
Vol.:(0123456789)1 3

Neurochemical Research (2023) 48:3255–3269 
https://doi.org/10.1007/s11064-023-03981-1

REVIEW

Pathogenic Role of Fibrinogen in the Neuropathology of Multiple 
Sclerosis: A Tale of Sorrows and Fears

Mubarak Alruwaili1 · Hayder M. Al‑kuraishy2   · Athanasios Alexiou3,4   · Marios Papadakis5   · 
Barakat M. ALRashdi6 · Omnya Elhussieny7   · Hebatallah M. Saad8   · Gaber El‑Saber Batiha9 

Received: 20 March 2023 / Revised: 20 June 2023 / Accepted: 29 June 2023 / Published online: 13 July 2023 
© The Author(s) 2023

Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating neurodegenerative disease of the central nervous system (CNS) 
due to injury of the myelin sheath by immune cells. The clotting factor fibrinogen is involved in the pathogenesis of MS by 
triggering microglia and the progress of neuroinflammation. Fibrinogen level is correlated with MS severity; consequently, 
inhibition of the fibrinogen cascade may reduce MS neuropathology. Thus, this review aimed to clarify the potential role of 
fibrinogen in the pathogenesis of MS and how targeting of fibrinogen affects MS neuropathology. Accumulation of fibrino-
gen in the CNS may occur independently or due to disruption of blood–brain barrier (BBB) integrity in MS. Fibrinogen 
acts as transduction and increases microglia activation which induces the progression of inflammation, oxidative stress, and 
neuronal injury. Besides, brain fibrinogen impairs the remyelination process by inhibiting the differentiation of oligoden-
drocyte precursor cells. These findings proposed that fibrinogen is associated with MS neuropathology through interrup-
tion of BBB integrity, induction of neuroinflammation, and demyelination with inhibition of the remyelination process by 
suppressing oligodendrocytes. Therefore, targeting of fibrinogen and/or CD11b/CD18 receptors by metformin and statins 
might decrease MS neuropathology. In conclusion, inhibiting the expression of CD11b/CD18 receptors by metformin and 
statins may decrease the pro-inflammatory effect of fibrinogen on microglia which is involved in the progression of MS.
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Introduction

Most of neurodegenerative diseases including Alzheimer’s 
disease (AD) and Parkinson’s disease (PD) are age-related 
disorders that are most common in elderly subjects [1]. 
However, multiple sclerosis (MS) is the most common 
demyelinating neurodegenerative disease of the central 
nervous system (CNS) in young adults [2]. Of note, MS 
was initially described by Jean-Martin Charcot a French 
neurologist in 1868 who illustrated multiple scars in the 
brain and spinal cord [3]. It has been shown that MS inter-
rupts motor and sensory neuronal signal transmission lead-
ing to motor and sensory deficits [4]. MS is characterized 
by specific symptoms including vision loss in one eye, 
double vision, muscle weakness, and motor-sensory inco-
ordination [5]. Notably, MS may be progressive or relaps-
ing forms in which the symptoms disappear and return [5]. 
Of interest, MS affects about 2.8 million people globally 
with the difference among many populations; MS is more 
common in women at 20–50 years [6]. Remarkably, MS is 
not a curable disease, and 85% of MS cases presented as 
an isolated clinical syndrome, 45% have motor or sensory 
dysfunctions, 20% of MS patients have optic neuritis, and 
10% presented with brainstem disorders [7]. Particularly, 
85% of MS patients presented with acute exacerbations 
followed by improvement [8]. Nevertheless, 15% of MS 
patients presented with gradual motor-sensory dysfunction 
without a period of recovery [8]. However, a combination 
of these two forms may occur, and relapse is triggered 
by several factors including viral infections and stress [7, 
8]. Symptoms of MS are increased during exposure to 
high temperatures [9]. An acute attack of MS is treated 
by corticosteroids and/or plasmapheresis [10]. However, 
chronic MS is managed by disease-modifying treatments 
like interferons, glatiramer, and mitoxantrone [11].

Furthermore, MS is regarded as an autoimmune dis-
ease causing the injury of myelin sheath by immune cells 
and inhibiting the production of myelin [12]. Oligoden-
drocytes which are concerned with the synthesis of the 
myelin sheath are mostly affected in MS [13, 14]. Pro-
gressive loss of myelin sheath with axonal injury leads 
to neuronal dysfunction [15]. Partial remyelination in the 
remission state and demyelination in the relapse phase 
lead to sclerotic lesions in the CNS [16]. Besides, reac-
tive astrocytosis in response to neuronal injury promotes 
plaque formation [8]. Moreover, MS plaques are numer-
ous focal areas of demyelination scattered in the brain’s 
white matter and spinal cords as well as in the deep grey 
matter and cerebral cortex [17]. In the MS plaques, there 
is a large infiltration of immune cells including T lympho-
cytes, monocytes, B cells, and plasma cells [18]. It has 
been shown that inflammation acts as a central role in the 

pathogenesis of MS due to the uninhibited activation of T 
lymphocytes [19]. Peripheral auto-reactive T lymphocytes 
prompt inflammatory changes in the MS [20]. However, 
the underlying mechanism for the activation of periph-
eral auto-reactive T lymphocytes is not fully elucidated. 
Polyclonal activation of peripheral auto-reactive T lym-
phocytes by viral antigens or molecular mimicry may be 
the convincing mechanism [21]. Peripheral auto-reactive 
T lymphocytes can cross the blood–brain barrier (BBB) 
by binding integrin on the immune cells and vascular cell 
adhesion protein 1 (VCAM-1) on the endothelial cells 
[21]. Expression of integrin and VCAM-1 are increased 
by inflammation and pro-inflammatory cytokines [22, 23]. 
T-cell-induces the expression and release of matrix metal-
loproteinase (MMPs) which augment the entry of T cell 
which is also involved in the degeneration of myelin com-
ponents [24]. After the entry of peripherally auto-reactive 
T lymphocytes, they bind to MHCII expressed by dendritic 
and antigen-presenting cells leading to the reactivation of 
T cells toward pro-inflammatory phenotype [25]. These 
changes provoke disruption of myelin components and the 
release of other CNS antigens with subsequent recruitment 
of other immune cells and production of specific myelin 
auto-antibodies which support further injury and loss of 
myelin sheath [26]. These immune-inflammatory reactions 
cause further injury of BBB that promotes entry of auto-
reactive T lymphocytes and generation of soluble factors 
which attack synaptic regions causing neuronal dysfunc-
tion [27, 28] (Fig. 1).

It has been reported that fibrinogen is involved in the 
pathogenesis of MS by activating microglia and the develop-
ment of neuroinflammation [29]. Fibrinogen also called fac-
tor I is a 340 kDa glycoprotein produced by hepatocytes and 
circulates in the blood [30]. The main function of fibrinogen 
is controlling of blood homeostasis during vascular injury 
and tissue damage [30]. Fibrinogen was initially discovered 
by Paul Morawitz in 1905. The normal circulating fibrinogen 
level is 3 g/L which increases to 4.5 g/L during pregnancy 
[31]. Fibrinogen is converted by thrombin to fibrin and the 
formation of blood clots during vascular injury to prevent 
bleeding [31, 32] (Fig. 2).

Acquired and congenital hypofibrinogenemia is associ-
ated with bleeding tendency; however, hyperfibrinogen-
emia is linked with thrombotic disorders [33]. Fibrinogen 
is regarded as an acute-phase protein in response to sys-
temic inflammation in different inflammatory disorders 
[34]. Hyperfibrinogenemia in response to inflammation 
and malignancy induces thromboembolic disorders [35]. In 
addition, fibrinogen forms a bridge between platelets via 
binding fibrinogen receptors (GpIIb/IIIa) on platelets [36]. 
Acquired dysfibrinogenemia is developed due to dysfunction 
of fibrinogen that developed in chronic disorders including 
cirrhosis and chronic hepatitis [37]. Diseased liver produced 
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dysfunctional fibrinogen due to a defect in the glycosyla-
tion process of amino acids [38]. Furthermore, circulating 
autoantibodies in autoimmune disorders interferes with 
fibrinogen causing the development of dysfunctional fibrino-
gen [39]. As well, some medications like glucocorticoids and 
isotretinoin interfere with fibrinogen function [40]. Mutation 
of fibrinogen induces the production of abnormal fibrinogen 

involved in the development of familial renal amyloidosis 
[40]. However, fibrinogen in familial renal amyloidosis is 
not associated with bleeding or thrombosis [40]. It has been 
revealed that fibrinogen level is correlated with MS severity 
[41]. Therefore, inhibition of the fibrinogen cascade may 
reduce MS neuropathology. Thus, this review aimed to clar-
ify the potential role of fibrinogen in the pathogenesis of MS 
and how targeting of fibrinogen affects MS neuropathology.

Fibrinogen and MS

Fibrinogen has pleiotropic effects and plays a critical role 
in the pathogenesis of MS by induction of inflammatory 
process and neuroinflammation [11]. Deposition of fibrino-
gen in the CNS precedes neuroinflammation in MS [41]. 
However, accumulation of fibrinogen in the CNS may occur 
due to disruption of BBB integrity in MS [29, 41]. Dis-
turbance of BBB integrity in MS may precede the devel-
opment of brain lesions that may promote the entrance of 
plasma proteins including fibrinogen [29, 41]. It has been 
demonstrated that extracellular vesicles from blood plasma 
can induce experimental autoimmune encephalomyelitis 
in mice due to the activation of CD8 T cells by fibrinogen 
[42]. Likewise, analysis of extracellular vesicles from blood 
plasma from MS patients showed a higher concentration of 

Fig. 1   Pathophysiology of multiple sclerosis (MS): entry of autoreac-
tive T cells which interact with microglia and active release of pro-
inflammatory cytokines and osteopontin. Besides, autoreactive T cells 

antigen-presenting cells (APCs) expressing major histocompatibility 
II (MHCII) lead to injury of oligodendrocytes and disruption of neu-
ronal myelin sheath with the development of multiple sclerosis (MS)

Fig. 2   Fibrinogen pathway: prothrombin is converted with the 
assistance of calcium by prothrombin activator to thrombin which 
enhances the conversion of fibrinogen to fibrinogen monomer. The 
formed fibers are cross-linked with the assistance of an activated 
fibrin stabilizing factor
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fibrinogen [42]. Therefore, fibrinogen is implicated in the 
development and progression of MS through the induction 
of neuroinflammation and disease relapse. Fibrinogen is not 
merely the indicator of BBB injury in MS but acts as trans-
duction increases microglia activation via triggering expres-
sion of αvβ3 integrin on CD11b/CD18 [43]. Likewise, brain 
fibrinogen induces the progression of inflammation, oxida-
tive stress, and neuronal injury [44]. Interestingly, brain 
fibrinogen impairs the remyelination process by inhibiting 
the differentiation of oligodendrocyte precursor cells [45]. 
In vivo study using photon microscopy demonstrated that the 
clustering of microglia in the perivascular space induced by 
fibrinogen is developed before the progression of demyeli-
nation in MS [46]. Ghorbani and Yong [47] observed that 
the extracellular matrix acts as a possible modifier of remy-
elination and neuroinflammation. Furthermore, fibrinogen 
and fibrinogen-like 1,2 are associated with neuroinflamma-
tion and MS neuropathology [48]. Furthermore, fibrinogen 
can act as an immunomodulatory in the CNS, triggering 
neuroinflammation and demyelination in MS [49]. A case-
control study included 119 MS patients and 68 healthy con-
trols observed that single gene polymorphism 455G/A and 
VH1299R variant in the fibrinogen gene was associated with 
higher MS risk [49]. Davalos et al. [50] revealed that deposi-
tion of fibrinogen in the CNS triggers the pathogenesis of 
MS. Many postmortem studies revealed that deposition of 
fibrinogen in the brain perivascular regions was observed not 
only in the active sclerotic lesions but also in the pre-active 
brain lesions mainly in the white and gray matter of cerebral 
cortex. It has been observed that fibrinogen plasma level was 
increased in MS patients [40]. An observational cohort study 
involving 58 MS patients showed that fibrinogen plasma 
level was increased in patients with active MS and positively 
correlated with CNS lesions [40]. This study indicated that 
fibrinogen plasma level is a sensitive biomarker for the early 
detection of MS.

Of interest, the deposition of fibrinogen in the perivascu-
lar space activates microglia and releases pro-inflammatory 
cytokines causing BBB dysfunction and the progression of 
MS [40]. A cohort study illustrated that CSF fibrinogen was 
low in chronic MS patients as compared to other inflamma-
tory disorders involving the CNS [51]. However, in acute 
MS with injury of BBB integrity, plasma fibrinogen level 
is increased [51]. Furthermore, increased fibrinogen level 
in the proteome of platelets was observed in patients with 
progressive MS [52]. This finding indicated that platelet 
hyper-reactivity is augmented in MS patients due to over-
expression of fibrinogen. Notably, platelets play a critical 
role in the progression of inflammation in MS [53]. Platelet 
hyper-reactivity is implicated in the progression of autoim-
munity and inflammation in the early phase of MS neuro-
pathology [53]. Therefore, the pro-thrombotic state in MS 
increases the risk of stroke and cardiovascular complications 

[54]. Besides, fibrinogen interacts with other coagulation 
factors in the pathogenesis of MS [54]. A case-control study 
observed that MS patients were associated with platelet 
hyperactivity compared to controls [55]. Platelet hyper-
activity in MS could be due to endothelial injury and the 
release of endothelial microparticles which reflect activated 
T cells in the endothelium [56]. In MS, there is a profound 
platelet hyper-responsiveness to the different physiological 
activators leading to intravascular thrombosis [57]. Platelet 
hyper-responsiveness in MS is also due to hyperinflamma-
tion and oxidative stress. Pro-oxidant and pro-inflammatory 
state in MS also promotes platelet aggregation [57]. It has 
been shown that activated platelets are highly abundant in 
MS lesions [53]. Markedly, platelets play a role in the acti-
vation of the coagulation cascade through the induction of 
local generation of thrombin and release of stored clotting 
factors [58]. In addition, platelets can synthesize fibrinogen, 
von-Willebrand factor, thrombosthenin, thrombospondin, 
and membrane glycoproteins [59]. Of note, fibrinogen binds 
platelets GPIIb–IIIa receptors leading to platelet aggregation 
and thrombosis [60]. Therefore, activated platelets in MS 
are highly susceptible to the effect of fibrinogen leading to 
platelet aggregation.

These findings proposed that fibrinogen is associated with 
MS neuropathology through interruption of BBB integrity, 
induction of neuroinflammation, and demyelination with 
inhibition of the remyelination process by suppressing oli-
godendrocytes (Fig. 3).

Oxidative Stress and Fibrinogen

Oxidative stress plays an essential role in the pathogenesis of 
MS through the induction of the demyelination process [61]. 
Reactive oxygen species (ROS) trigger peripheral activation 
of T cells and the development of autoreactive T cells. ROS 
triggers the activation of microglia and induction of neuronal 
apoptosis [61]. Inflammatory reactions in MS can aggra-
vate oxidative stress burst in the activated macrophages and 
microglia leading to neuronal demyelination. In sequence, 
oxidative stress augments the propagation of inflammation 
in MS [62]. Consequently, there is positive feedback acti-
vation between oxidative stress and inflammation in MS. 
A case–control study showed that biomarkers of oxidative 
stress were increased in patients with relapsing–remitting 
MS compared to healthy controls [63]. These findings pro-
posed that oxidative stress can aggravate inflammatory reac-
tions and contribute to more neuronal injury and progression 
of MS (Fig. 4).

On the other hand, oxidative stress induces structural 
and functional changes in fibrinogen leading to more risk 
of thrombosis [64]. In addition, oxidative modification of 
fibrinogen increases its propensity for spontaneous activa-
tion and progression of thrombosis [65]. Chronic oxidative 
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stress and inflammation predispose to the development of 
venous thromboembolism [66]. A cohort study that included 
patients with suspected venous thromboembolism illustrated 
that nitrated fibrinogen level was higher in patients who 
develop venous thromboembolism compared to patients 
that were not developed venous thromboembolism [66]. 
This finding suggests that nitrated fibrinogen could be a 
possible biomarker of venous thromboembolism. However, 
mitochondrial superoxide enhances oxidative modification 
and fibrinogen proteolysis leading to coagulopathy during 
chronic inflammatory conditions [67]. Interestingly, leaky 
BBB in AD enhances fibrinogen in the brain leading to the 
activation of inflammation and oxidative stress through the 
stimulation of microglia [68]. Further, fibrinogen binds the 
CD11b receptor in microglia leading to the activation of 
NADPH oxidase and the release of ROS [69]. Therefore, 
selective deletion of the brain CD11b receptor prevents 
fibrinogen-induced microglia activation and attenuates 
ROS-mediated neurotoxicity in mice [70]. These verdicts 
indicated a potential interaction between oxidative stress and 
fibrinogen in MS neuropathology. Thus, higher oxidative 
stress in MS provokes oxidative modification of fibrinogen 
which in turn triggers oxidative stress and inflammation in 
MS.

Mitochondrial Dysfunction and Fibrinogen

It has been reported that mitochondrial dysfunction is 
involved in neuronal loss in MS due to unrestrained activa-
tion of microglia and associated neuronal injury [71]. Of 
note, the impairment of mitochondrial permeability transi-
tion pore by Ca2+ dyshomeostasis and ROS is the central 
mechanism for the progress of mitochondrial dysfunction in 
MS [72]. In addition, the pathological opening of mitochon-
drial permeability transition pores in response to nitrogen 
species, Ca2+ and ROS, provoke an influx of many solutes 
into the mitochondrial matrix causing matrix expansion and 
mitochondrial rupture, and cell deaths [72]. Furthermore, 
mitochondrial dysfunction is regarded as a vital trigger of 
programmed axon death in MS [73]. Uric acid and serum 
lactate are considered potential biomarkers of mitochon-
drial dysfunction [74]. A case-control study included 32 MS 
patients and 20 healthy controls revealed that lactate serum 
level but not serum uric acid was augmented in MS patients 
compared to the controls [74]. It has been anticipated that 
mitochondrial dysfunction modifies lymphocyte homeosta-
sis causing a defective apoptotic process of auto-reactive 
T cells to allocate them to perpetuate within the CNS and 
maintain an inflammatory cycle in MS patients [75]. Thus, 

Fig. 3   Role of fibrinogen in MS: disruption of the blood–brain barrier 
(BBB) enhances leakage of fibrinogen from blood vessels. Deposited 
fibrinogen in the multiple sclerotic lesions leads to the activation of 

microglia and the release of pro-inflammatory cytokines. As well, 
fibrinogen triggers demyelination and inhibits remyelination
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activation of Th1 cells and their lymphokines like interferon-
gamma (INF-γ) and IL-2 which induce the transformation 
of B-lymphocyte to plasma cells generate autoantibodies 
against myelin antigens [75]. As a result, mitochondrial 
dysfunction might be a primary cause for MS progression 
via alteration of lymphocyte activity, or a secondary result 
due to oxidative stress caused by MS (Fig. 4).

Notably, mitochondrial dysfunction and the release of 
mitochondrial DNA induce the release of ROS which causes 
the oxidation of lipoprotein and plasma proteins like fibrino-
gen leading to the development of atherosclerosis [76]. An 
experimental study illustrated that fibrinogen interrupts 
mitochondrial membrane potential and the development of 
mitochondrial dysfunction in mice with burn injury [77]. In 
a cross-sectional study involving patients with sarcopenia 
which developed due to mitochondrial dysfunction, plasma 
fibrinogen level and its products were increased compared 
to healthy controls [78]. This observation suggests that 
increasing fibrinogen levels is associated with the develop-
ment and progression of mitochondrial dysfunction. In addi-
tion, higher fibrinogen level in preeclampsia is correlated 
with disease severity due to the induction of mitochondrial 

dysfunction and inflammation [53]. Of note, chronic inflam-
mation is associated with the development of mitochon-
drial dysfunction [79]. In this state, fibrinogen acts as a link 
between immunoinflammatory response and the develop-
ment of mitochondrial dysfunction. Herein, fibrinogen is 
linked with the direct development of mitochondrial dys-
function or indirectly through the induction of inflammation.

Inflammatory Signaling Pathways and Fibrinogen

Diverse types of inflammatory signaling pathways and 
receptors including nuclear factor kappa B (NF-κB), nod-
like receptor pyrin 3 receptor (NLRP3) inflammasome, and 
toll-like receptor 4 (TLR4) are implicated in the pathogen-
esis of MS [80].

Toll‑Like Receptor 4

Toll-like receptor 4 (TLR4) is an innate immune sensor 
aware of the immune system to the presence of external 
pathogens [81]. Activation of TLR4 triggers the release 
of pro-inflammatory cytokines and activation of adaptive 

Fig. 4   Oxidative stress/mitochondrial dysfunction/fibrinogen in mul-
tiple sclerosis (MS): fibrinogen binds the CD11b receptor in micro-
glia leading to the activation of NADPH oxidase and the release of 
Reactive oxygen species (ROS) leading to mitochondrial dysfunction 
and injury of oligodendrocytes. Additionally, oxidative stress induces 

structural and functional changes in fibrinogen leading to thrombo-
sis. ROS trigger peripheral activation of T cells and the development 
of autoreactive T cells. ROS triggers the activation of microglia and 
induction of neuronal apoptosis
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immune response to eliminate invading pathogens [81]. 
TLR4 detects danger signals which are products of inflam-
mation and tissue injury. TLR4 is highly expressed by 
immune cells in the CNS and is involved in MS neuropa-
thology [82]. Importantly, TLR4 agonists participate in the 
amplification of harmful inflammatory responses. Fibrino-
gen activates the immune response by stimulating TLR4 
which is involved in immune activation [79]. Fibrinogen 
triggers the release of chemokines like macrophage inflam-
matory protein 1 alpha (MIP-1α) from macrophages by acti-
vating TLR4 [83]. In addition, the fibrinogen-TLR4 complex 
promotes the release of pro-inflammatory cytokines leading 
to the propagation of inflammatory disorders [84]. Fibrino-
gen can act synergistically with MIP-1β in the propagation 
of inflammation in patients with acute coronary syndrome 
[85]. Notably, MIP-1α is augmented in MS lesions and cor-
related with disease severity [86]. Therefore, fibrinogen is 
regarded as a component of damage-associated molecular 
patterns involved in the early immune response [87]. The 
findings of these studies suggest that the fibrinogen-TLR4 
complex plays a critical role in the pathogenesis of MS.

NF‑κB

NF-κB is a DNA-binding protein necessary for the tran-
scription of chemokines and pro-inflammatory cytokines. 
Predominantly, immune deregulation and increased expres-
sion of NF-κB are linked with the progression of neuronal 
injury, neuroinflammation, and the development of neuro-
degeneration [88]. NF-κB is overstated in MS leading to 
immune dysregulation and induction of the release of pro-
inflammatory cytokines. Inhibition of the NF-κB signaling 
pathway by dimethyl fumarate may reduce MS severity [89]. 
It has been observed that native and memory B cells from 
MS patients have a higher level of phosphorylated NF-κB 
which was inhibited by mycophenolate [90]. In addition, 
glatiramer attenuates the activation of NF-κB by inhibiting 
CD40 which is over-activated in MS [90].

Fibrinogen plays an integral role in the regulation of 
immune response and release of pro-inflammatory cytokines 
through NF-κB activation [91]. In vitro study demonstrated 
that fibrinogen promotes the release of IL-8 and monocyte 
chemoattractant protein 1 (MCP-1) in a concentration-
dependent manner by activating the NF-κB signaling path-
way [91]. Inhibition of IκB kinase by herbal parthenolide 
prevents expression and the release of MCP-1 under the 
effect of fibrinogen. Guo et al. [91] suggest a role of NF-κB 
in mediating the inflammatory effect of fibrinogen. Rubel 
et al. [92] revealed that fibrinogen through interaction with 
CD11b/CD18 can activate the apoptotic pathway in human 
neutrophils. Furthermore, fibrinogen triggers the develop-
ment of endothelial dysfunction by increasing the expres-
sion of adhesion molecules like VCAM-1 and intercellular 

adhesion molecule 1 (ICAM-1) which promote the expres-
sion of NF-κB [93]. These verdicts indicated that fibrinogen 
triggers NF-κB activation, and accordingly may increase 
inflammatory reactions in MS.

NLRP3 Inflammasome

One of the most important inflammatory signaling pathways 
is the NLRP3 inflammasome which is concerned in the 
activation of caspase-1, and maturation of IL-1β and IL-18 
[94]. NLRP3 inflammasome is triggered by miscellaneous 
stimuli and inflammatory signaling pathways like NF-κB 
[94]. NLRP3 inflammasome is intricate in the pathogenesis 
of neuroinflammation, and the development of neurodegen-
eration [95]. NLRP3 inflammasome is also exaggerated and 
linked with the severity of MS [96]. NLRP3 inflammasome 
within activated microglia promotes the expression and the 
release of IL-1β and IL-18. Confirmation from preclinical 
and clinical findings illustrated that aberrant activation of 
NLRP3 inflammasome is associated with the pathogenesis 
of MS. Over-activation of NLRP3 inflammasome in MS is 
apparent by increasing IL-1β CSF levels in severely affected 
patients [97]. Targeting of NLRP3 inflammasome by specific 
inhibitors can reduce MS severity [97].

It has been shown that fibrinogen and fibrinogen-like pro-
tein 2 through activation of TLR4 promotes the expression 
of NLRP3 inflammasome and the release of pro-inflamma-
tory cytokines [98]. Roseborough et al. [99] showed that 
fibrinogen propagates pro-inflammatory signaling by prim-
ing microglial NLRP3 inflammasome in a dose-dependent 
manner. In addition, extracellular vesicles released acti-
vated microglia by fibrinogen priming signaling to naïve 
cells. These extracellular vesicles from injured microglia are 
increased in the peripheral circulation and correlated with 
increasing IL-6 and IL-1β which are a biomarker of NLRP3 
inflammasome activity [99]. Therefore, a higher level of 
fibrinogen level in MS induces more inflammatory changes 
and the development of neuroinflammation.

Neuroinflammation

It has been reported by different studies that neuroinflam-
mation is connected with the progression of diverse neuro-
degenerative disorders [96, 100]. Lymphocytes in the CNS 
activate inflammatory disorders and the progress of neuro-
inflammation [94]. Neuroinflammation in the early stage of 
MS can cause synaptopathy independent of the demyelina-
tion process, and this may explain cognitive dysfunction in 
the early phase of MS patients. However, in the late phase of 
MS, overstatement of immune disturbance and progress neu-
roinflammation stimulate MS pathogenesis [101]. Notably, 
cholinergic activity is impaired in MS patients that control 
the activity and response of immune cells. A decrease in 
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the acetylcholine level in the immune cells promotes the 
release of pro-inflammatory cytokines with the progress 
of neuroinflammation [102, 103]. Of interest, fibrinogen is 
regarded as a potent inducer of neuroinflammation in dif-
ferent neurodegenerative disorders including AD, MS, and 
traumatic brain injury [104]. Hyperfibrinogenemia and fibrin 
deposits are associated with memory deficit and cognitive 
dysfunction in AD. Fibrinogen activates astrocytes, micro-
glia, and neurons leading to neuroinflammation and neu-
ronal injury [104]. Fibrinogen binds CD11b/CD18 which is 
also called Mac-1 on monocytes, macrophages, and micro-
glia leading to the release of ROS in experimental autoim-
mune encephalomyelitis [105]. In addition, fibrinogen trig-
gers neuroinflammation through the activation of platelets 
[106]. Remarkably, fibrinogen enhances the recruitment of 
peripheral monocytes and interaction with myelin-specific 
antigens [107]. Therefore, genetic deletion of the fibrino-
gen gene reduces neuroinflammation and demyelination in 
transgenic mice with MS [108]. Likewise, genetic deletion 
or use of specific inhibitors against CD11b/CD18 attenuates 
the development of experimental autoimmune encephalomy-
elitis in mice [109]. According to these findings, inhibition 
of fibrinogen could be a novel therapeutic strategy against 
neuroinflammation in MS.

Brain‑Derived Neurotrophic Factor

Brain-derived neurotrophic factor (BDNF) also called abri-
neurin is a protein encoded by the BDNF gene [110]. BDNF 
is a member of neurotrophin growth factors found in the 
brain and periphery. BDNF acts on tropomyosin receptor 
kinase B (TrkB) receptors which are catalytic receptors for 
different neurotrophins involved in the growth and differen-
tiation of cells [111]. Neuronal TrkB is highly active in the 
hippocampus, basal forebrain, and cerebral cortex. In addi-
tion, BDNF also activates low-affinity nerve growth factor 
receptor (LNGFR) whose function is not fully elucidated 
[112].

BDNF levels may decrease in MS due to the advanced 
neurodegeneration process [113]. A case-control study on 
22 MS patients compared to 19 healthy controls exposed 
that BDNF serum level was decreased in MS patients com-
pared to the controls [113]. Though, a recent study detected 
that BDNF serum level was not considerably reduced in MS 
patients compared to healthy controls [114]. In addition, a 
systemic review comprising 30 studies (689 MS patients 
and 583 healthy controls) discovered that BDNF serum level 
was decreased in MS patients compared to healthy controls 
[115].

It has been shown that fibrinogen increases the expression 
of TrkB in astrocytes in a dose-dependent manner [104]. 
However, over-expression of astrocytes TrkB is linked with 
morphological changes of astrocytes [116] with subsequent 

over-production of nitric oxide (NO), the release of nitroty-
rosine and ROS which promote neurodegeneration [117]. 
These findings proposed that overexpression of TrkB by 
fibrinogen induces neurodegeneration in MS (Fig. 5).

Targeting of Fibrinogen in MS

It has been shown platelet activity is increased in MS 
patients due to the over-expression of platelet GPIIb/IIIa 
receptors which are activated by fibrinogen. Platelet over-
activity in MS promotes the formation of platelet micropar-
ticles and platelet aggregate which increase cardiovascular 
complications [118]. Platelet abnormality is developed in 
MS that causes more inflammation in the neurovascular unit. 
Platelets are the main source of IL-1α which affect brain 
endothelium and enhance entry of immune cells into the 
CNS causing cerebrovascular inflammation [119]. In addi-
tion, platelets contribute to the progression of inflamma-
tion in the early stage of MS [120]. Therefore, GPIIb/IIIa 
receptor antagonists may reduce thrombotic events in MS 
patients.

Of note, fibrinogen binds CD11b/CD18 also called com-
plement receptor type 3 (CR3) which is also called Mac-1 
on monocytes, macrophages and microglia to induce the 
release of ROS in MS [105]. Thus, inhibition of CD11b/
CD18 receptors by specific antagonists may attenuate 
fibrinogen-induced neuroinflammation and demyelination. 
However, most CD11b/CD18 receptors were used in experi-
mental studies but are not confirmed clinically. Therefore, 
the repurposing of clinical approval drugs which affect the 
expression of CD11b/CD18 is promising.

Metformin

Metformin is an insulin-sensitizing drug that improves 
peripheral insulin sensitivity and reduces hepatic glucose 
uptake. It is used as a first line in the management of type 
2 diabetes mellitus (T2DM) [121, 122]. In addition, met-
formin has a neuroprotective effect against the development 
and progression of AD [123]. As well, metformin reduces 
neuroinflammation and demyelination in MS [124]. Dif-
ferent preclinical and clinical studies (Table 1) indicated 
that metformin is effective in the management of MS. Met-
formin attenuates the induction of experimental autoimmune 
encephalomyelitis by restricting the infiltration of mononu-
clear cells into the CNS, down-regulating the expression 
of pro-inflammatory cytokines [gamma interferone (IFN-
γ), tumor necrosis factor alpha (TNF-α), IL-6, IL-17, and 
inducible NO synthase (iNOS)], cell adhesion molecules, 
matrix metalloproteinase 9, and chemokine [125]. Met-
formin inhibited T cell-mediated immune responses includ-
ing Ag-specific recall responses and production of Th1 or 
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Th17 cytokines, while it induced the generation of IL-10 in 
spleen cells of treated experimental autoimmune encepha-
lomyelitis animals [125]. Metformin reduced Th17 and 
increased Treg cell percentages along with the levels of 
associated cytokines. Molecules involved in cellular metab-
olism were altered in mice with experimental autoimmune 
encephalomyelitis. Suppressed activation of the mechanis-
tic target of rapamycin (mTOR) and its downstream target, 

hypoxia-inducible factor 1 α (HIF-1α), likely mediated the 
protective effects of metformin [126]. Treatment with met-
formin has beneficial anti-inflammatory effects in patients 
with MS by a significant increase in the number and regula-
tory functions of CD4+ and CD25+, and regulatory T cells 
compared with controls [127].

A previous comparative study illustrated that metformin 
therapy reduced fibrinogen levels in obese patients with 

Fig. 5   Tropomyosin receptor kinase B (TrkB) in multiple sclerosis 
(MS): Fibrinogen increases the expression of tropomyosin receptor 
kinase B (TrkB) receptors in astrocytes. Over-expression of astrocytes 

TrkB is linked with morphological changes of astrocytes with subse-
quent over-production of nitric oxide (NO), the release of nitrotyros-
ine and reactive oxygen species (ROS) which promote MS

Table 1   Role of metformin in multiple sclerosis (MS)

Study type Findings References

An experimental study Metformin 100 mg/kg/day attenuates experimental autoimmune encephalomyelitis in 
mice by down-regulating the expression of pro-inflammatory cytokines, inducible 
nitric oxide synthase (iNOS)), cell adhesion molecules, and chemokine

Nath et al. [125]

An experimental study Metformin 100 mg/kg/day in mice reduced Th17 and increased Treg cell percentages 
along with the levels of associated cytokines in experimental autoimmune encepha-
lomyelitis

Sun et al. [126]

A case control study Metformin 850–1500 mg/day has anti-inflammatory effects in patients with MS by 
increasig in the number and regulatory functions of regulatory T cells compared with 
controls

Negrotto et al. [127]

A placebo-controlled clinical trial Metformin 850 mg/twice daily improves fibrinolysis in obese patients Charles et al. [144]
An experimental study Metformin therapy 100 mg/kg/day significantly alleviated reactive microgliosis and 

astrogliosis in mice with experimental autoimmune encephalomyelitis
Abdi et al. [145]
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T2DM [128]. Baptista and colleagues observed that met-
formin therapy reduced fibrinogen levels and inflammatory 
biomarkers in olanzapine-induced metabolic dysfunction in 
patients with schizophrenia [129]. However, a systematic 
review involving 9 randomized, placebo-controlled trials of 
2302 patients showed that metformin therapy did not reduce 
fibrinogen levels significantly [130]. Though, this systematic 
review did not involve clinical studies regarding fibrinogen 
levels and the effects of metformin in T2DM patients. In 
progressive MS, fibrinogen level is progressively increased 
in the cerebral cortex and CSF in patients with MS [131]. 
Fibrinogen not only induces demyelination but also inhibits 
remyelination and neurogenesis by inducing the expression 
of bone morphogenic protein (BMP) receptors which inhibit 
remyelination [132]. Therefore, inhibiting the expression of 
BMP may prevent the inhibitory effect of fibrinogen on the 
remyelination process. It has been shown that metformin 
inhibits the expression of BMP and its signaling in trauma-
induced ossification [133]. In addition, metformin through 
an AMP-activated protein kinase (AMPK)-dependent path-
way negatively regulates BMP signaling [134]. Therefore, 
metformin through inhibition of fibrinogen and related BMP 
signaling may attenuate the development and progression 
of MS.

Statins

Statins are a class of lipid-lowering agents used in the man-
agement of hypercholesterolemia in patients with cardiovas-
cular complications [134]. Statins act by inhibiting hyrox-
ymethylglutaryl-CoA (HMG-CoA) a rate-limiting enzyme 
in denovo cholesterol biosynthesis [135]. Of note, statins 
have neuroprotective effects against different neurodegenera-
tive diseases [1]. In addition, different studies revealed that 
statins are effective against MS neuropathology (Table 2) 
[136, 137]. However, there is a conflict regarding the ben-
eficial effects of statins in MS [138]. Statins are safe drugs, 
widely used in patients with cardiovascular complications, 
and have pleiotropic effects. Therefore, statins may affect 
fibrinogen which is implicated in MS neuropathology. It has 

been reported that atorvastatin reduced fibrinogen levels in 
patients with hyperlipidemia [139]. However, fluvastatin 
increases fibrinogen levels [140]. Therefore, there is a con-
troversy regarding the effect of statins on fibrinogen level. 
Recently, a cohort study illustrated that rosuvastatin fibrino-
gen level had significant fibrinolytic effects [141].

Despite these controversies, statins reduce the expres-
sion of CD11b/CD18 thereby reducing monocyte activation 
[142]. In addition, statins can mitigate neuroinflammation 
in different neurological disorders by inhibiting the expres-
sion of CD11b/CD18 [143]. Therefore, statins seem to not 
affect fibrinogen levels but decrease its effect on the brain 
by reducing CD11b/CD18.

Taken together, both statins and metformin which modu-
late the fibrinogen pathway and inflammatory reactions in 
MS could be adjuvant treatments with immunomodulatory 
agents in the management of MS. In this bargain, preclini-
cal and large-scale prospective studies are recommended in 
this regard.

Conclusions

MS is an autoimmune demyelinating neurodegenerative dis-
ease of the CNS due to injury of myelin sheath by immune 
cells and inhibition of the production of myelin. The clot-
ting factor fibrinogen is intricate in the pathogenesis of MS 
by triggering microglia and the progress of neuroinflamma-
tion. Fibrinogen level is correlated with MS severity; there-
fore, inhibition of the fibrinogen cascade may reduce MS 
neuropathology.

Deposition of fibrinogen in the CNS precedes neuroin-
flammation in MS. Accumulation of fibrinogen in the CNS 
may occur due to disruption of BBB integrity in MS. Distur-
bance of BBB integrity in MS may precede the development 
of brain lesions that may promote the entrance of plasma 
proteins including fibrinogen. Fibrinogen acts as transduc-
tion and increases microglia activation via triggering expres-
sion of CD11b/CD18. Likewise, brain fibrinogen induces the 
progression of inflammation, oxidative stress, and neuronal 

Table 2   Role of statins in multiple sclerosis (MS)

Study type Findings References

A placebo-controlled clinical Trial Different statins for 24 months reduced disease severity in patients with MS Wang et al. [137]
A review Statins may have neuroprotective and neuro-repairing effects in clinical MS 

and experimental autoimmune encephalomyelitis
Xu et al. [146]

Double-blind randomized controlled trial Atorvastatin 40 mg/kg for 18 months reduced severity and relapse in MS 
patients

Ghasami et al. [147]

Multicenter double-blind placebo-con-
trolled phase II Trials

Simvastatin 80 mg/kg for 24 months reduced severity and relapse in MS 
patients

Chataway et al. [148]

A systematic review and meta-analysis No benefit from statin treatment as an add-on to interferon beta (IFN-β) in MS 
patients

Stefanou et al. [149]
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injury. Interestingly, brain fibrinogen impairs the remyelina-
tion process by inhibiting the differentiation of oligodendro-
cyte precursor cells. Moreover, increased fibrinogen level in 
the proteome of platelets is correlated with the progression 
of MS. These findings proposed that fibrinogen is associ-
ated with MS neuropathology through interruption of BBB 
integrity, induction of neuroinflammation, and demyelina-
tion with inhibition of the remyelination process by sup-
pressing oligodendrocytes. Therefore, targeting of fibrinogen 
and/or CD11b/CD18 receptors by metformin and statins may 
reduce MS neuropathology.

Taken together, inhibition expression of CD11b/CD18 
receptors by metformin and statins decreases the pro-inflam-
matory effect of fibrinogen on microglia which is involved 
in the progression of MS.
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