Skip to main content
Log in

Epigenetic Up-Regulation of ADAMTS4 in Sympathetic Ganglia is Involved in the Maintenance of Neuropathic Pain Following Nerve Injury

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Sympathetic axonal sprouting into dorsal root ganglia is a major phenomenon implicated in neuropathic pain, and sympathetic ganglia blockage may relieve some intractable chronic pain in animal pain models and clinical conditions. These suggest that sympathetic ganglia participated in the maintenance of chronic pain. However, the molecular mechanism underlying sympathetic ganglia-mediated chronic pain is not clear. Here, we found that spared nerve injury treatment upregulated the expression of ADAMTS4 and AP-2α protein and mRNA in the noradrenergic neurons of sympathetic ganglia during neuropathic pain maintenance. Knockdown the ADAMTS4 or AP-2α by injecting specific retro scAAV-TH (Tyrosine Hydroxylase)-shRNA ameliorated the mechanical allodynia induced by spared nerve injury on day 21 and 28. Furthermore, chromatin immunoprecipitation and coimmunoprecipitation assays found that spared nerve injury increased the recruitment of AP-2α to the ADAMTS4 gene promoter, the interaction between AP-2α and histone acetyltransferase p300 and the histone H4 acetylation on day 28. Finally, knockdown the AP-2α reduced the acetylation of H4 on the promoter region of ADAMTS4 gene and suppressed the increase of ADAMTS4 expression induced by spared nerve injury. Together, these results suggested that the enhanced interaction between AP-2α and p300 mediated the epigenetic upregulation of ADAMTS4 in sympathetic ganglia noradrenergic neurons, which contributed to the maintenance of spared nerve injury induced neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study are not publicly available since another ongoing study still using certain data but are available from the corresponding author on reasonable request.

References

  1. Kawasaki Y, Xu ZZ, Wang X, Park JY, Zhuang ZY, Tan PH, Gao YJ, Roy K, Corfas G, Lo EH, Ji RR (2008) Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med 14:331–336. https://doi.org/10.1038/nm1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Finnerup NB, Kuner R, Jensen TS (2021) Neuropathic Pain: from mechanisms to treatment. Physiol Rev 101:259–301. https://doi.org/10.1152/physrev.00045.2019

    Article  CAS  PubMed  Google Scholar 

  3. Ji RR, Strichartz G (2004) Cell signaling and the genesis of neuropathic pain. Sci STKE. https://doi.org/10.1126/stke.2522004re14

    Article  PubMed  Google Scholar 

  4. Cohen SP, Vase L, Hooten WM (2021) Chronic pain: an update on burden, best practices, and new advances. Lancet (London England) 397:2082–2097. https://doi.org/10.1016/S0140-6736(21)00393-7

    Article  PubMed  Google Scholar 

  5. Torrance N, Smith BH, Bennett MI, Lee AJ (2006) The epidemiology of chronic pain of predominantly neuropathic origin. Results from a general population survey. J Pain 7:281–289. https://doi.org/10.1016/j.jpain.2005.11.008

    Article  PubMed  Google Scholar 

  6. O’Connor AB, Dworkin RH (2009) Treatment of neuropathic pain: an overview of recent guidelines. Am J Med 122:S22–32. https://doi.org/10.1016/j.amjmed.2009.04.007

    Article  PubMed  Google Scholar 

  7. Chien SQ, Li C, Li H, Xie W, Pablo CS, Zhang JM (2005) Sympathetic Fiber sprouting in chronically compressed dorsal Root Ganglia without Peripheral Axotomy. J Neuropathic Pain Symptom Palliation 1:19–23. https://doi.org/10.1300/J426v01n01_05

    Article  PubMed  PubMed Central  Google Scholar 

  8. Xie W, Strong JA, Zhang JM (2020) Localized sympathectomy reduces peripheral nerve regeneration and pain behaviors in 2 rat neuropathic pain models. Pain 161:1925–1936. https://doi.org/10.1097/j.pain.0000000000001887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harden RN, McCabe CS, Goebel A, Massey M, Suvar T, Grieve S, Bruehl S (2022) Complex regional pain syndrome: Pain Med (Malden, Mass) 23:S1–S53. https://doi.org/10.1093/pm/pnac046

    Article  Google Scholar 

  10. Drummond PD (2013) Sensory-autonomic interactions in health and disease. Handb Clin Neurol 117:309–319. https://doi.org/10.1016/B978-0-444-53491-0.00024-9

    Article  PubMed  Google Scholar 

  11. Xie W, Chen S, Strong JA, Li AL, Lewkowich IP, Zhang JM (2016) Localized Sympathectomy reduces mechanical hypersensitivity by restoring normal Immune Homeostasis in Rat Models of Inflammatory Pain. J Neurosci 36:8712–8725. https://doi.org/10.1523/JNEUROSCI.4118-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li H, Shang M, Liu L, Lin X, Hu J, Han Q, Xing J (2021) Protein kinase G signaling pathway is involved in sympathetically maintained pain by modulating ATP-sensitive potassium channels. Reg Anesth Pain Med 46:1006–1011. https://doi.org/10.1136/rapm-2021-102539

    Article  PubMed  Google Scholar 

  13. Mantyh PW (2014) The neurobiology of skeletal pain. Eur J Neurosci 39:508–519. https://doi.org/10.1111/ejn.12462

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schlereth T, Drummond PD, Birklein F (2014) Inflammation in CRPS: role of the sympathetic supply. Auton Neurosci 182:102–107. https://doi.org/10.1016/j.autneu.2013.12.011

    Article  CAS  PubMed  Google Scholar 

  15. Rose KWJ, Taye N, Karoulias SZ, Hubmacher D (2021) Regulation of ADAMTS Proteases. Front Mol Biosci 8:701959. https://doi.org/10.3389/fmolb.2021.701959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rosenzweig DH, Quinn TM, Haglund L (2014) Low-frequency high-magnitude mechanical strain of articular chondrocytes activates p38 MAPK and induces phenotypic changes associated with osteoarthritis and pain. Int J Mol Sci 15:14427–14441. https://doi.org/10.3390/ijms150814427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shu CC, Dart A, Bell R, Dart C, Clarke E, Smith MM, Little CB, Melrose J (2018) Efficacy of administered mesenchymal stem cells in the initiation and co-ordination of repair processes by resident disc cells in an ovine (Ovis aries) large destabilizing lesion model of experimental disc degeneration. JOR Spine 1:e1037. https://doi.org/10.1002/jsp2.1037

    Article  PubMed  PubMed Central  Google Scholar 

  18. Klein K, Habiger C, Iftner T, Stubenrauch F (2020) A TGF-beta- and p63-Responsive enhancer regulates IFN-kappa expression in human keratinocytes. J Immunol 204:1825–1835. https://doi.org/10.4049/jimmunol.1901178

    Article  CAS  PubMed  Google Scholar 

  19. Li H, Li W, Liang B, Wei J, Yin D, Fan Q (2020) Role of AP-2alpha/TGF-beta1/Smad3 axis in rats with intervertebral disc degeneration. Life Sci 263:118567. https://doi.org/10.1016/j.lfs.2020.118567

    Article  CAS  PubMed  Google Scholar 

  20. Shvedunova M, Akhtar A (2022) Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol 23:329–349. https://doi.org/10.1038/s41580-021-00441-y

    Article  CAS  PubMed  Google Scholar 

  21. Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149–158. https://doi.org/10.1016/S0304-3959(00)00276-1

    Article  PubMed  Google Scholar 

  22. Kolat D, Kaluzinska Z, Bednarek AK, Pluciennik E (2019) The biological characteristics of transcription factors AP-2alpha and AP-2gamma and their importance in various types of cancers. Biosci Rep. https://doi.org/10.1042/BSR20181928

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li N, Rivera-Bermudez MA, Zhang M, Tejada J, Glasson SS, Collins-Racie LA, Lavallie ER, Wang Y, Chang KC, Nagpal S, Morris EA, Flannery CR, Yang Z (2010) LXR modulation blocks prostaglandin E2 production and matrix degradation in cartilage and alleviates pain in a rat osteoarthritis model. Proc Natl Acad Sci U S A 107:3734–3739. https://doi.org/10.1073/pnas.0911377107

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lemarchant S, Wojciechowski S, Vivien D, Koistinaho J (2017) ADAMTS-4 in central nervous system pathologies. J Neurosci Res 95:1703–1711. https://doi.org/10.1002/jnr.24021

    Article  CAS  PubMed  Google Scholar 

  25. Lemarchant S, Pruvost M, Hebert M, Gauberti M, Hommet Y, Briens A, Maubert E, Gueye Y, Feron F, Petite D, Mersel M, do Rego JC, Vaudry H, Koistinaho J, Ali C, Agin V, Emery E, Vivien D (2014) tPA promotes ADAMTS-4-induced CSPG degradation, thereby enhancing neuroplasticity following spinal cord injury. Neurobiol Dis 66:28–42. https://doi.org/10.1016/j.nbd.2014.02.005

    Article  CAS  PubMed  Google Scholar 

  26. Tauchi R, Imagama S, Natori T, Ohgomori T, Muramoto A, Shinjo R, Matsuyama Y, Ishiguro N, Kadomatsu K (2012) The endogenous proteoglycan-degrading enzyme ADAMTS-4 promotes functional recovery after spinal cord injury. J Neuroinflammation 9:53. https://doi.org/10.1186/1742-2094-9-53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miller RE, Tran PB, Ishihara S, Larkin J, Malfait AM (2016) Therapeutic effects of an anti-ADAMTS-5 antibody on joint damage and mechanical allodynia in a murine model of osteoarthritis. Osteoarthritis Cartilage 24:299–306. https://doi.org/10.1016/j.joca.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  28. Zhao P, Liu D, Song CY, Li D, Zhang XZ, Horecny I, Zhang FQ, Yan YN, Zhuang LH, Li J, Liu SX, Mao YC, Feng J, Liu J, Tao WK (2022) Discovery of Isoindoline Amide derivatives as potent and orally bioavailable ADAMTS-4/5 inhibitors for the treatment of Osteoarthritis. Acs Pharmacol Transl. https://doi.org/10.1021/acsptsci.2c00023

    Article  Google Scholar 

  29. Lemarchant S, Dunghana H, Pomeshchik Y, Leinonen H, Kolosowska N, Korhonen P, Kanninen KM, Garcia-Berrocoso T, Montaner J, Malm T, Koistinaho J (2016) Anti-inflammatory effects of ADAMTS-4 in a mouse model of ischemic stroke. Glia 64:1492–1507. https://doi.org/10.1002/glia.23017

    Article  PubMed  Google Scholar 

  30. Hilger-Eversheim K, Moser M, Schorle H, Buettner R (2000) Regulatory roles of AP-2 transcription factors in vertebrate development, apoptosis and cell-cycle control. Gene 260:1–12. https://doi.org/10.1016/s0378-1119(00)00454-6

    Article  CAS  PubMed  Google Scholar 

  31. Descalzi G, Mitsi V, Purushothaman I, Gaspari S, Avrampou K, Loh YE, Shen L, Zachariou V (2017) Neuropathic pain promotes adaptive changes in gene expression in brain networks involved in stress and depression. Sci Signal. https://doi.org/10.1126/scisignal.aaj1549

    Article  PubMed  PubMed Central  Google Scholar 

  32. Santoso CS, Li Z, Lal S, Yuan S, Gan KA, Agosto LM, Liu X, Pro SC, Sewell JA, Henderson A, Atianand MK, Fuxman Bass JI (2020) Comprehensive mapping of the human cytokine gene regulatory network. Nucleic Acids Res 48:12055–12073. https://doi.org/10.1093/nar/gkaa1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carrasco Pro S, Dafonte Imedio A, Santoso CS, Gan KA, Sewell JA, Martinez M, Sereda R, Mehta S, Fuxman Bass JI (2018) Global landscape of mouse and human cytokine transcriptional regulation. Nucleic Acids Res 46:9321–9337. https://doi.org/10.1093/nar/gky787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rothstein M, Simoes-Costa M (2020) Heterodimerization of TFAP2 pioneer factors drives epigenomic remodeling during neural crest specification. Genome Res 30:35–48. https://doi.org/10.1101/gr.249680.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (Grant No. 31970936, 81870829, 82071224, 62175263), Natural Science Foundation of Guangdong (2019A1515010871, 2019A1515011447, 2022A1515012259), Guangzhou Science and Technology Plan Project (202206060004, 202002020011), Major Project of Basic and Applied Basic Research Foundation of Guangdong Province (2019B1515120054).

Funding

This study was funded by National Natural Science Foundation of China (Grant No.31970936, 81870829, 82071224, 62175263), Natural Science Foundation of Guangdong (2019A1515010871, 2019A1515011447, 2022A1515012259), Guangzhou Science and Technology Plan Project (202206060004, 202002020011), Major Project of Basic and Applied Basic Research Foundation of Guangdong Province (2019B1515120054).

Author information

Authors and Affiliations

Authors

Contributions

XF and W-JX contributed to the study conception and design. Data collection and analysis were performed by CW and MW. The first draft of the manuscript was written by CW and MW. Material preparation were performed by YW. Experiments were performed by H-TF, Zheng-Kai Liang and A-RL. all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wen-Jun Xin or Xia Feng.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interests.

Ethical Approval

The experimental protocols were approved by the Animal Care and Use Committee of Sun Yat-sen University and conducted in strict accordance with the guideline of National Institutes of Health on the animal care and the ethical guideline.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 1164.4 kb)

Supplementary material 2 (DOCX 17.3 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Wei, M., Wu, Y. et al. Epigenetic Up-Regulation of ADAMTS4 in Sympathetic Ganglia is Involved in the Maintenance of Neuropathic Pain Following Nerve Injury. Neurochem Res 48, 2350–2359 (2023). https://doi.org/10.1007/s11064-023-03896-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-03896-x

Keywords

Navigation