Skip to main content

Advertisement

Log in

Inhibition of A1 Astrocytes and Activation of A2 Astrocytes for the Treatment of Spinal Cord Injury

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is a serious injury to the central nervous system that causes significant physical and psychological trauma to the patient. SCI includes primary spinal cord injuries and secondary spinal cord injuries. The secondary injury refers to the pathological process or reaction after the primary injury. Although SCI has always been thought to be an incurable injury, the human nerve has the ability to repair itself after an injury. However, the reparability is limited because glial scar formation impedes functional recovery. There is a type of astrocyte that can differentiate into two forms of reactive astrocytes known as ‘A1’ and ‘A2’ astrocytes. A1 astrocytes release cytotoxic chemicals that cause neurons and oligodendrocytes to die and perform a harmful role. A2 astrocytes can produce neurotrophic factors and act as neuroprotectors. This article discusses ways to block A1 astrocytes while stimulating A2 astrocytes to formulate a new treatment for spinal cord injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Perrouin-Verbe, Physical BJAo, Medicine R (2012) Epidemiology of traumatic spinal cord injury: new trends. Spinal cord 55:e165

    Google Scholar 

  2. Letton RW (2011) Spine trauma. Fundamentals of pediatric surgery. Springer

    Google Scholar 

  3. Devivo MJ (2012) Epidemiology of traumatic spinal cord injury: trends and future implications. Spinal Cord 50:365–372

    Article  CAS  PubMed  Google Scholar 

  4. Okada S, Maeda T, Ohkawa Y, Harimaya K, Saiwai H, Kumamaru H, Matsumoto Y, Doi T, Ueta T, Shiba KJS (2009) Does ossification of the posterior longitudinal ligament affect the neurological outcome after traumatic cervical cord injury? Spine 34:1148–1152

    Article  PubMed  Google Scholar 

  5. Anjum A, Yazid M, Daud MF, Idris J, Lokanathan YJIJoMS, (2020) Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci 21:7533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eli I, Lerner DP, Ghogawala ZJNC (2021) Acute traumatic spinal cord injury. Neurol Clin 39:471

    Article  PubMed  Google Scholar 

  7. Hellenbrand DJ, Quinn CM, Piper ZJ, Morehouse CN, Fixel JA, Hanna AS (2021) Inflammation after spinal cord injury: a review of the critical timeline of signaling cues and cellular infiltration. J Neuroinflamm 18:284

    Article  CAS  Google Scholar 

  8. Baroncini A, Maffulli N, Eschweiler J, Tingart M, Migliorini F (2021) Pharmacological management of secondary spinal cord injury. Expert Opin Pharmacother 22:1793–1800

    Article  PubMed  Google Scholar 

  9. Firat T, Kukner A, Ayturk N, Gezici AR, Serin E, Ozogul C, Tore F (2021) The Potential Therapeutic Effects of Agmatine, Methylprednisolone, and Rapamycin on Experimental Spinal Cord Injury. Cell J 23:701–707

    PubMed  PubMed Central  Google Scholar 

  10. Ylmaz T, Kaptanolu E (2015) Current and future medical therapeutic strategies for the functional repair of spinal cord injury. World J Orthop 6:42–55

    Article  Google Scholar 

  11. Huang L, Fu C, Xiong F, He C, Wei Q (2021) Stem cell therapy for spinal cord Injury. Cell Transplant 30:963689721989266

    Article  PubMed  Google Scholar 

  12. Feng Y, Li Y, Shen PP, Wang B (2022) Gene-modified stem cells for spinal cord injury: a promising better alternative therapy. Stem cell Rev Rep 18:2662

    Article  PubMed  Google Scholar 

  13. Fan B, Wei Z, Xue Y, Shi G, Feng SJCT (2018) Microenvironment imbalance of spinal cord injury. Cell Transplant 27:963689718755778

    Article  Google Scholar 

  14. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neuro 5:146–156

    Article  CAS  Google Scholar 

  15. Orr MB, Gensel JC (2018) Spinal cord injury scarring and inflammation: therapies targeting glial and inflammatory responses. Neurotherapeutics 15:541–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, Joung J, Foo LC, Thompson A, Chen C, Smith SJ, Barres BA (2013) Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504:394–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sofroniew MV, Vinters HVJAN (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7

    Article  PubMed  Google Scholar 

  18. Neuron BBJ (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60:430–440

    Article  Google Scholar 

  19. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Neurotoxic reactive astrocytes are induced by activated microglia. Genomic Anal React Astrogliosis 32:6391–6410

    CAS  Google Scholar 

  20. Sofroniew MVJCSHPiB, (2015) Astrogliosis. Cold Spring Harb Perspect Biol 7:a020420

    Article  Google Scholar 

  21. Okada S, Hara M, Kobayakawa K, Matsumoto Y, Nakashima Y (2017) Astrocyte reactivity and astrogliosis after spinal cord injury. Neurosci Res 126:39

    Article  PubMed  Google Scholar 

  22. Liddelow SA, Barres BA (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity 46:957–967

    Article  CAS  PubMed  Google Scholar 

  23. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch A, Chung WS, Peterson TC (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu D, Cheng Z, Ali AI, Wang J, Le K, Chibaatar E, Guo Y (2019) Down-expressed GLT-1 in PSD astrocytes inhibits synaptic formation of NSC-derived neurons in vitro. Cell Cycle (Georgetown Tex) 18:105–114

    Article  CAS  PubMed  Google Scholar 

  25. Ponath G, Ramanan S, Mubarak M, Housley W, Lee S, Sahinkaya FR, Vortmeyer A, Raine CS, Pitt D (2017) Myelin phagocytosis by astrocytes after myelin damage promotes lesion pathology. Brain 140:399–413

    Article  PubMed  Google Scholar 

  26. Okada S, Hara M, Kobayakawa K, Matsumoto Y, Nakashima Y (2018) Astrocyte reactivity and astrogliosis after spinal cord injury. Neurosci Res 126:39–43

    Article  PubMed  Google Scholar 

  27. Li L, Li Y, He B, Li H, Ji H, Wang Y, Zhu Z, Hu Y, Zhou Y, Yang T, Sun C, Yuan Y, Wang Y (2021) HSF1 is involved in suppressing A1 phenotype conversion of astrocytes following spinal cord injury in rats. J Neuroinflamm 18:205

    Article  CAS  Google Scholar 

  28. Wang X, Zhang Z, Zhu Z, Liang Z, Zuo X, Ju C, Song Z, Li X, Hu X, Wang Z (2021) Photobiomodulation promotes repair following spinal cord injury by regulating the transformation of A1/A2 reactive astrocytes. Front Neurosci 15:768262

    Article  PubMed  PubMed Central  Google Scholar 

  29. Banchereau J, Pascual V, O’Garra A (2012) From IL-2 to IL-37: the expanding spectrum of anti-inflammatory cytokines. Nat Immunol 13:925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang HY, Wang Y, He Y, Wang T, Jiang XX (2020) A1 astrocytes contribute to murine depression-like behavior and cognitive dysfunction, which can be alleviated by IL-10 or fluorocitrate treatment. J Neuroinflammation 17:200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang J, Jiang Z, Fitzgerald DC, Ma C, Yu S, Li H, Zhao Z, Li Y, Ciric B, Curtis M (2009) Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis. J Clin Invest 119:3678–3691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guillot-Sestier MV, Doty K, Gate D, Rodriguez J, Leung B, Rezai-Zadeh K, Town T (2015) Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron 85:534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kanneganti TD, Body-Malapel M, Amer A, Park JH (2007) Critical role for cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem 281:36560–36568

    Article  Google Scholar 

  34. Chen ML, Cao H, Chu YX, Cheng LZ, Liang LL, Zhang YQ, Zhao ZQ (2012) Role of P2X7 receptor-mediated IL-18/IL-18R signaling in morphine tolerance: multiple glial-neuronal dialogues in the rat spinal cord. J Pain 13:945–958

    Article  CAS  PubMed  Google Scholar 

  35. Zhang C, Kenian S, Bennett SA, Mariko L, Scholze AR, O’Keeffe S (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hou B, Zhang Y, Liang P, He Y, He X (2020) Inhibition of the NLRP3-inflammasome prevents cognitive deficits in experimental autoimmune encephalomyelitis mice via the alteration of astrocyte phenotype. Cell Death Dis 11:377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alexianu ME (2001) Immune reactivity in a mouse model of familial ALS correlates with disease progression. Neurology 57:1282–1289

    Article  CAS  PubMed  Google Scholar 

  38. Lambertsen KL, Meldgaard M, Ladeby R, Finsen B (2005) A quantitative study of microglial-macrophage synthesis of tumor necrosis factor during acute and late focal cerebral ischemia in mice. J Cereb Blood Flow Metab 25:119–135

    Article  CAS  PubMed  Google Scholar 

  39. You L, Yang C, Du Y, Wang W, Ni J (2020) A systematic review of the pharmacology, toxicology and pharmacokinetics of matrine. Front Pharmacol 11:01067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rashid HU, Xu Y, Muhammad Y, Wang L, Jiang J (2019) Research advances on anticancer activities of matrine and its derivatives: an updated overview. Eur J Med Chem 161:205

    Article  CAS  PubMed  Google Scholar 

  41. Yilei J, Rui M, Chu Y, Mda B, Dou M, Wang M, Li X (2021) Matrine treatment induced an A2 astrocyte phenotype and protected the blood-brain barrier in CNS autoimmunity. J Chem Neuroanat 117

    Article  Google Scholar 

  42. Shahidi F (1996) Technology Bailey’s industrial oil and fat products. In: Hui YH (ed) Edible oil and fat products: general applications. John Wiley & Sons

    Google Scholar 

  43. Park JS, Choi JW, Hwang SH, Kim JK, Cho ML (2019) Cottonseed oil protects against intestinal inflammation in dextran sodium sulfate-induced inflammatory bowel disease. J Med Food 22:672

    Article  CAS  PubMed  Google Scholar 

  44. Wilhelmi G (1993) Potential effects of nutrition including additives on healthy and arthrotic joints. I. Basic dietary constituents. Z Rheumatol 52:174–179

    CAS  PubMed  Google Scholar 

  45. Liu M, Xu Z, Wang L, Zhang L, Ma Y (2020) Cottonseed oil alleviates ischemic stroke injury by inhibiting the inflammatory activation of microglia and astrocyte. J Neuroinflammation 17:270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mahban R, Faheem M, Shermineh MN, Kamal N (2017) Targeting the TLR4 signaling pathway by polyphenols: a novel therapeutic strategy for neuroinflammation. Ageing Res Rev 36:11

    Article  Google Scholar 

  47. Ridder DA, Schwaninger M (2009) NF-κB signaling in cerebral ischemia. Neuroscience 158:995

    Article  CAS  PubMed  Google Scholar 

  48. Paudel YN, Shaikh MF, Chakraborti A, Kumari Y, Aledo-Serrano Á, Aleksovska K, Alvim MKM, Othman I (2018) HMGB1: a common biomarker and potential target for TBI, neuroinflammation, epilepsy, and cognitive dysfunction. Front NeuroSci 12:628

    Article  PubMed  PubMed Central  Google Scholar 

  49. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    Article  CAS  PubMed  Google Scholar 

  50. Okuma Y, Date I, Liu K, Wake H, Haruma J, Yoshino T, Ohtsuka A, Takahashi HK, Mori S, Nishibori M (2012) Anti-high mobility group box-1 antibody therapy for traumatic brain injury. Ann Neurol 72:373–384

    Article  CAS  PubMed  Google Scholar 

  51. Kim SW, Lee H, Lee HK, Kim ID, Lee JK (2019) Neutrophil extracellular trap induced by HMGB1 exacerbates damages in the ischemic brain. Acta Neuropathol Commun 7:94

    Article  PubMed  Google Scholar 

  52. Walker LE, Frigerio F, Ravizza T, Ricci E (2017) Molecular isoforms of high-mobility group box 1 are mechanistic biomarkers for epilepsy. J Clin Invest 127:2118

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kigerl KA, Lai W, Wallace LM, Yang H, Popovich PG (2017) High mobility group box-1 (HMGB1) is increased in injured mouse spinal cord and can elicit neurotoxic inflammation. Brain Behav Immun 72:22

    Article  PubMed  PubMed Central  Google Scholar 

  54. Andersson U, Yang H, Harris H (2018) High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells. Semin Immunol 38:40

    Article  CAS  PubMed  Google Scholar 

  55. Hong F (2020) Inhibiting HMGB1-RAGE axis prevents pro-inflammatory macrophages/microglia polarization and affords neuroprotection after spinal cord injury. J Neuroinflamm 17:295

    Article  Google Scholar 

  56. Musumeci D, Roviello GN, Montesarchio D (2014) An overview on HMGB1 inhibitors as potential therapeutic agents in HMGB1-related pathologies. Pharmacol Ther 141:347–357

    Article  CAS  PubMed  Google Scholar 

  57. Gong G, Yuan LB, Ling HU, Wei WL, Yin L, Hou JL, Liu YH, Zhou LS (2012) Glycyrrhizin attenuates rat ischemic spinal cord injury by suppressing inflammatory cytokines and HMGB1. Acta Pharmacol Sin 33:8

    Article  Google Scholar 

  58. Gabay C, Towne JE (2015) Regulation and function of interleukin-36 cytokines in homeostasis and pathological conditions. J Leukoc Biol 97:645

    Article  CAS  PubMed  Google Scholar 

  59. Dawn Q, Ediriweera C, Liang L (2019) Function and regulation of IL-36 signaling in inflammatory diseases and cancer development. Front Cell Dev Biol 7:317–317

    Article  Google Scholar 

  60. Xia X, Jiang Q, Mcdermott J, Han JD (2018) Aging and Alzheimer’s disease: comparison and associations from molecular to system level. Aging Cell 17

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kant R, Goldstein LSB (2015) Cellular functions of the amyloid precursor protein from development to dementia. Dev Cell 32:502

    Article  PubMed  Google Scholar 

  62. Reinhard C, Habert SS, Strooper BD (2005) The amyloid-β precursor protein: integrating structure with biological function. EMBO J 24:3996–4006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT (2018) Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dementia (N Y) 4:575–590

    Article  Google Scholar 

  64. Habib N, Mccabe C, Medina S, Varshavsky M, Schwartz M (2020) Disease-associated astrocytes in Alzheimer’s disease and aging. Nat Neurosci 23:1–6

    Article  Google Scholar 

  65. Hemonnot AL, Hua J, Ulmann L, Hirbec H (2019) Microglia in Alzheimer disease: well-known targets and new opportunities. Front Aging Neurosci 11:233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Larocca T, Cavalier AN, Roberts CM, Lemieux MR, Link CD (2021) Amyloid beta acts synergistically as a pro-inflammatory cytokine. Neurobiol Dis 159:105493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen Y, Durakoglugil MS, Xian X, Herz J (2010) ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. Proc Natl Acad Sci U S A 107:12011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dibattista AM, Heinsinger NM, Rebeck GW (2016) Alzheimer’s disease genetic risk factor APOE-ε4 also affects normal brain function. Curr Alzheimer Res 13:1200

    Article  CAS  PubMed Central  Google Scholar 

  69. Holtzman DM, Herz J, Bu GJ (2012) Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb Perspect Med 2

    Article  PubMed  PubMed Central  Google Scholar 

  70. Castellano JM, Deane R, Gottesdiener AJ, Verghese PB, Stewart FR, West T, Paoletti AC, Kasper TR, Demattos RB, Zlokovic BV (2012) Low-density lipoprotein receptor overexpression enhances the rate of brain-to-blood Aβ clearance in a mouse model of β-amyloidosis. Proc Natl Acad Sci U S A 109:15502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fryer JD, Demattos RB, Mccormick LM, O’dell MA, Spinner ML, Bales KR, Paul SM, Sullivan PM, Parsadanian M, Bu G (2005) The low density lipoprotein receptor regulates the level of central nervous system human and murine apolipoprotein E but does not modify amyloid plaque pathology in PDAPP mice. J Biol Chem 280:25754–25759

    Article  CAS  PubMed  Google Scholar 

  72. Kim J, Castellano JM, Jiang H, Basak JM, Parsadanian M, Pham V, Mason SM, Paul SM, Holtzman DM (2009) Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular A beta clearance. Neuron 64:632–644

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kuszczyk MA, Sanchez S, Pankiewicz J, Kim J, Duszczyk M, Guridi M, Asuni AA, Sullivan PM, Holtzman DM, Sadowski MJ (2013) Blocking the interaction between apolipoprotein E and Aβ reduces intraneuronal accumulation of Aβ and inhibits synaptic degeneration. Am J Pathol 182:1750–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zeng H, Chen P, Chang Q, Zheng B, Zhang Y (2019) Hypolipidemic effect of polysaccharides from Fortunella margarita (Lour.) swingle in hyperlipidemic rats. Food Chem Toxicol 132:110663

    Article  CAS  PubMed  Google Scholar 

  75. Zhang Y, Pan X, Ran S, Wang K (2019) Purification, structural elucidation and anti-inflammatory activity in vitro of polysaccharides from Smilax china L. Int J Biol Macromol 139:233–243

    Article  CAS  PubMed  Google Scholar 

  76. Liu QY, Yao YM, Zhang SW, Sheng ZY (2011) Astragalus polysaccharides regulate T cell-mediated immunity via CD11c(high)CD45RB(low) DCs in vitro. J Ethnopharmacol 136:457–464

    Article  CAS  PubMed  Google Scholar 

  77. Prinz M, Jung S, Priller J (2019) Microglia biology: one century of evolving concepts. Science 179:292–311

    CAS  Google Scholar 

  78. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  CAS  PubMed  Google Scholar 

  79. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  CAS  PubMed  Google Scholar 

  80. Benedek G, Zhang J, Bodhankar S, Nguyen H, Kent G, Jordan K, Manning D, Vandenbark AA, Offner H (2016) Estrogen induces multiple regulatory B cell subtypes and promotes M2 microglia and neuroprotection during experimental autoimmune encephalomyelitis. J Neuroimmunol 293:45–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mikita J, Dubourdieu-Cassagno N, Deloire MS, Vekris A, Biran M, Raffard G, Brochet B, Canron MH, Franconi JM, Boiziau C (2011) Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult Scler 17:2–15

    Article  CAS  PubMed  Google Scholar 

  82. Dickey LL, Hanley TM, Huffaker TB, Ramstead AG, O’Connell RM, Lane TE (2017) MicroRNA 155 and viral-induced neuroinflammation. J Neuroimmunol 308:17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu X, Ma J, Ding G, Gong Q, Wang Y, Yu H, Cheng X (2021) Microglia polarization from M1 toward M2 phenotype is promoted by astragalus polysaccharides mediated through inhibition of miR-155 in experimental autoimmune encephalomyelitis. Oxid Med Cell Longev 2021:5753452

    Article  PubMed  PubMed Central  Google Scholar 

  84. Meikuang L, Weiqiang W, Lu L, Zhi-Bo H, Zongjin L, Jie G, Meng Z, Honghong J, Jie F, Zhe W (2018) Intravenous injection of allogeneic umbilical cord-derived multipotent mesenchymal stromal cells reduces the infarct area and ameliorates cardiac function in a porcine model of acute myocardial infarction. Stem Cell Res Ther 9:129

    Article  Google Scholar 

  85. Rostami S, Zabihi E, Ghasemi-Kasman M (2019) The potential use of mesenchymal stem cells for the treatment of multiple sclerosis. Life Sci 235

    Article  Google Scholar 

  86. Squillaro T, Peluso G, Galderisi U (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transplant 25:829–848

    Article  PubMed  Google Scholar 

  87. Tahmasebi F, Pasbakhsh P, Barati S, Madadi S, Kashani IR (2020) The effect of microglial ablation and mesenchymal stem cell transplantation on a cuprizone-induced demyelination model. J Cell Physiol 236:3552

    Article  PubMed  Google Scholar 

  88. Barati S, Kashani IR, Tahmasebi F (2022) The effects of mesenchymal stem cells transplantation on A1 neurotoxic reactive astrocyte and demyelination in the cuprizone model. J Mol Histol 53:333

    Article  CAS  PubMed  Google Scholar 

  89. Zhang X, He Q, Huang T, Zhao N, Liang F, Xu B, Chen X, Li T (2019) Treadmill exercise decreases Aβ deposition and counteracts cognitive decline in APP/PS1 mice, possibly via hippocampal microglia modifications. Front Aging Neurosci 11:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G (2000) Oxidative stress in Alzheimer’s disease. Biochim Biophys Acta 1502:139–144

    Article  CAS  PubMed  Google Scholar 

  91. Liu P, Fleete MS, Jing Y, Collie ND, Zhang H (2014) Altered arginine metabolism in Alzheimer’s disease brains. Neurobiol Aging 35:1992–2003

    Article  CAS  PubMed  Google Scholar 

  92. Grimaldi A, Pediconi N, Oieni F, Pizzarelli R, Angelantonio SD (2019) Neuroinflammatory processes, A1 astrocyte activation and protein aggregation in the retina of Alzheimer’s disease patients, possible biomarkers for early diagnosis. Front Neurosci 13:925

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kn A, Hs A, Kn A, So B, St B, At A, Kk CJEN (2021) Effect of low-intensity motor balance and coordination exercise on cognitive functions, hippocampal Aβ deposition, neuronal loss, neuroinflammation, and oxidative stress in a mouse model of Alzheimer’s disease. Exp Neurol 337

    Article  Google Scholar 

  94. Packer N, Hoffman-Goetz L (2015) Acute exercise increases hippocampal TNF-α, Caspase-3 and Caspase-7 expression in healthy young and older mice. J Sports Med Phys Fitness 55:368–376

    CAS  PubMed  Google Scholar 

  95. Neves J et al (2016) Immune modulation by MANF promotes tissue repair and regenerative success in the retina. J Sci. https://doi.org/10.1126/science.aaf3646

    Article  Google Scholar 

  96. Neves J, Zhu J, Sousa-Victor P, Konjikusic M, Riley R, Chew S, Qi Y, Jasper H, Lamba DA (2016) Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science 335:3646

    Article  Google Scholar 

  97. Mtlik K, Anttila JE, Kuan-Yin T, Smolander OP, Pakarinen E, Lehtonen L, Abo-Ramadan U, Lindholm P, Zheng C, Harvey B (2018) Poststroke delivery of MANF promotes functional recovery in rats. Sci Adv. https://doi.org/10.1126/sciadv.aap8957

    Article  Google Scholar 

  98. Glembotski CC, Thuerauf DJ, Huang C, Vekich JA, Gottlieb RA, Doroudgar S (2012) Mesencephalic astrocyte-derived neurotrophic factor protects the heart from ischemic damage and is selectively secreted upon sarco/endoplasmic reticulum calcium depletion. J Biol Chem 287:25893–25904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lu J, Luo L, Huang D, Xian L, Li Y (2018) Photoreceptor protection by mesencephalic astrocyte-derived neurotrophic factor (MANF). eNeuro. https://doi.org/10.1523/ENEURO.0109-18.2018

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ding Y, Liu B, Yang Z, Fang F, Li X, Song WB (2021) Hydrogen sulphide protects mice against the mutual aggravation of cerebral ischaemia/reperfusion injury and colitis. Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2021.174682

    Article  PubMed  Google Scholar 

  101. Han B, Zhang Y, Zhang Y, Bai Y, Chen X, Huang R, Wu F, Leng S, Chao J, Zhang JHJA (2018) Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy 14:1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Feng Z, Zhang L, Wang S, Hong Q (2020) Circular RNA circDLGAP4 exerts neuroprotective effects via modulating miR-134-5p/CREB pathway in Parkinson’s disease. Science 522:388–394

    CAS  Google Scholar 

  103. Lu Y, Tan L, Wang X (2019) Circular HDAC9/microRNA-138/Sirtuin-1 pathway mediates synaptic and amyloid precursor protein processing deficits in Alzheimer’s disease. Neurosci Bull 35:887

    Article  Google Scholar 

  104. Dube U, Del-Aguila JL, Li Z, Budde JP, Cruchaga C (2019) An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nat Neurosci 22:1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shao L, Jiang GT, Yang XL, Zeng ML, Chen JJ, Kong S et al (2021) Silencing of circIgf1r plays a protective role in neuronal injury via regulating astrocyte polarization during epilepsy. FASEB J 35:1–10

    Article  Google Scholar 

  106. Storm JF (1987) Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells. J Physiol 385:733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jin MM, Wang F, Qi D, Liu WW, Liu CF (2018) A critical role of autophagy in regulating microglia polarization in neurodegeneration. Front Aging Neurosci 10:378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ray SK (2020) Modulation of autophagy for neuroprotection and functional recovery in traumatic spinal cord injury. Neural Regen Res 15:12

    Article  Google Scholar 

  109. Gao M, Xiao L, Chen W, Xiao G, Zhang Y, Yu R, Li J (2018) Randomized clinical trial of physiological ischemic training for patients with coronary heart disease complicated with heart failure: safety of training, VEGF of peripheral blood and quality of life. Exp Ther Med 16:260

    PubMed  PubMed Central  Google Scholar 

  110. Liao Z, Bu Y, Li M, Han R, Zhang N, Hao J, Jiang WJBN (2019) Remote ischemic conditioning improves cognition in patients with subcortical ischemic vascular dementia. BMC Neurol 19:206

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wang Y, Zhang Z, Zhang L, Yang H, Shen Z (2018) RLIPostC protects against cerebral ischemia through improved synaptogenesis in rats. Brain Inj 32:1–8

    Article  PubMed  Google Scholar 

  112. Kerendi F, Kin H, Halkos ME, Jiang R, Zatta AJ, Zhao ZQ, Guyton RA (2005) Remote postconditioning. Brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors. Basic Res Cardiol 100:404

    Article  CAS  PubMed  Google Scholar 

  113. Fernández-García S, Sancho-Balsells A, Longueville S, Hervé D, Giralt A (2020) Astrocytic BDNF and TrkB regulate severity and neuronal activity in mouse models of temporal lobe epilepsy. Cell Death Dis 11:411

    Article  PubMed  PubMed Central  Google Scholar 

  114. Paola B, Brignolo E, De Grandi E, Silvio B (2016) Supplementation with Omega-3 fatty acids in psychiatric disorders: a review of literature data. J Clin Med 5:67

    Article  Google Scholar 

  115. Gu M, Li Y, Tang H, Zhang C, Li W, Zhang Y, Li Y, Zhao Y, Song CJN (2018) Endogenous omega (n)-3 fatty acids in Fat-1 mice attenuated depression-like behavior, imbalance between microglial M1 and M2 phenotypes, and dysfunction of neurotrophins induced by lipopolysaccharide administration. Nutrients 10:1351

    Article  PubMed  PubMed Central  Google Scholar 

  116. Pani B, Singh BB (2009) Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium 45:625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wassall SR, Stillwell W (2009) Polyunsaturated fatty acid-cholesterol interactions: domain formation in membranes. Biochim Biophys Acta 1788:24–32

    Article  CAS  PubMed  Google Scholar 

  118. Kleindienst A, Hesse F, Bullock MR, Buchfelder MJ (2007) The neurotrophic protein S100B: value as a marker of brain damage and possible therapeutic implications. Prog Brain Res 161:317–325

    Article  CAS  PubMed  Google Scholar 

  119. Gu M, Li X, Yan L, Zhang Y, Yang L, Li S, Song C (2021) Endogenous ω-3 fatty acids in Fat-1 mice attenuated depression-like behaviors, spatial memory impairment and relevant changes induced by olfactory bulbectomy. Prostaglandins Leukot Essent Fatty Acids 171: 102313

    Article  CAS  PubMed  Google Scholar 

  120. Tan J, Mckenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L (2014) The role of short-chain fatty acids in health and disease. Adv Immunol 121:91–119

    Article  CAS  PubMed  Google Scholar 

  121. Sun J, Xu J, Ling Y, Wang F, Liu J (2019) Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl Psychiatry 9:189

    Article  PubMed  PubMed Central  Google Scholar 

  122. Sun J, Yuan B, Wu Y, Gong Y, Guo W, Fu S, Luan Y, Wang W (2020) Sodium butyrate protects N2a cells against Aβ toxicity in vitro. Mediators Inflamm 2020:7605160

    Article  PubMed  PubMed Central  Google Scholar 

  123. Jiang Y, Li K, Li X, Xu L, Yang Z (2021) Sodium butyrate ameliorates the impairment of synaptic plasticity by inhibiting the neuroinflammation in 5XFAD mice. Chem Biol Interact 25:341

    Google Scholar 

  124. Wang C, Zheng D, Weng F, Jin Y, He L (2021) Sodium butyrate ameliorates the cognitive impairment of Alzheimer’s disease by regulating the metabolism of astrocytes. Psychopharmacology (Berl) 239:215

    Article  PubMed  Google Scholar 

  125. Wang L, Wu L, Duan Y, Xu S, Yang Y, Yin J, Lang Y, Gao Z, Wu C, Lv Z, Shi J, Wu D, Ji X (2022) Phenotype shifting in astrocytes account for benefits of intra-arterial selective cooling infusion in hypertensive rats of ischemic stroke. Neurotherapeutics 19:386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kogel V, Trinh S, Gasterich N, Beyer C, Seitz J (2021) Long-term glucose starvation induces inflammatory responses and phenotype switch in primary cortical rat astrocytes. J Mol Neurosci 71:2368–2382

    Article  CAS  Google Scholar 

  127. Huiliang Z, Mengzhe Y, Xiaochuan W, Hui W, Min D, Mengqi W, Jianzhi W, Zhongshan C, Caixia P, Rong L (2021) Zinc induces reactive astrogliosis through ERK-dependent activation of Stat3 and promotes synaptic degeneration. J Neurochem 159:1016–1027

    Article  PubMed  Google Scholar 

  128. Bruno CJ, Greco TM, Ischiropoulos H (2011) Nitric oxide counteracts the hyperoxia-induced proliferation and proinflammatory responses of mouse astrocytes. Free Radic Biol Med 51:474–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Danilov CA, Fiskum G (2008) Hyperoxia promotes astrocyte cell death after oxygen and glucose deprivation. Glia 56:801–808

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by grants from the Sichuan Science and Technology Program (2022YFS0188), Key Science and Technology Project of Luzhou Government (2021-SYF-33), Central Nervous System Drug Key Laboratory of Sichuan Province (210020-01SZ), Science Fund of Southwest Medical University (21YYJC0246).

Author information

Authors and Affiliations

Authors

Contributions

JW: Conceptualization, Data curation, Roles/Writing - original draft. CC: Formal analysis. ZL: Data curation, Software. YL: Investigation. LY and ZZ: Methodology. XS: Visualization. PJ and MZ: Writing - review & editing. ZZ: Project administration, Writing - review & editing, Validation.

Corresponding authors

Correspondence to Pei Jing or Zhirong Zhong.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Cheng, C., Liu, Z. et al. Inhibition of A1 Astrocytes and Activation of A2 Astrocytes for the Treatment of Spinal Cord Injury. Neurochem Res 48, 767–780 (2023). https://doi.org/10.1007/s11064-022-03820-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03820-9

Keywords

Navigation