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Abstract
Epilepsy is a common and severe neurological disorder in which impaired glucose metabolism leads to changes in neuronal 
excitability that slow or promote the development of epilepsy. Leptin and adiponectin are important mediators regulating 
glucose metabolism in the peripheral and central nervous systems. Many studies have reported a strong association between 
epilepsy and these two adipokines involved in multiple signaling cascades and glucose metabolism. Due to the complex 
regulatory mechanisms between them and various signal activation networks, their role in epilepsy involves many aspects, 
including the release of inflammatory mediators, oxidative damage, and neuronal apoptosis. This paper aims to summarize 
the signaling pathways involved in leptin and adiponectin and the regulation of glucose metabolism from the perspective 
of the pathogenesis of epilepsy. In particular, we discuss the dual effects of leptin in epilepsy and the relationship between 
antiepileptic drugs and changes in the levels of these two adipokines. Clinical practitioners may need to consider these factors 
in evaluating clinical drugs. Through this review, we can better understand the specific involvement of leptin and adiponectin 
in the pathogenesis of epilepsy, provide ideas for further exploration, and bring about practical significance for the treatment 
of epilepsy, especially for the development of personalized treatment according to individual metabolic characteristics.
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Introduction

Adipokines, containing various bioactive peptides/proteins, 
immune molecules and inflammatory mediators, are secreted 
by adipose tissue and normally function through autocrine, 
paracrine and endocrine signaling [1]. Leptin and adiponec-
tin, as two pivotal adipokines, act extensively in the central 
nervous system, and play an important role in the patho-
physiology of different neurological diseases, including 
epilepsy [2–6].

Leptin, as a vital regulator in different physiopathologic 
processes, binds to leptin receptors and activates signaling 
pathways in the regulating different cellular functions to 
be neuroprotective. Although mice deficient in the mito-
chondrial manganese superoxide dismutase (MnSOD or 
SOD2) exhibit spontaneous seizures [7], leptin induces the 
production of MnSOD and the anti-apoptotic protein B-cell 
lymphoma-extra large (Bcl-XL), stabilizes the mitochondrial 
membrane potential and alleviates mitochondrial oxidative 
stress [8]. Mice deficient in leptin receptors are more prone 
to hippocampal damage caused by epilepsy, and intra-
ventricular administration of leptin protects hippocampal 
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neurons [8]. Electrophysiological and biochemical tests 
have shown that leptin has an anticonvulsant effect on pen-
tylenetetrazol (PTZ) -induced generalized tonic–clonic con-
vulsive seizure in the Wistar rat model. Leptin significantly 
increases the serum endogenous anticonvulsant agent gala-
nin and glutathione (GSH). Besides, it decreases the expres-
sion level of malondialdehyde (MDA), which may be protec-
tive against oxidative damage [9].

Adiponectin is the 30 kDa adipocyte complement-related 
protein (Acrp30). Its receptors cover many biological func-
tions. Adiponectin receptor 1 (AdipoR1) and receptor 2 
(AdipoR2) have physiological correlations in metabolic 
processes. T-cadherin, a cadherin superfamily member, is a 
potent receptor for hexamer and adiponectin oligomers with 
high molecular weight [10–12]. Full-length adiponectin is 
cleaved by leukocyte esterase to form globular adiponectin 
(gAd) [13]. AdipoR1 has a high affinity for gAd, compared 
with AdipoR2 for full-length and gAd as an intermediate-
affinity receptor [14]. Adiponectin transcription is regulated 
by Sirtuin 1/forkhead box protein O 1 (FoxO1) and peroxi-
some proliferator-activated receptors (PPARs) [15]. Adi-
ponectin exerts a neuroprotective effect on brain damage 
in different regions through AdipoR1 [16–20] and, espe-
cially in the hippocampus, promotes neurogenesis through 
AdipoR1 [21] and directly affects synaptic function by Adi-
poR2 [22]. Adiponectin deficiency in mice on a high-fat 
diet results in increased seizure severity and pathological 
changes in the hippocampus [19].

Via bioinformatics technology, researchers used Gene 
Ontology (GO) and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) network to reveal that synapses play a 
crucial role in medial temporal lobe epilepsy (MTLE) [23]. 
It has been reported that the changes of postsynaptic glu-
tamate receptor increase the excitability of hippocampal 
neural network, and 4-aminopyridine (4-AP) -induced epi-
leptiform activity in hippocampal brain slices of rat in vitro 
model shows that alpha-amino-3-hydroxy-5-methyl-4-isox-
azolepropionate (AMPA)/N-methyl-D-aspartate (NMDA) 
ratio increases [24]. Using a cell model cultured with low 
magnesium, it has been observed that prolonged epilepti-
form activity increases reactive oxygen species (ROS) pro-
duction in an NMDA receptor-dependent manner, further 
resulting in neuronal damage and apoptosis induced by epi-
lepsy [25]. It has been described that oxidative damage in 
surgically resected brain tissue with epilepsy [26, 27]; con-
versely, oxidative damage may affect neuronal excitability 
and susceptibility to suffer from epilepsy [28–30].

Seizures and their potential effects on the development 
of the brain, especially for patients with clinically intracta-
ble epilepsy, may experience varying degrees of cognitive 
impairment, behavioral abnormalities, or psychiatric symp-
toms, all of which cause severe limitations in daily lives 
[31, 32]. However, many scholars have devoted to study 

the regulatory mechanism of leptin and adiponectin which 
has provided unique insights and opened a new perspective 
for the pathogenesis and treatment of epilepsy. This article 
mainly discusses the role of leptin and adiponectin in the 
genesis of epilepsy and their effects on antiepileptic drug 
treatment, in order to find an intervention to regulate sig-
nal transduction to control the progression of epilepsy and 
improve the quality of life in patients with epilepsy.

Epilepsy

Dysfunction in metabolic processes can bring about changes 
in neuronal excitability [33], promoting or alleviating seizure 
progression. Proteomic technology to screen for differential 
molecules associated with seizures has indicated that most 
of the affected proteins involve in energy metabolism and 
redox balance [34]. This article will discuss the correlation 
among various biological functions and complex signaling 
mechanisms of leptin and adiponectin, the way how these 
two adipokines regulate the metabolism and energy homeo-
stasis and the pathological processes of epilepsy.

Febrile seizures(FS) is a common convulsive disease 
in children. Low-level leptin in cerebrospinal fluid (CSF) 
is related to the susceptibility to complex febrile seizures 
[35]. Chronic deficiency of leptin increases the susceptibil-
ity to seizures, severity, and possibility of suffering from 
generalized clonic and clonic-tonic seizures in PTZ-induced 
models [36]. However, current evidence has suggested that 
adiponectin is specifically expressed in different types of 
epilepsy. The logistic regression analysis has shown that a 
high serum adiponectin level is a significant risk factor for 
FS [37]. Inconsistently, serum adiponectin level reduces in 
adults with temporal lobe epilepsy (TLE) and in patients 
with refractory epilepsy [4, 38]. A study for 13 female 
patients has indicated that the plasma adiponectin levels are 
significantly increased within 24 h after primary or second-
ary generalized tonic–clonic seizures [39].

The pathogenesis of epilepsy starts from pathophysio-
logical changes to the progression after seizures, including 
changes in voltage and transmitter-gated channels, intracel-
lular signal cascades, synaptic connection, alteration in gene 
expression, abnormal protein production and activation or 
inhibition of the metabolic pathway, etc., which may be tar-
geted indicators for the drug to inhibit epileptogenesis.

The Effects of Leptin on Epilepsy

The Signaling Cascade of Leptin

Leptin is a peptide hormone derived from adipocytes. 
Leptin receptors are expressed in both neonatal and adult 
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hippocampal neurons, and through the blood–brain barrier 
(BBB) act in many regions of the central nervous system, 
where they involve in the regulation of energy balance, 
inflammatory processes, synapse formation and neurotrophic 
activity [9, 40–43]. Leptin binds to long-form receptors at 
the plasma membrane, to trigger multiple signaling cascades 
(Fig. 1), including Janus kinase-signal transducer and activa-
tor of transcription (JAK-STAT) signaling, phosphatidylino-
sitol 3-kinase (PI3K)/protein kinase B(Akt)/FOXO1 signal-
ing, and Src homology 2 domain-containing protein tyrosine 
phosphatase 2 (SHP2)- extracellular signal-regulated kinase 
(ERK) signaling.

The JAK-STAT pathway is a major signaling mechanism 
for various cytokines and growth factors. As a family of 
non-receptor tyrosine kinases, JAK activates and stimulates 
cell proliferation and apoptosis. After being phosphoryl-
ated by JAK, the substrate STAT dimerizes and crosses the 
nuclear envelope into the nucleus to regulate the expression 
of related genes [44]. In addition, receptors phosphorylated 
by JAKs recruit PI3K to activate the PI3K-Akt pathway. Akt 
phosphorylates target proteins through various downstream 
pathway to play a role in inhibiting apoptosis [45–47]. For 

example, Akt phosphorylates FoxO1, a transcription factor 
of the FoxO family, at multiple sites, resulting in the trans-
location of FoxO1 from the nucleus to the cytoplasm.

The Regulatory Mechanisms of Leptin in Glucose 
Metabolism

Glucose metabolism disorder affects the progression of epi-
lepsy [48, 49]. Leptin, as an essential mediator of metabolic 
homeostasis, regulates glucose homeostasis both exter-
nally and centrally, and the peripheral targets are pancreatic 
β-cells. Depending on NMDA receptors, calcium/calmodu-
lin-dependent kinase β (CaMKKβ) and AMP-activated pro-
tein kinase (AMPK), leptin increases cell membrane protein 
kinase A (PKA) activity, induces ATP-sensitive potassium 
 (KATP) channels transport to the β-cells surface to inhibit 
glucose-stimulated insulin secretion, thereby increasing  K+ 
conductance and causing β-cells hyperpolarization [50].

Studies have demonstrated increased glucose uptake in 
the brain after intravenous leptin administration in wild-
type mice [51]. Leptin in neurons influences cellular glu-
cose uptake through glucose transporters [52, 53]. Leptin 

Fig. 1  Leptin receptors participate in multiple signaling pathways
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also enhances lactate dehydrogenase A (LDHA) -dependent 
glucose perception in the hypothalamus to regulate glucose 
production in high-fat-fed rodents [54]. However, for 18 h 
food-deprived rats, microinjection of glucose in the hypotha-
lamic paraventricular nucleus (PVN) can reduce plasma lep-
tin levels [55]. The PI3K signaling pathway in hypothalamic 
neurons integrates leptin and insulin to coordinate systemic 
glucose and energy homeostasis [56]. Research has found 
that agouti-related peptide (AGRP) neurons play a role in the 
leptin regulation of energy balance and glucose homeostasis 
[40]. Potential mechanisms for its neurobiological effects 
include presynaptic enhancement of gamma-aminobutyric 
acid (GABA) neurotransmission and postsynaptic activa-
tion of adenosine triphosphate (ATP) -sensitive potassium 
channels. Continuous activation of leptin receptor neurons 
in the arcuate nucleus of the hypothalamus leads to impaired 
glucose tolerance [57]. Leptin receptors in the commissural 
nucleus of the tractus solitarius (cNTS) induce brain glucose 
retention (BGR) by enhancing hypoxic stimulation of carotid 
chemoreceptors [58].

Dual Roles of Leptin in Epilepsy

Leptin involves in energy metabolism through the PI3K-Akt-
FoxO1 pathway in neurons [59]. However, the antiepileptic 
drug valproic acid (VPA) promotes the phosphorylation of 
Akt and FoxO1 [60]. Studies have shown that leptin acti-
vates the JAK/STAT and PI3K-Akt pathway and promotes 
neuronal survival by increasing the production of the anti-
oxidant enzyme Mn-SOD and the anti-apoptotic protein Bcl-
XL [8]. PI3K/Akt/Mechanistic target of rapamycin (mTOR) 
pathway may cause abnormal transduction of neuronal sig-
nal in epilepsy under pathological conditions [61–63].

The expression of Jak1, Stat1 and Stat3 in the hippocam-
pal tissue of epileptic rats induced by lithium-pilocarpine 
increases [64]. Status epilepticus (SE) activates the JAK/
STAT pathway [65], and selective inhibitors of the JAK/
STAT pathway administered within 1 h after the onset of 
SE lead to transient suppression of STAT3 phosphoryla-
tion (pSTAT3) and a long-term reduction in the frequency 
of spontaneous seizures. In the study based on chromatin 
immunoprecipitation and chromatin immunoprecipitation 
followed by sequencing (ChIP-seq) [66], Lesiak et al. found 
that the suppressor of cytokine signaling 3 (SOCS3) is a 
direct target of the Cyclic AMP response-element binding 
protein (CREB) transcription factor.Leptin activates the 
Mitogen-activated protein kinase (MAPK) kinase (MEK)/
ERK pathway and upregulates SOCS3 expression through 
the CREB transcription factor, thereby increasing synap-
togenesis in hippocampal neurons [43]. The mechanism of 
leptin and STAT3 may depend on the interaction between 
SHP2 and SOCS3. After leptin receptors are activated, the 
conserved tyrosine residues on its tail are phosphorylated by 

JAK2 to promote the aggregation of downstream signaling 
proteins. Cytoplasmic tyrosine residue  Tyr985 phosphorylates 
to combine with SHP2 which contains Src homology2 (SH2) 
domains and SOCS3. SHP2 binds phosphorylated  Tyr985 and 
mediates the activation of ERK in cultured cells. SOCS3 
mediates feedback inhibition of LepRb signaling by binding 
to  Tyr985. SHP2 acts as a competitive and negative regulator 
in the processes of SOCS3's binding to  Tyr985 associated 
with leptin receptors [67, 68]. SHP2 contains phosphatase 
domains and tyrosine phosphorylation sites. It plays a part 
in the regulation of cellular transduction pathway related 
to cytokine, growth factors and hormones, especially rat 
sarcoma (RAS)/MAPK and PI3K/AKT cascades. SHP2 
dephosphorylates RAS and enhances its binding to the effec-
tor protein rapidly accelerated fibrosarcoma (RAF), thereby 
activating the downstream MEK/ERK signaling pathway 
[69]. MEK1 expression in the mouse brain not only leads to 
ERK activation to bring about spontaneous seizures, but also 
to phosphorylation of the transcription factor CREB [70]. 
Nguyen LH et al. [71] found that MEK inhibitor PD0325901 
(mirdametinib) significantly decrease seizure activity in 
tuberous sclerosis complex (TSC) mouse models.

In addition to the abnormal release of neurotransmitters, 
epilepsy is closely related to the highly synchronized abnor-
mal firing of neurons caused by abnormally transmembrane 
movement of ions. The changes in the structure and func-
tion of ion channels lead to excitatory regulation disorder 
to induce epilepsy. Leptin, however, plays an essential role 
in different epileptic models. Researchers have found that 
leptin counteracts the up-regulation of the protein level of 
the Zn (2 +)/Ca(2 +) signaling, which has a neuroprotective 
effect in the pilocarpine-induced neonatal Sprague–Dawley 
rat status epilepticus model [72] and inhibits the excitability 
of hippocampal neurons by activating  Ca2+- and voltage-
gated  K+ channels of large conductance (BK channels) 
through PI3K [73]. The duration and incidence of focal 
seizures induced by 4-AP, an inhibitor of voltage-gated  K+ 
channels, decrease after neocortical injection of leptin. Intra-
nasal administration of leptin in mice delays the seizures of 
generalized convulsions induced by the chemical convulsant 
PTZ [74]. Leptin not only plays a potentially neuroprotec-
tive role by reducing cell damage related to SE induced by 
kainic acid (KA) [75], but also lowers the neuronal spik-
ing in an in vitro epilepsy model and inhibits alpha-amino-
3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) 
receptor-mediated synaptic transmission in the mouse hip-
pocampus [74]. Ligand-gated ion channels, glutamate recep-
tors mediate excitatory synaptic transmission in the central 
nervous system, and leptin directly affects glutamate neu-
rotransmission in the hippocampus to inhibit seizures [74]. 
In hippocampal astrocytes of epileptic mice [76], pretreat-
ment with leptin reduces the toxicity of excess glutamate to 
glial cells and plays a protective role against seizures. Leptin 
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treatment improves the neurobehavioral abnormality gen-
erated by Flurothyl-induced recurrent seizures. Moreover, 
long-term treatment with leptin reverses the up-regulation 
of Beclin-1/Bcl-2 protein level and the down-regulation of 
 Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) 
level [77]. Other evidence has shown that leptin reduces the 
expression of proinflammatory cytokines tumor necrosis 
factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin 6 
(IL-6) levels, suggesting that leptin may have an anti-inflam-
matory effect upon epileptic seizures [9].

Notably, studies have reported the proconvulsant activ-
ity of leptin. Intraventricular administration of leptin at a 
dose of 1 μg in a rat model with penicillin-induced epilepsy 
increases the mean frequency of epileptiform activity, but 
never changes its amplitude [78]. Electrophysiological stud-
ies have proven that inhibition of cannabinoids can medi-
ate leptin's convulsant-stimulating activity [79]. Activat-
ing the cannabinoid receptors type 1 (CB1) mediates the 
anticonvulsant effect of cannabinoids [80]. Intraventricu-
lar injection of 7.5 μg CB1 agonist arachidonyl‐2‐chloro-
ethylamide (ACEA) protects against penicillin-induced 
epileptoid activity. However, leptin blocks this effect and 
enhances the convulsant-promoting effect of [N‐(piperi-
dine‐1‐yl)‐5‐(4‐iodophenyl)‐1‐(2,4‐dichlorophenyl)‐4‐
methyl‐1H‐pyrazole‐3 carboxamide] (AM‐251), a cannabi-
noid CB1 receptor antagonist [79]. Moreover, leptin blocks 
glucocorticoid-mediated endocannabinoid release in the 
paraventricular nucleus of the hypothalamus through phos-
phodiesterase 3B-mediated reduction of intracellular cyclic 
adenosine monophosphate (cAMP) levels [81]. In addition, 
such changes may be related to the involvement of the neu-
ronal nitric oxide synthase (NOS)/nitric oxide (NO) path-
way in mediating the seizure-like activity in the processes 
mentioned above. nNOS increases γ-aminobutyric acid 
transaminase (GABA-T) activity and reduces brain GABA 
levels, and the NO produced may activate NMDA receptors 
[82]. Leptin increases NMDA (dual voltage and transmitter-
gated channel) receptor-mediated synaptic currents and trig-
gers N-methyl-D-aspartate receptor (NMDAR) -dependent 
 Ca2+ influx [83]. Experimental research [84] has described 
that leptin exhibits dose-related proconvulsant activity with 
NMDA and KA, including decreasing latency and increas-
ing symptoms.

Although leptin has shown inhibitory and neuroprotec-
tive activity against seizures in several epileptic models, it 
also increases epileptiform activity in other models under 
certain conditions. Reports on leptin's pro-convulsant and 
anticonvulsant effects have indicated specific roles of leptin 
in different epilepsy models and signaling pathways.

At present, antiepileptic drugs are still the mainly clini-
cal treatment for epilepsy [85, 86]. Among children receiv-
ing long-term treatment with VPA, carbamazepine (CBZ) 
and lamotrigine (LTG), the serum leptin level remarkably 

increases in the VPA group [87]. Administration of antie-
pileptic drugs for at least 6 months for the over-6 age group 
with idiopathic epilepsy has shown VPA-treated children 
have higher leptin concentration and a lower ratio of soluble 
leptin receptor (SOB-R) to leptin [88]. Among children with 
idiopathic epilepsy or location-related idiopathic epilepsy in 
the monotherapy with VPA or topiramate (TPM) for at least 
6 months [89], the leptin levels in the VPA group are higher 
than that in the TPM group. Some researchers believe that 
changes in leptin expression levels may also be one of the 
anticonvulsant mechanism of ketogenic diet (KD) [90, 91].

The Effects of Adiponectin on Epilepsy

The Involvement of Adiponectin in Signaling 
Cascade

Adiponectin is a hormone derived from adipocytes and is 
released into the circulation [13] in the form of full-length 
trimers, dimers (both of which are low molecular weight 
multimers), 18 or more high molecular weight multimers 
(HMW) [12, 92], and spherical moieties (gAD) [13]. It phys-
iologically functions by activating downstream components 
of AMPK, P38-MAPK, c-Jun N-terminal kinase (JNK), and 
transcriptional regulatory nuclear factor-κB (NF-κB) signal-
ing [14, 93–95]. However, the NAD + -dependent protein 
deacetylase SIRT1 and FoxO1-C enhancer binding protein 
α (EBPα) transcriptional complex affect the release of adi-
ponectin [96, 97] (Fig. 2).

The Regulation of Adiponectin in Energy 
Metabolism

It has been reported that changes of adiponectin in the cen-
tral nervous system (CNS) may affect glucose metabolism in 
hippocampal neurons [98]; Interestingly, the occurrence of 
epilepsy involves the disorder of glucose metabolism. With 
the medical device of (18) F-fluorodeoxyglucose-positron 
emission tomography (18F-FDG PET) imaging to analyze 
the glucose metabolic changes in medial temporal lobe 
epilepsy patients with hippocampal sclerosis (mTLE‐HS), 
low signals could be routinely observed in the temporal and 
extratemporal areas [99]. Wang J et al. simultaneously used 
resting‐state functional Magnetic Resonance Imaging (rs 
fMRI) and 18F-FDG PET to study the coupling changes 
between brain metabolism and functional activity in mTLE-
HS patients and found that hypometabolism, the fractional 
amplitude of low frequency fluctuations (fALFF) and 
increased regional Homogeneity (ReHo) areas are usually 
associated with the generation and transmission of epilepti-
form activity. There is a high coupling between resting-state 
spontaneous neural activity and glucose metabolism [100].
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Since glucose cannot freely enter the cell through the 
lipid bilayer structure of the cell membrane, the transport 
function of glucose transporters (GLUT) on the cell mem-
brane is necessary to achieve intracellular glucose intake. 
Glucose is an important energy source for the central 
nervous system. GLUT1 is expressed in CNS endothelial 
cells (ECs) and uncoupled with glycolysis in a Notch-
dependent manner, and GLUT1 deficiency in stationary 
adult ECs leads to severe seizures with neuronal loss and 
CNS inflammation [101, 102]. GLUT1 deficiency syn-
drome (GLUT1 DS) caused by GLUT1 deficiency indi-
cates the types of variable focal and multiple local sei-
zure, and electroencephalography (EEG) manifestations 
[103]. The 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) 
amino]-2-deoxy-D-glucose (2-NBDG) method and glu-
cose uptake colorimetric method have shown that seizures 
could dramatically reduce neuronal glucose uptake and 
GLUT-3 expression [104]. However, study on hippocam-
pal neurons from cultured primary rats and hippocampal 
slices from mice [98] have demonstrated that adiponectin 
enhances glucose uptake, glycolysis rate, and ATP pro-
duction through the AMPK -dependent mechanism.

The Regulatory Mechanisms of Adiponectin 
in Epilepsy

Apoptosis and inflammation induced by brain injury are 
pathogenic factors of epilepsy [105]; Nevertheless, adi-
ponectin can protect cultured hippocampal neurons against 
KA-induced cytotoxicity, reduce reactive oxygen species, 
decrease apoptotic cell death, and inhibit KA-induced cas-
pase-3 activation [106]. On the other hand, seizures also 
induce the production of inflammatory mediators, which 
trigger the activation of the NF-κB pathway to promote the 
progress of the disease in turn [107].

Adiponectin induces nuclear translocation of NF-κB p65 
subunit and phosphorylation of MAPKs in dendritic cells 
[108]. Zhang et al. proposed that adiponectin triggers the 
proliferation of adult hippocampal neural stem/progenitor 
cells (hNSCs) through the p38MAPK/glycogen synthase 
kinase-3β (GSK-3β)/β-catenin cascade. P38MAPK inhibi-
tor SB203580 not only eliminates this potentiation [109], 
but also reduces phosphorylated p38 (p-p38) in the PTZ-
triggered rat epilepsy model [110], resulting in a decrease 
in caspase 3 level (Fig. 2). In addition, globular adiponectin 

Fig. 2  The role of adiponectin in various signaling pathways
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plays anti-inflammatory and antioxidant roles in microglia 
through the AdipoR1/NF-κB signaling pathway [111].

P38 and JNK, another MAPK family member, are homol-
ogous protein-serine/threonine kinases, and selective tar-
geting of JNK to P38 has been demonstrated as a potential 
therapeutic approach to epilepsy [112]. Tai and colleagues 
[113] found noticeable JNK overactivation in a TLE rat 
model induced by pilocarpine. The frequency of seizures 
obviously reduces with the use of a broad-spectrum non-
specific JNK inhibitor (SP600125), in contrast to the con-
sequence for a nonspecific MAPK activator. Theselective 
inhibition of JNK-interacting protein 3 (JIP3) by lentivirus 
(LV-375JIP3-RNAi) attenuates the severity of seizure, con-
sisting of reduced susceptibility of mice to the epileptogenic 
properties of KA, delayed first attack and decreased seizure 
duration. Apart from inhibiting JNK activation and neuronal 
apoptosis in the hippocampal CA3 region, underexpression 
of JIP3 has also been observed to delay the processes of 
PTZ-induced seizure firing [114]. Another concern is that 
neuronal damage after seizures is related to BBB leakage, 
and adiponectin maintains the integrity of the BBB and 
reduces the expression levels of vascular endothelial growth 
factor (VEGF), endothelial nitric oxide synthase (eNOS) 
and NF-κB in the hippocampus after KA-induced seizures 
in mice [115]. Notoriously, the BBB's integrity is critical 
in maintaining homeostasis and neuroprotection. We need 
more studies to confirm that reducing inflammatory stimula-
tion by protecting the BBB may be a promising intervention 
or therapeutic strategy for epilepsy.

Antiepileptic drugs may be a potential factor affecting 
serum adipokine levels [116, 117]. Currently, VPA [118] 
is commonly used as a first-line antiepileptic drug in clini-
cal practice, and its treatment time is negatively correlated 
with adiponectin level [119]. Clinical research has reported 
that adiponectin levels in children with idiopathic general-
ized epilepsy, obese children with idiopathic epilepsy, and 
adult epilepsy patients significantly decrease after valproate 
treatment [116, 119, 120]. Prospective evaluation of the 
long-term effects of the monotherapy of VPA and LTG on 
metabolic parameters in female epileptic patients for one 
year has found a remarkable decrease in adiponectin levels 
in the VPA group [121]. VPA-induced hypoadiponectine-
mia is significantly associated with weight gain and insu-
lin resistance [119, 121]. The therapeutic concentration of 
VPA decreases adiponectin promoter activity in differen-
tiated 3T3-L1 adipocytes, and inhibits gene expression of 
adiponectin in mature adipocytes [122].

Surprisingly, TPM, a novel antiepileptic drug, obviously 
decreases Leptin/Adiponectin (L/A) ratio and increases 
serum adiponectin level. Studies have shown that TPM 
increases energy metabolism and leads to weight loss in 
children with epilepsy [123]. The concentration of HMW 
adiponectin significantly increases in KD obese adolescents 

with no caloric restriction or a low-calorie diet for 6 months 
[124]. Treatment with antiepileptic therapy for 3 months for 
children with GLUT1 DS-resistant epilepsy aged 3–9 years 
[125], serum adiponectin level increases in the KD group 
(some of whom are also treated with other antiepileptic 
agents), compared with VPA monotherapy.

The specific adiponectin expression in different antiepi-
leptic drugs may be bound up with multiple factors, includ-
ing obesity, insulin resistance and molecular biology. With 
the in-depth study of clinical and basic experiments, we 
expect to deeply understand the specific mechanism of adi-
ponectin to provide the theoretical basis for the clinically 
individualized treatment of epilepsy.

Concluding Remarks and Future 
Perspectives

The adverse consequences of epilepsy affect people of all 
ages, and persistent seizures lead to accidents and even 
death. The control and treatment of epilepsy are essential 
to improve the patients' quality of life and to reduce mor-
tality. Peripheral endocrine and metabolic factors regulate 
seizure threshold and seizure-related pathology by acting on 
neurons in the central nervous system, triggering intracel-
lular signaling pathways or modulating neuronal activity. 
The dual role of leptin in epilepsy has attracted researchers' 
particular attention. On the one hand, the leptin receptor 
activates related signaling pathways to alleviate seizures and 
play a neuroprotective role. On the other hand, studies have 
reported the proconvulsant activity of Leptin in different 
models of epilepsy. The complex dual effects of leptin in 
treating epilepsy have brought about a more significant chal-
lenge, and its role in epilepsy control and treatment needs to 
be further studied. The association of leptin and adiponectin 
with epilepsy highlights the important role of these two adi-
pokines in the pathophysiology of epilepsy pathogenesis. A 
large amount of evidence is helpful to better understand the 
complex biological mechanisms of leptin and adiponectin, 
and to provide ideas and a theoretical basis for the develop-
ment and clinical application of effective hormone modula-
tors in dealing with epilepsy in the future. We still need 
to further explore the role of adipokine imbalance in the 
adjusting effect of signal transduction in the pathogenesis of 
epilepsy, so as to find new methods and preventive measures 
for epilepsy.
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