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Abstract
In the spinal cord, attenuation of the inhibitory action of glycine is related to an increase in both inflammatory and diabetic 
neuropathic pain; however, the glycine receptor involvement in diabetic neuropathy has not been reported. We determined 
the expression of the glycine receptor subunits (α1–α3 and β) in streptozotocin-induced diabetic Long–Evans rats by qPCR 
and Western blot. The total mRNA and protein expression (whole spinal cord homogenate) of the α1, α3, and β subunits did 
not change during diabetes; however, the α2 subunit mRNA, but not the protein, was overexpressed 45 days after diabetes 
induction. By contrast, the synaptic expression of the α1 and α2 subunits decreased in all the studied stages of diabetes, 
but that of the α3 subunit increased on day 45 after diabetes induction. Intradermal capsaicin produced higher paw-licking 
behavior in the streptozotocin-induced diabetic rats than in the control animals. In addition, the nocifensive response was 
higher at 45 days than at 20 days. During diabetes, the expression of the glycine receptor was altered in the spinal cord, which 
strongly suggests its involvement in diabetic neuropathy.
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Introduction

Diabetes is the most common cause of peripheral neuropathy 
occurring in 70–90% of patients with diabetes, and it is fre-
quently associated with severe neuropathic pain [1, 2]. Strict 
control of glucose levels is enough to reduce the intensity of 

pain and to prevent further deterioration in diabetic patients 
[3]. Hyperactivity of spinal dorsal horn neurons plays an 
important role in the development of diabetic neuropathic 
pain. Glycine is the main inhibitory neurotransmitter in the 
spinal cord, and evidence indicates its involvement in pain 
sensitization [4, 5]. In the dorsal horn, the attenuation of 
glycinergic neurotransmission by decreasing glycine release 
[6] or by blocking glycine receptors (GlyRs) with strych-
nine [7–10] can elicit tactile allodynia, a major symptom Miguel Ángel Velázquez-Flores and Gustavo Sánchez-Chávez have 
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of neuropathic pain. By contrast, the activation of these 
neurons alleviated neuropathic hyperalgesia and itch [5, 7, 
11]. Similarly, the decrease in the function of α3/β GlyRs, 
by PKA-dependent phosphorylation in response to prosta-
glandin E2 (PGE2) action also induced hyperalgesia and 
allodynia [12, 13]. These data indicate that the attenuation 
of the inhibitory action of glycine is associated with pain 
sensitization. Despite this information, there is little infor-
mation related to changes in the synaptic input to spinal 
dorsal horn neurons in diabetic neuropathy. Therefore, we 
evaluated the α1–α3 and β GlyR subunit expression in the 
rat spinal cord shortly after diabetes was induced with strep-
tozotocin (STZ).

Methods

Animals

Adult Long–Evans rats (150–200 g) were used for the exper-
iments; they were randomly divided in control and diabetic 
groups. Diabetes was induced by a single intraperitoneal 
STZ administration (90 mg/k, ip.) in buffer citrate, pH 4.5 
[14]. Blood glucose levels from the tail-vein blood sam-
ples were measured using ACCU-CHEK test strips (Roche 
Diagnostics), 24–48 h after STZ administration and at sac-
rifice. Age-matched citrate buffer-injected rats were used 
as the control group. Rats were maintained (4–5 per cage) 
at 21 °C ± 1, 12 h light–dark cycle, and food and water pro-
vided ad libitum. Diabetes was confirmed by measuring 
blood glucose concentration and loss of gain body weight 
(Table 2). Animals were considered diabetic if blood glu-
cose levels were higher than 250 mg/dl; insulin was not 
administered.

Previous studies demonstrated that lower STZ doses 
(60 mg/kg) has an efficacy of 60% in the induction of the 
hyperglycemic condition, while higher doses (90 mg/kg) 
have an efficacy of 95%. These studies also indicated that 
12–15% of males did not became hyperglycemic after STZ 
treatment, while in only 2–5% of females we observed this 
STZ resistance. Therefore, in the present study, we used the 
relative high STZ doses and female rats. Animals were sac-
rificed at 7, 20, and 45 days after diabetes induction (7D; 
20D; and 45D), along with non-treated animals (controls). 
A different set of control and STZ treated rats were used for 
biochemical or licking behavior. The lumbar spinal cord (L5 
and L6, 0.2–0.25 g) was isolated for mRNA and Western 
blots (WB) assays.

Ethics

This study was conducted in strict accordance with the rec-
ommendations of the Mexican Institutes of Health Research 

(DOF. NOM-062-Z00-1999). The protocol was approved 
by the Institutional Laboratory Animal Care and Use Com-
mittee of the Cellular Physiology Institute of the National 
Autonomous University of Mexico (CICUAL, Comité 
Institucional para el Cuidado y Uso de los Animales de Lab-
oratorio del Instituto de Fisiología Celular de la Universidad 
Nacional Autónoma de México). Protocol number: RSS190-
22 and RSS110 (43)-17. All efforts were made to minimize 
animal suffering and to reduce the number of rats used.

Nocifensive Test

The capsaicin-evoked nocifensive response was evaluated 
in non-treated animals (control) and STZ-induced diabetic 
rats at 20 days and 45 days [15]. The animals were placed 
in individual plastic containers 1 h before the experiment. 
The stock solution of capsaicin was resuspended in etha-
nol (10 µg/µl) (Sigma-Aldrich). The injection and vehicle 
solutions were respectively prepared by diluting capsaicin 
(0.19 µg/µl) in saline solution (0.19 µg/µl) and in 1.9% etha-
nol. Both, control and diabetic rats were first intraplantarly 
injected on the left paw with 10 µl of saline solution, using 
a 30 G needle; then, the animals were placed in the con-
tainers and the licking behavior was quantified for 10 min. 
After 30 min adaptation, rats were intraplantarly injected on 
the right paw with 10 µl capsaicin solution, were placed in 
the containers, and the licking behavior was quantified for 
10 min. The cumulative licking time (seconds) was reported 
as paw licking time (PLT).

Synaptosomes Preparation

Lumbar spinal cord was dissected and synaptosomes were 
isolated by the procedure described by Hajos [16] and 
slightly modified by Pérez-Léon and Salceda [17]. Tis-
sue was homogenized in 0.3 M sucrose (10% w/v)—Tris 
10 mM, pH 7.4 and centrifuged at 1500×g for 10 min. The 
supernatant was centrifuged at 9000×g for 20 min. The 
obtained pellet (crude synaptosomal fraction) was used for 
Western blot or qPCR.

RNA Extraction

Total RNA was extracted with TRIZOL (Ambion Life Tech-
nologies, Thermo Scientific Inc.), as previously described by 
[18]. cDNA was synthesized with the RevertAid H Minus 
First Strand cDNA Synthesis Kit (Thermo Scientific) fol-
lowing the manufacturer’s instructions. RNA integrity and 
concentration were verified by spectrophotometry (Nan-
oDrop1000, Thermo Scientific) and 2% agarose gels.
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qPCR

qPCR was performed under the same conditions previ-
ously described by Sánchez-Chávez et al. [19]. Primers 
were design with Primer 3 [20, 21], purchased from T4 
Oligo (Irapuato, Guanajuato, Mexico). The sequence 
of each pair of primers is shown in Table 1. Data were 
analyzed by following the Livak and Schmittgen method 
[22] using the 18 gene as a reference. For each sample 
was determined the expression of the α1–α3 and β GlyR 
expression, and in parallel the 18S expression (reference 
gene). As described by Livak and Schmittgen [22], the 
Ct value obtained for the 18S gene—for each sample—
was subtracted from values obtained for each of the GlyR 
subunits in each sample (∆Ct). Therefore, ∆Ct values 
obtained for the controls were subtracted from ∆Ct values 
obtained for the GlyR subunits in each sample (∆∆Ct). 
The fold-change values  (2−∆∆Ct) were relative to the con-
trol condition.

Western Blotting

Spinal cord homogenates or synaptosomes were resus-
pended with lysis RIPA buffer containing proteases and 
phosphatases inhibitors (Tris–HCl 10 mM, H 7.5, EGTA 
2 mM, NaCl 158 mM,  Na2MoO4 10 mM; NaF 25 mM, 
EDTA 1 mM, bacitracin 1 mg/ml, benzamidine 2 mM, soy-
bean trypsin inhibitor 0.1 mg/ml, pepstatin 10 μg/ml, apro-
tinin 1.2 μg/ml, leupeptin 4 μg/ml, Triton X-100 2%, SDS 
0.2%) for 1 h at 4 °C under constant shaking. Total protein 
(30 μg) was loaded in 10% acrylamide gels and run for 2 h 
at a constant voltage. Afterwards, proteins were transferred 
to polyvinylidene fluoride (PVDF) membranes, which were 
blocked (3 h) with 1% albumin-delipidated milk (5%) dis-
solved in buffer TBS-Tween (Trizma 20 mM, NaCl 136 mM, 
Tween-20 0.1% pH 7.6). The transference efficiency was 
corroborated by staining the membranes with Ponceau S 
solution. Membranes were incubated with the respective 
primary antibody (anti-α1 GlyR (1:2500; 146,003, Synap-
tic systems; RRID:AB_2108989); anti-α3 GlyR (1:1000 
ab118924, Abcam; RRID:AB_10903015); anti-α2 GlyR 
(1:1000, ab97628, Abcam; RRID:AB_10680442); anti-
GlyRβ (1:2000, ab136239, Abcam; RRID:AB_2939031), 
and α-actin (1: 2000, ab3280, Abcam; RRID:AB_303668). 
Later, membranes were incubated for 1 h in the presence 
of the secondary antibody coupled to horseradish peroxi-
dase (anti-Rabbit-HRP (1: 15,000, NA934, Cytiva; RRID: 
AB_772206); anti Mouse-HRP (1: 15,000, NA931, Cytiva; 
RRID: AB_772210)). The signal was visualized with chemi-
luminescence using the Hyperfilm ECL reagent (Immobilon 
Western Chemiluminescent HRP Substrate, Millipore Corp.) 
and digitized with the DigicDoc Rt Alfa software (Alpha 
INNOTECH). Relative values of each GlyR subunit were 
normalized with respect to α-actin (Supplementary Fig. S1).

Statistical Analysis

All data were analyzed with the GraphPad Prism 5 soft-
ware and statistical significance was determined by the 
One-way ANOVA analysis, followed by Tukey’s post hoc 
test.

Results

Model of Study

Throughout the investigation, the body weight of the STZ-
treated rats was lower, and the blood glucose levels and 
water intake were three to fourfold higher than the control 
animals (Table 2) [23].

Table 1  Primer sequences

Gene Sequence (5′–3′) TM (°C)

Glra1 Forward: GAA CGG CAA CGT CCT CTA CA 67
Reverse: CCA CCC TCA TCA TCC TTG TGA 

Glra2 Forward: CCT GGG CTA ACT GAT GGT CC 66
Reverse: GTG GTT TCT GTG ACC GAT CC

Glra3 Forward: TGG CAA GAT GAA GCA CCA GT 66
Reverse: GAT ACC CAA CGC TAC CCG AG

Glrb Forward: TGA GGC AGA AGT GGA ACG AC 66
Reverse: CTC ACC AAC CTG CAA AGT GC

18S Forward: TAC CAC ATC CAA GGA AGG CAGCA 75.6
Reverse: GCC AGC AAG CCG CGG TAA TTCCA 

Table 2  Body weight, blood glucose levels and water intake in con-
trol and streptozotocin treated rats

Data are the mean ± SD of at least three different rats per group con-
ducted in triplicated. The sample size (N) is in parenthesis
*p > 0.05

7 days 20 days 45 days

Body weight (g)
 Control 207 ± 27 (5) 307 ± 40 (5) 393 ± 25 (10)
 STZ 200 ± 16 (5) 212 ± 15 (9)* 215 ± 12 (7)*

Blood glucose (mg/dl)
 Control 126 ± 16 (11) 142 ± 17 (10) 138 ± 18 (7)
 STZ 406 ± 75 (10)* 459 ± 71 (10)* 453 ± 70 (7)*

Water intake (ml/24 h)
 Control 42.3 ± 2.5 (3) 42.7 ± 15 (3) 45.0 ± 8 (3)
 STZ 140 ± 17 (3)* 172 ± 21 (3)* 201 ± 14 (3)*
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GlyR Subunits Expression

mRNA

At mRNA levels, spinal cord GlyR subunits showed expres-
sion changes significantly different to that of the non-dia-
betic. The expression of the α1, α3, and β subunits did not 
show changes on their expression (Fig. 1A, C, D) and that 
of the α2 GlyR significantly increased at 45D (control: 
1.4 ± 0.48 vs 45D: 192 ± 140) (Fig. 1A, C, D).

Protein

In the spinal cord, the GlyR subunits protein expression was 
evaluated in both the cell body and in synapses. In the whole 
spinal cord homogenates from control animals, the relative 
protein α3 subunit expression was around 50% higher than 
the α1 subunit (not shown). In the STZ-treated rats, the α1, 

α2, and β GlyRs expressions were not statistically different 
to those observed in the control animals, but the α3 GlyR 
expression increased at 45D (82 ± 56%) (Fig. 2A–C).

Meanwhile, in synaptosomes, the α1 (around 29%) and 
α2 (around 33%) GlyR subunits expression statistically 
decreased on all days of treatment, but that of the α3 subu-
nit increased at 20 (39 ± 18%) and 45 days (30 ± 6%); the β 
subunit did not show expression changes (Fig. 3A–D).

Alterations in Pain Sensitivity in Streptozotocin‑Injected 
Rat

The pain sensitivity in diabetic-induced rats was evaluated 
through a capsaicin-evoked nocifensive test. While saline 
stimulus did not cause a significant response in control 
nor diabetic rats, capsaicin injection produced higher paw-
licking behavior in the STZ-induced diabetic rats, but this 

Fig. 1  mRNA GlyR expression in the whole spinal cord. The mRNA 
expression of the GlyR was evaluated by qPCR. Data showed no 
changes in the α1 (A), α3 (C), and β (D) GlyR subunits, but that of 
the α2 subunit (B) was markedly increased at 45 days. Data were ana-
lyzed with Livak and Schmittgen method using the 18 gene as a refer-
ence. For each sample was determined the expression of the α1-α3 
and β GlyR expression, and in parallel the 18S expression (refer-
ence gene). As described by Livak and Schmittgen [22], the Ct value 

obtained for the 18S gene—for each sample—was subtracted from 
values obtained for each of the GlyR subunits in each sample (∆Ct). 
Therefore, ∆Ct values obtained for the controls were subtracted from 
∆Ct values obtained for the GlyR subunits in each sample (∆∆Ct). 
The fold-change values  (2−∆∆Ct) were relative to the control condi-
tion. Data are the mean ± SD of at least three animals per group con-
ducted in triplicated
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change was only statistically significant at 45 days compared 
to the control and 20 days rats (Table 3).

Discussion

One of the prominent symptoms of diabetic neuropathy is 
neuropathic pain, which affects 16% of patients with diabe-
tes; however, it is frequently unreported and inadequately 
treated [24]. The pathogenesis of diabetic neuropathic 
pain is complex and, thus, remains poorly understood. The 
involvement of the glycinergic neurotransmission in nocic-
eption is supported by the fact that its attenuation increases 
both hyperalgesia and allodynia [4, 12] and α2 GlyRs 
attenuate mechanical hyperalgesia induced by zymosan 
[25]. In STZ-diabetic rats, neuropathic pain was associated 
with a decrease in the inhibitory action of glycine due to 
the reduction in its presynaptic release [6]. STZ is the most 
common agent used to induce experimental type 1 diabetic 

syndrome in animals, and hyperalgesia might develop within 
2–3 weeks [26]; therefore, we analyzed the α1–α3 and β 
subunits expression in STZ-induced diabetic rat spinal cord.

Both, α1 and α3 GlyRs are in the superficial dorsal horn 
and co-localizes in around 50% of synapses, indicating that 
both types of receptors could be acting in a synergic manner 
to control pain sensitization. As well as by controlling spe-
cific nociceptive pathways, as it has been demonstrated for 
α2 compared to α3 GlyRs [4, 12, 24]. In this respect, we did 
not find changes in the GlyRs expression in the whole tissue, 
while significant decrease in the α1 subunit was observed 
in synaptosomes. The reduction of the α1 subunit in syn-
aptosomes strongly suggests a decrease in the glycinergic 
neurotransmission and, consequently, the attenuation of the 
inhibition signal and pain sensitization.

In inflammatory pain, the involvement of α3 GlyRs is 
relatively well studied [12, 27–29]. Their PKA-dependent 
phosphorylation in response to Prostaglandin 2 (PGE2) 
attenuated their function, which in turn increased pain 

Fig. 2  Protein GlyR expression in the whole spinal cord. The α1 (A), 
α2 (B), and β (D) GlyR subunits did not showed expression changes 
in any of the studied conditions. However, the expression of the α3 

(C) GlyR subunit significantly increased at 45  days, respectively. 
Data are the mean ± SD of at least three different rats per group con-
ducted in triplicated
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sensitivity [12, 13]. Chiu et al. [6] showed that pain sen-
sitization during diabetes was associated with a decreased 
pre-synaptic release of glycine instead of the GlyR function. 
Related to this, Imlach et al. [4] demonstrated that neither α3 
GlyRs nor PGE2 were regulating nociceptive pathways after 
nerve injury, which indicates the involvement of nociceptive 

pathways independent of the α3 GlyRs activity and depend-
ent of other GlyR subunits, such as α1 and/or α2 [28, 29]. 
The observed decrease in the α1 subunit expression might 
support such conclusion.

α2 GlyRs are preferentially expressed at early spinal cord 
development and their expression is drastically reduced in 
adults [25, 30, 31]. In the spinal cord, α2 GlyRs were shown 
to be involved in the attenuation of zymosan-induced hyper-
algesia [25] and they were overexpressed after nerve injury 
[4]. Interestingly, in the whole tissue we found a consider-
able increase of the total α2 subunit expression at intermedi-
ate and late stages of diabetes, but as for the α1, decrease on 
its expression was observed in the synaptic fraction, which 
might be explained by a disturbance in the traffic of the pro-
tein to the synapses. The latter may also explain the decrease 
in the post-synaptic α1 GlyRs. Therefore, the decrease of 
α1 and α2 GlyRs expression at the synapses should lead to 
hyperalgesia. By contrast, the increase in the α3 GlyRs at 

Fig. 3  Protein GlyR expression in spinal cord synaptosomes. A, B 
The α1 and α2 expression significantly decreased at 7 days, 20 days, 
and 45 days, but that of the α3 (C) subunit increased at 20 days and 

45  days. D  The expression of the β subunit did not show signifi-
cant  changes. Data are the mean ± SD of three rats per group con-
ducted in triplicated

Table 3  Licking behavior of control and diabetic rats

Values represent the cumulative licking time in seconds, measured 
during 10 min (PLT), and are the mean ± SEM of at least five animals 
per group
*p ≤ 0.05 respect to the control. The number of determinations are 
shown in parenthesis

Saline stimulation Capsaicin stimulation

Control 9.8 ± 5.1 (5) 24 ± 8.3 (5)
Diabetic 20 days 6.6 ± 4.2 (5) 31 ± 15 (10)
Diabetic 45 days 8.4 ± 3.6 (5) 57 ± 26 (10)*
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post-synapsis might be related to the emergence of an inhibi-
tory system trying to control chronic pain.

It is well known that α2 GlyRs have low decay kinetics 
compared to α1 or α3 GlyRs [32, 33] and that they inhibit 
neuronal excitability in a sustained manner in this way. 
According to this, the decrease in the number of synaptic 
α1 and α2 GlyRs might be related to a decrease in the inhibi-
tory glycinergic action with the consequent increase in pain 
levels. Kallenborn-Gerhardt et al. [25] showed that α2 GlyRs 
could be part of a pain relief system since its expression was 
attenuating hyperalgesia.

In fact, the STZ-treated rats displayed an increase in 
pain sensitivity produced by capsaicin, and this sensitiza-
tion increases according to the days of exposure to STZ 
(Table 3). These results agree with previous reports where 
mechanical and thermal sensitivity changes were observed 
in STZ-treated animals [26, 34, 35]. These observations 
strengthen the point that the glycinergic inhibitory neuro-
transmission decreased in this model of diabetic neuropathy.

Conclusions

Our results indicate changes in the expression pattern of 
GlyR subunits in early stages of STZ-induced hyperglyce-
mia, suggesting a key role of these receptors on neuropathic 
pain.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11064- 023- 04058-9.
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