Yang XM, Wang YW, Shang FF (2019) Novel circular RNAs expressed in brain microvascular endothelial cells after oxygen-glucose deprivation/recovery. Neural Regen Res 14(12):2104–2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou Z, Hu Q, Guo H, Wang X (2023) CircSEC11A knockdown alleviates oxidative stress and apoptosis and promotes cell proliferation and angiogenesis by regulating miR-29a-3p/SEMA3A axis in OGD-induced human brain microvascular endothelial cells (HBMECs), Clinical hemorheology and microcirculation

  34. Jiang S, Zhao G, Lu J, Jiang M, Wu Z, Huang Y, Huang J, Shi J, Jin J, Xu X, Pu X (2020) Silencing of circular RNA ANRIL attenuates oxygen-glucose deprivation and reoxygenation-induced injury in human brain microvascular endothelial cells by sponging miR-622. Biol Res 53(1):27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang Z, Huang C, Wen X, Liu W, Huang X, Li Y, Zang J, Weng Z, Lu D, Tsang CK, Li K, Xu A (2022) Circular RNA circ-FoxO3 attenuates blood-brain barrier damage by inducing autophagy during ischemia/reperfusion. Mol Ther 30(3):1275–1287

    Article  CAS  PubMed  Google Scholar 

  36. Liu Z, Wu X, Yu Z, Tang X (2021) Reconstruction of circRNA-miRNA-mRNA associated ceRNA networks reveal functional circRNAs in intracerebral Hemorrhage. Sci Rep 11(1):11584

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. An SJ, Kim TJ, Yoon BW (2017) Epidemiology, risk factors, and clinical features of Intracerebral Hemorrhage: an update. J Stroke 19(1):3–10

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cao H, Chen J, Lai X, Liu T, Qiu P, Que S, Huang Y (2021) Circular RNA expression profile in human primary multiple intracranial Aneurysm. Exp Ther Med 21(3):239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Norrving B (2003) Long-term prognosis after lacunar infarction. Lancet Neurol 2(4):238–245

    Article  PubMed  Google Scholar 

  40. Lewis KM, Turner RJ, Vink R (2013) Blocking Neurogenic Inflammation for the Treatment of Acute Disorders of the Central Nervous System., International Journal of Inflammation 2013 (2013) 1–16

  41. Lewis KM, Turner RJ, Vink R (2013) 64 blocking neurogenic inflammation for the treatment of acute disorders of the central nervous system. Int J Inflam 2013:578480

    PubMed  PubMed Central  Google Scholar 

  42. Li B, Xi W, Bai Y, Liu X, Zhang Y, Li L, Bian L, Liu C, Tang Y, Shen L, Yang L, Gu X, Xie J, Zhou Z, Wang Y, Yu X, Wang J, Chao J, Han B, Yao H (2023) FTO-dependent m(6)a modification of Plpp3 in circSCMH1-regulated vascular repair and functional recovery following Stroke. Nat Commun 14(1):489

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Jiang Z, Jiang Y (2023) Circular RNA CircPDS5B impairs angiogenesis following ischemic Stroke through its interaction with hnRNPL to inactivate VEGF-A. Neurobiol Dis 181(1):106080

    Article  CAS  PubMed  Google Scholar 

  44. Bai X, Liu X, Wu H, Feng J, Chen H, Zhou D (2022) CircFUNDC1 knockdown alleviates oxygen-glucose deprivation-induced human brain microvascular endothelial cell injuries by inhibiting PTEN via miR-375. Neurosci Lett 770:136381

    Article  CAS  PubMed  Google Scholar 

  45. Li Yang B, Han Y, Zhang Y, Bai J, Chao G (2020) Honghong Yao, Corrigendum: Engagement of circular RNA HECW2 in the nonautophagic role of ATG5 implicated in the endothelial-mesenchymal transition. Autophagy 16(11):2119

    Article  Google Scholar 

  46. Zhuang JH, Chen HX, Gao N, Sun RD, Xiao CY, Zeng DH, Yu ZT, Peng J, Xia Y (2023) CircUCK2 regulates HECTD1-mediated endothelial-mesenchymal transition inhibition by interacting with FUS and protects the blood-brain barrier in ischemic Stroke. Kaohsiung J Med Sci 39(1):40–51

    Article  CAS  PubMed  Google Scholar 

  47. Wu F, Han B, Wu S, Yang L, Leng S, Li M, Liao J, Wang G, Ye Q, Zhang Y, Chen H, Chen X, Zhong M, Xu Y, Liu Q, Zhang JH, Yao H (2019) Circular RNA TLK1 aggravates neuronal Injury and neurological deficits after ischemic Stroke via miR-335-3p/TIPARP. J Neurosci 39(37):7369–7393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Delis SG, Bakoyiannis A, Tassopoulos N, Athanassiou K, Kechagias A, Kelekis D, Madariaga J, Dervenis C, Axis (2009) HPB (Oxford) 11(7):551–558

    Article  PubMed  Google Scholar 

  49. Dai Q, Ma Y, Xu Z, Zhang L, Yang H, Liu Q, Wang J (2021) Downregulation of circular RNA HECTD1 induces neuroprotection against ischemic Stroke through the microRNA-133b/TRAF3 pathway. Life Sci 264:118626

    Article  CAS  PubMed  Google Scholar 

  50. Ma Z, Liu CF, Zhang L, Xiang N, Zhang Y, Chu L (2022) The construction and analysis of Immune Infiltration and competing endogenous RNA network in Acute ischemic Stroke. Front Aging Neurosci 14(17):806200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J (2012) Microglia/Macrophage Polarization Dynamics Reveal Novel mechanism of Injury Expansion after focal cerebral ischemia. Stroke 43(11):3063–3070

    Article  CAS  PubMed  Google Scholar 

  52. Li Yang B, Han Z, Zhang S, Wang Y, Bai Y, Zhang Y, Tang L, Du L, Xu F, Wu L, Zuo X, Chen Y, Lin K, Liu Q, Ye B, Chen B, Li T, Tang Y, Wang L, Shen G, Wang M, Ju M, Yuan W, Jiang JH, Zhang G (2020) Jianhong Wang, Honghong Yao, Extracellular vesicle-mediated delivery of circular RNA SCMH1 promotes functional recovery in Rodent and Nonhuman Primate Ischemic Stroke models. Circulation 142(11):556–574

    Article  PubMed  Google Scholar 

  53. Zuo L, Zhang L, Zu J, Wang Z, Han B, Chen B, Cheng M, Ju M, Li M, Shu G, Yuan M, Jiang W, Chen X, Yan F, Zhang Z, Yao H (2020) Circulating circular RNAs as biomarkers for the diagnosis and prediction of outcomes in Acute ischemic Stroke. Stroke 51(1):319–323

    Article  CAS  PubMed  Google Scholar 

  54. Zu J, Zuo L, Zhang L, Wang Z, Shi Y, Gu L, Zhang Z (2022) Circular RNA FUNDC1 for prediction of Acute Phase Outcome and Long-Term Survival of Acute ischemic Stroke. Front Neurol 13:846198

    Article  PubMed  PubMed Central  Google Scholar 

  55. Xu T, Li Y, Zhu N, Su Y, Li J, Ke K (2022) circSKA3 acts as a sponge of mir-6796-5p to be associated with outcomes of ischemic Stroke by regulating matrix metalloproteinase 9 expression. Eur J Neurol 29(2):486–495

    Article  PubMed  Google Scholar 

  56. Li J, Wang J, Wang Z (2021) Circ_0006768 upregulation attenuates oxygen-glucose deprivation/reoxygenation-induced human brain microvascular endothelial cell injuries by upregulating VEZF1 via mir-222-3p inhibition. Metab Brain Dis 36(8):2521–2534

    Article  PubMed  Google Scholar 

  57. Yang X, Li X, Zhong C, Peng J, Pang J, Peng T, Wan W, Li X (2021) Circular RNA circPHKA2 Relieves OGD-Induced Human Brain Microvascular Endothelial Cell Injuries through Competitively Binding miR-574-5p to Modulate SOD2, Oxid Med Cell Longev (2021) 3823122

  58. Liu D, Xiao H, Liu J, Zhang Y, Li J, Zhang T, Chen H (2023) Circ_0000566 contributes oxygen-glucose deprivation and reoxygenation (OGD/R)-induced human brain microvascular endothelial cell injury via regulating miR-18a-5p/ACVR2B axis. Metab Brain Dis 38(4):1273–1284

    Article  CAS  PubMed  Google Scholar 

  59. Kui L, Li Z, Wang G, Li X, Zhao F, Jiao Y (2023) CircPDS5B reduction improves Angiogenesis following ischemic Stroke by regulating MicroRNA-223-3p/NOTCH2 Axis. Neurol Genet 9(3):e200074

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yang J, He W, Gu L, Long J, Zhu L, Zhang R, Zhao Z, Xu B, Nan A, Su L (1979) CircUSP36 attenuates ischemic stroke injury through the miR-139-3p/SMAD3/Bcl2 signal axis, Clinical science (London, England: 136(12) (2022) 953–971

  61. Yang B, Zang L, Cui J, Wei L, Circular RNA (2021) TTC3 regulates cerebral ischemia-reperfusion injury and neural stem cells by miR-372-3p/TLR4 axis in cerebral infarction. Stem Cell Res Ther 12(1):125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zuo L, Li C, Zu J, Yao H, Yan F (2020) Circular RNA FUNDC1 improves prediction of Stroke associated Infection in acute ischemic Stroke patients with high risk, Biosci Rep 40(6)

  63. Xiaoqi Zhu J, Ding B, Wang J, Wang M, Xu, Circular RNA (2019) DLGAP4 is down-regulated and negatively correlates with severity, inflammatory cytokine expression and pro-inflammatory gene miR-143 expression in acute ischemic Stroke patients. 12(1):941–948

  64. Zhang Z, He J, Wang B, Circular RNA (2021) circ_HECTD1 regulates cell injury after cerebral infarction by miR-27a-3p/FSTL1 axis. Cell Cycle 20(9):914–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim T, Vemuganti R (2017) Mechanisms of Parkinson’s disease-related proteins in mediating secondary brain damage after cerebral ischemia. J Cereb Blood Flow Metabolism 37(6):1910–1926

    Article  CAS  Google Scholar 

  66. Balog J, Mehta SL, Vemuganti R (2016) Mitochondrial fission and fusion in secondary brain damage after CNS insults. J Cereb Blood Flow Metabolism 36(12):2022–2033

    Article  CAS  Google Scholar 

  67. Panda AC, Gorospe M (2018) Detection and analysis of circular RNAs by RT-PCR. Bio Protoc 8(6):e2775

    Article  PubMed  PubMed Central  Google Scholar 

  68. Li S, Teng S, Xu J, Su G, Zhang Y, Zhao J, Zhang S, Wang H, Qin W, Lu ZJ, Guo Y, Zhu Q, Wang D (2019) Microarray is an efficient tool for circRNA profiling. Brief Bioinform 20(4):1420–1433

    Article  CAS  PubMed  Google Scholar 

  69. Kukurba KR, Montgomery SB (2015) RNA sequencing and analysis. Cold Spring Harbor Protoc 2015(11):951–969

    Article  Google Scholar 

  70. He AT, Liu J, Li F, Yang BB (2021) Targeting circular RNAs as a therapeutic approach: current strategies and challenges. Signal Transduct Target Ther 6(1):185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhao Q, Liu J, Deng H, Ma R, Liao JY, Liang H, Hu J, Li J, Guo Z, Cai J, Xu X, Gao Z, Su S (2020) Targeting Mitochondria-Located circRNA SCAR Alleviates NASH via Reducing mROS Output, Cell 183(1) 76–93 e22

Download references

Funding

This research was funded by National Natural Science Foundation of China (82171295), and the Sichuan Science and Technology Program (2021YFS0376, 2023YFS0042).

Author information

Authors and Affiliations

Authors

Contributions

H.-L.C., Q.-D.T., K.-J.C. and J.Y. contributed to the writing of the manuscript. S.H., F.-K. M. and H.-W.D. conceptualized the review. J.-L.H. drew the images. D.-N.Z. edited languages. W.L and J.Y overviewed and approved this manuscript. All authors contributed to the article and approved the submitted version. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Wei-Dong Le or Jie Yang.

Ethics declarations

Conflict of Interest

There are no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, XL., Tan, QD., Chen, KJ. et al. CircRNA and Stroke: New Insight of Potential Biomarkers and Therapeutic Targets. Neurochem Res 49, 557–567 (2024). https://doi.org/10.1007/s11064-023-04077-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04077-6

Keywords

Navigation