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question. In the following, we will therefore discuss by 
which mechanisms astrocytes could play a role as initiators 
of epilepsy and what the experimental evidence for such a 
causative role of astrocytes is. We will limit our discussion 
to temporal lobe epilepsy (TLE), a common and often drug-
resistant form of epilepsy.

One strategy for revealing if astrocyte mechanisms can 
initiate and promote epileptic activity, is to identify astro-
cytic changes in epileptic tissue and then test if disruption 
of such candidate mechanisms affects epilepsy and if repro-
ducing a specific astrocytic change is sufficient to induce 
epilepsy. Relevant information about astrocytic changes 
has been gained from epileptogenic brain tissue specimens 
surgically resected from patients with drug resistant TLE 
showing hippocampal sclerosis (HS). Both TLE and HS 
are strongly associated with an initial precipitating event 
such as febrile seizures, trauma, hypoxia, or brain infec-
tions [3]. In humans, chronic TLE usually does not develop 
immediately after such an event but following a seizure-
free period that can last many years and is referred to as 
the latent period [4]. The latter is of particular interest for 
epilepsy research as during this period, pathophysiological 
changes occur that eventually culminate in chronic epilepsy. 
Since the latent period cannot be studied in human tissue, 
animal models are required that reproduce this typical pat-
tern of epileptogenesis. This is also important because an 
astrocytic change supposedly causing the development of 

Introduction

Astrocytes are a subtype of glial cell in the brain. They play 
many physiological roles that range from neurotransmit-
ter uptake to the modulation of synaptic transmission and 
plasticity [1]. Profound changes of astrocyte properties and 
function in brain diseases such as epilepsy are a common 
and widespread finding. Such alterations of astrocytes can 
be found on the level of protein expression, morphology, 
and operation of signaling cascades, which can contribute to 
the phenotype and symptoms of the disease and to disease 
progression although many disease-specific mechanisms 
remain to be fully understood [2]. A key question is often 
whether astrocyte changes in disease are the origin of the 
disease or a consequence of it. For epilepsy, which is a het-
erogenous group of neurological disorder characterized by 
recurrent epileptic seizures, this is an intensely discussed 
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Abstract
Astrocytes play a dual role in the brain. On the one hand, they are active signaling partners of neurons and can for instance 
control synaptic transmission and its plasticity. On the other hand, they fulfill various homeostatic functions such as clear-
ance of glutamate and K+ released from neurons. The latter is for instance important for limiting neuronal excitability. 
Therefore, an impairment or failure of glutamate and K+ clearance will lead to increased neuronal excitability, which could 
trigger or aggravate brain diseases such as epilepsy, in which neuronal hyperexcitability plays a role. Experimental data 
indicate that astrocytes could have such a causal role in epilepsy, but the role of astrocytes as initiators of epilepsy and the 
relevant mechanisms are under debate. In this overview, we will discuss the potential mechanisms with focus on K+ clear-
ance, glutamate uptake and homoeostasis and related mechanisms, and the evidence for their causative role in epilepsy.
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epilepsy needs to occur before the onset of epilepsy and epi-
leptic neuronal activity. Also, the availability of live human 
tissue is limited and experimental work in live human tis-
sue with HS is challenging. Therefore, several post-status 
epilepticus (SE) models have been investigated in which 
systemic or local administration of chemoconvulsants or 
electrical stimulation triggers SE and the development of 
chronic epilepsy after a latent period of days to weeks [5–
8]. Accumulating evidence from these models suggests that 
astrocytes become dysfunctional immediately after the ini-
tial precipitating event or during the latent period. Accord-
ingly, these changes could be causative in epileptogenesis. 
It is important to note here that the properties of astrocytes 
in acute slices from human cortical specimens (resected to 
gain access to the epileptogenic area) or non-sclerotic hip-
pocampal slices from patients with ‘lesion-associated’ TLE 
that lack significant histopathological hippocampal altera-
tions were remarkably similar to those from the correspond-
ing brain areas of healthy rodents [9].

Involvement of Kir4.1 Channels

There are several consistent findings regarding astrocyte 
changes in epileptic tissue (Fig. 1). For instance, the abil-
ity of astrocytes in human HS to fulfill one of its essential 
functions, the spatial buffering of K+ [10], has already been 
investigated more than 20 years ago [11–13]. These authors 
showed that specific inhibition of glial inwardly rectifying 
K+ (Kir4.1) channels, which mediate the passive uptake of 
K+ by astrocytes, substantially augmented stimulus induced 
or iontophoretically applied elevations in extracellular K+ 
in non-sclerotic human hippocampal slices but had no effect 
in human HS. These results provided first evidence for the 
disturbance of K+ buffering in HS. Further evidence came 
from comparative patch-clamp studies showing a significant 
reduction of astrocytic Kir currents in HS [14–16]. In line 
with this, significantly reduced Kir4.1 protein levels were 
detected by immunohistochemical and western blot analysis 
in patients with HS compared to non-sclerotic and autopsy 
controls [17–19]. Importantly, genetic linkage studies have 
indicated an association between missense variations in the 

Fig. 1  Schematic illustration of astrocyte changes in the healthy (left) 
vs. epileptic (right) brain. (1) In epilepsy, astrocytes lose their ability to 
form functional GJ-coupled networks, resulting in increased extracel-
lular K+ concentrations. (2) The density of AQP4 channels along the 
perivascular membrane domain of astrocytes is reduced in the epileptic 
brain, leading to a dysregulation of water transport and a concomi-
tant decrease in the extracellular space volume as well as an increase 
of the extracellular fluid osmolarity. Additionally, downregulation of 

astrocytic Kir4.1 channels contributes to impaired K+ buffering in both 
human and experimental epilepsy. (3) Seizure-induced disruption of 
the BBB results in albumin extravasation and subsequent TGF-βR-
mediated astrocyte dysfunction. (4) Perturbations in astrocyte-depen-
dent glutamate homeostasis including impaired glutamate uptake, 
reduced GS efficiency and aberrant glutamate release by astrocytes 
contribute to increased extracellular glutamate levels. (5) Overexpres-
sion of ADK in epileptic tissue decreases the ambient adenosine con-
centration and could amplify neuronal excitability
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human Kir4.1 gene (KCNJ10) and seizure susceptibility in 
TLE [20, 21]. For these reasons, impaired K+ buffering via 
Kir4.1 is a candidate mechanism in epileptogenesis.

Insights into the importance of Kir4.1 channels for K+ 
buffering and regulation of neuronal excitability particularly 
emerged from Kir4.1 knockout (KO) mice, which exhibit 
impaired K+ clearance and an epileptic phenotype [22, 23]. 
However, whether changes in Kir4.1 represent a causal 
event in epileptogenesis is still unclear because data on its 
expression during the latent period are inconsistent among 
experimental TLE models. For instance, in an albumin 
model downregulation of Kir4.1 transcripts and reduced 
K+ clearance were detected long before the onset of epilep-
tic activity [24], while no changes in Kir4.1-mediated K+ 
currents could be found in hippocampal astrocytes during 
the latent period of experimental TLE induced by systemic 
injection of kainate [25].

Uncoupling of Astrocytes

In addition to Kir4.1, spatial K+ buffering may also depend 
on the interconnection of astrocytes through gap junction 
channels. To our knowledge, characterization of functional 
gap junction coupling between human hippocampal astro-
cytes has been performed in only one study [6]. Here, tracer 
diffusion assays demonstrated a complete loss of astrocytic 
coupling in human HS, whereas in non-sclerotic control tis-
sue the extent of coupling was similar to that observed in 
rodents [6, 9]. Interestingly, it was shown that this loss of 
coupling is not due to decreased expression of gap junction 
proteins (connexins, Cx), but rather the result of altered sub-
cellular localization and phosphorylation of Cx43 [26]. The 
pathological consequences of impaired gap junctional cou-
pling can be seen in patients with oculodentodigital dyspla-
sia (ODDD), a rare genetic disease caused by mutations in 
the gene encoding Cx43. These patients present with epilep-
tic seizures in addition to other neurological symptoms [27, 
28]. These observations imply that perturbed gap junction 
coupling is an additional candidate mechanism in epilepto-
genesis. This is also suggested by a recent study revealing 
that gap junction coupling plays a selective role in buffering 
high local K+ increases [29], which are typical for epilepsy.

Experimental support for the importance of astrocytic 
gap junction channels in K+ clearance and neuronal hyper-
excitability has been gained in hippocampal slices from 
transgenic mice with coupling-deficient astrocytes [30, 
31] and with pharmacological disruption of gap junction 
communication in situ and in vivo [29, 32, 33]. Analyses 
of transgenic mice with coupling-deficient astrocytes fur-
ther revealed that not only K+ buffering but also glutamate 
clearance is impaired when astrocyte Cxs are absent [30]. 

Consistently, acute slices from these mice displayed spon-
taneous epileptiform events and substantially increased sei-
zure and interictal spike activity during the chronic phase 
of experimentally induced TLE [31, 34]. However, neither 
constitutive nor inducible astrocytic Cx KO mice showed 
spontaneous behavioral seizures or abnormal EEG activity 
in vivo [35, 36]. It has to be considered that in the latter 
studies, mice with complete or significant deletion of Cx43 
and Cx30 were used, while loss of coupling in HS was not 
accompanied by any reduction in Cx proteins [26]. Com-
plete loss of gap junction coupling as well as the subcel-
lular reorganization and altered phosphorylation of Cx43 
characterizing human HS could be reproduced in the intra-
cortical kainate injection mouse model of TLE-HS [6, 26]. 
Intriguingly, in this model, loss of astrocyte coupling and 
the resulting impairment in K+ clearance temporally pre-
cede neuronal death and onset of spontaneous seizure activ-
ity, pointing to a causal role of astrocyte dysfunction in the 
initiation of TLE [6].

The signaling pathway underlying loss of astrocyte cou-
pling in TLE remains unknown. One potential mechanism 
can be inferred from the observation that epilepsy is associ-
ated with a breakdown of the blood-brain barrier (BBB), 
which results in extravasation of serum proteins, including 
albumin, into the brain parenchyma [37, 38]. Extravasated 
albumin is endocytosed by astrocytes [39–41] via bind-
ing to transforming growth factor beta (TGFß) receptors 
[42–44]. Experimental albumin infusions impair interastro-
cytic gap junction coupling and extracellular K+ buffering, 
probably due to TGFß signaling-dependent transcriptional 
downregulation of astrocytic Cxs and Kir4.1 [24, 39, 43, 
44]. Similarly, albumin-induced TGFß signaling has been 
shown to induce epileptiform activity in situ and in vivo 
[42, 43, 45]. In animal models of TLE, BBB opening and 
albumin extravasation occur within hours of the precipitat-
ing insult [46–48]. However, data examining consequences 
of albumin induced TGFß signaling in astrocytes in experi-
mental TLE are limited. In a recent study performed in 
our lab, astrocytic albumin uptake 4 and 24  h after kain-
ate-induced SE was negligible. Early short-term TGFβR1 
kinase inhibition did not prevent seizure-induced gap junc-
tion uncoupling in astrocytes and exerted only minor effects 
on acute and chronic epileptiform activity [48]. In contrast, 
long-term treatment with the angiotensin II type 1 recep-
tor inhibitor losartan, which also inhibits TGFβ signaling 
[42], reduces seizure frequency and attenuates hippocampal 
neurodegeneration and behavioral abnormalities in kain-
ate-induced epilepsy in rats [49]. Together, these findings 
indicate that sustained inhibition of albumin-induced TGFß 
signaling could be necessary to affect epileptogenesis. This 
hypothesis is also supported by the observation that albu-
min extravasation is a phenomenon that persists until the 
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which adds another layer of complexity to glutamate uptake. 
Importantly, the efficacy of glutamate uptake also depends 
on the relative position of astrocytic perisynaptic processes 
and active excitatory synapses. The deletion of the gap junc-
tion protein Cx30 for instance resulted in the invasion of the 
synaptic cleft by astrocytic processes, increased glutamate 
uptake and decreased excitatory synaptic transmission [67], 
which links astrocyte gap junction coupling to glutamate 
homoeostasis. Furthermore, we have recently demonstrated 
that the relative astrocytic coverage of excitatory synapses 
correlates with the local efficacy of glutamate uptake and 
shielding of synapses from invading glutamate from other 
sources [68], which indicates that epilepsy-associated 
morphology changes could have a profound effect on glu-
tamate clearance and spread in the tissue. Similarly, peri-
synaptic astrocytic processes withdraw after the induction 
of long-term potentiation of synaptic transmission using a 
high-frequency stimulus, which also increased glutamate 
spread in the tissue and promoted synaptic crosstalk [69]. 
This raises the question if transiently increased neuronal 
activity induces a similar rapid remodeling of astrocytes 
and whether that promotes or triggers epileptogenesis. The 
possibility of such a mechanism is also suggested by the 
following observations. On the one hand, astrocyte mor-
phology is controlled by small GTPases of the Rho family 
and downstream kinases such as the Rho-associated protein 
kinase (ROCK) [70, 71]. On the other hand, pharmacologi-
cal inhibition of ROCK decreased the severity of seizures in 
the PTZ kindling model [72] and reduced neurodegenera-
tion in a kainic acid epilepsy model [73].

Interesting insights were also obtained about the role 
of GS in human HS. Here, a pronounced reduction of the 
enzyme and its functional activity was described [64, 74]. 
Direct evidence for the involvement of GS deficiency in 
epilepsy is given by the fact that patients with congenital, 
homozygous mutations in the GS gene display severe brain 
malformations and epileptic seizures [75, 76]. Interestingly, 
experimental induction of reactive gliosis was shown to 
reduce the expression of GS in the hippocampus, to reduce 
GABAergic synaptic inhibition but not excitatory synaptic 
transmission, and to render the hippocampal circuit hyper-
excitable [77].

As pointed out above, a failure of astrocytes to limit 
excitability of neurons could lead to the observed increase 
of glutamate levels in TLE and HS. Impairment or failure of 
astrocyte K+ buffering is one potential mechanisms (see pre-
vious section). Another relevant one is the astrocytic control 
of the excitability of neuronal networks through extracel-
lular concentrations of adenosine via the enzyme adenosine 
kinase (ADK). As adenosine exerts powerful anticonvulsive 
and neuroprotective effects by acting on pre- or postsynaptic 
A1 receptors, alterations in ADK expression are thought to 

chronic phase of experimental and human TLE [26]. Two 
other recent studies performed in rats showed that inhibi-
tion of TGFß1 signaling attenuates kainate-induced seizures 
and astrogliosis [50, 51]. Unfortunately, the two latter stud-
ies did not determine whether neuronal or astrocyte TGFß 
signaling was affected, and the outcome of TGFß inhibi-
tion on development of chronic seizure activity was also 
not addressed. Thus, further investigations are needed to 
decide whether albumin induced TGFß signaling is causally 
involved in astrocyte dysfunction and epileptogenesis.

Perturbed Glutamate and Adenosine 
signaling

Glutamate transport and homoeostasis are also implicated in 
epileptogenesis and controlled by astrocytes. For instance, 
astrocytes are believed to mediate most of the uptake of glu-
tamate released from neurons [52, 53], which is a central 
mechanism ensuring physiological excitatory neurotrans-
mission and protection from excitotoxicity [54, 55]. Astro-
cytic glutamate uptake is accomplished by the glia-specific 
transporter EAAT1 (GLAST) and by EAAT2 (GLT-1). Glu-
tamate is thought to be then converted into glutamine by the 
enzyme glutamine synthetase (GS), which is then shuttled 
back to neurons for the resynthesis of glutamate [53, 56]. 
Extracellular glutamate levels are elevated in the human 
hippocampus of TLE patients, especially before and dur-
ing seizure activity [57, 58]. There are at least three ways 
this can be explained by an astrocyte dysfunction. First, 
glutamate uptake by astrocytes or its metabolism could be 
impaired [59]. Second, astrocytic regulation of neuronal 
excitability could fail leading to increases in neuronal gluta-
mate release. Third, astrocytes could release the additional 
glutamate themselves.

Regarding astrocytic glutamate uptake,  immunostain-
ing studies reported downregulation of the protein levels of 
both glutamate transporters in human HS [60–62], although 
other investigators found no changes [63, 64]. The gluta-
mate sensitivity of human glia cells has been assessed in 
one study by rapid application of glutamate to outside-out 
patches excised from glia cells in acute hippocampal slices 
from TLE-HS patients [6]. The results of this study suggest 
loss of functional transporters and aberrant expression of 
AMPA receptors in astrocytes, although the identity of the 
glial cells residing in human HS remained unclear.

It is important to note that glutamate transport is regulated 
on many levels, which could be important for epileptogen-
esis. For instance, the mobility of the glutamate transporter 
GLT-1 on the astrocyte surface has been shown to be activ-
ity and location-dependent [65]. Also, glutamate transport 
is rapidly modulated by burst-like neuronal activity [66], 
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astrocytic glutamate release in triggering epileptic activity 
is still missing to our knowledge.

Dysregulation of Water Flux

Extracellular K+ and neurotransmitter concentrations 
and dynamics are not only dependent on astrocyte uptake 
and clearance mechanisms, but also on the volume of the 
extracellular space (ECS), which is regulated by a family 
of membrane channels termed aquaporins (AQPs). The 
predominant isoform of aquaporins in adult brain, AQP4, 
is expressed in close association with Kir4.1 channels in 
astrocytic perivascular endfeet and perisynaptic processes.

In sclerotic hippocampi from TLE patients the overall 
expression of AQP4 protein is increased [102, 103], but the 
density of the water channels along the perivascular mem-
brane domain of astrocytes is reduced. This perivascular 
AQP4 loss resulted from decreased perivascular expression 
of the anchoring protein dystrophin and was postulated to 
perturb the flux of water and K+ through astrocytes and con-
sequently increase the occurrence of seizures [102, 103]. 
As in the case of the Kir4.1 gene, KCNJ10, genetic studies 
revealed several SNPs in the human AQP4 genes that were 
associated with TLE [21].

In animal models of epilepsy, AQP4 dysregulation occurs 
during the early phase of epileptogenesis, which suggest that 
it is a potential driver of epileptogenesis [104–107]. More-
over, studies employing AQP4 KO mice provided evidence 
for a causal involvement of AQP4 channels in the disease. 
For example, AQP4 KO mice are characterized by increased 
spontaneous recurrent seizures and neuronal loss following 
kainate-induced SE [107]. Similarly, AQP4 KO mice display 
increased seizure duration and altered EEG power spectra 
in experimental posttraumatic epilepsy [108]. Mechanisti-
cally, lack of AQP4 may contribute to the pathophysiology 
of epilepsy due to the role of water channels in regulating 
ECS volume and osmolarity, as well as its involvement in 
K+ homeostasis [82, 109]. Notably, constitutive deletion of 
AQP4 is accompanied by enhanced astrocyte gap junction 
coupling and K+ buffering [110], which complicates the 
interpretation of data from AQP4 deficient mice. Nonethe-
less, these studies collectively indicate that AQP4 can play 
an important role in the initiation of epilepsy.

Conclusions and Future Directions

There is substantial experimental evidence for several astro-
cytic candidate mechanisms that could initiate the develop-
ment of TLE. For the sake of conciseness, we have focused 
on astrocytic K+ clearance and glutamate homeostasis and 

play a crucial role in epilepsy [78, 79]. Baseline adenosine 
levels in microdialysis samples from epileptic patients are 
relatively low, while they rapidly rise during seizures, a pro-
cess hypothesized to mediate seizure termination and post-
ictal suppression [80]. Using immunocytochemistry and 
Western blot analysis, Aronica and colleagues [81] demon-
strated marked overexpression of astrocytic and total ADK 
protein levels in the sclerotic hippocampi of TLE patients, 
a phenomenon they considered a common pathologic hall-
mark of medically intractable chronic epilepsy.

Increased ADK expression and impaired adenosine-
mediated inhibition have also been implicated in experi-
mental TLE [78, 82]. For example, knock-down of ADK 
using ADK-targeting microRNA attenuated kainate-induced 
acute seizures [83], and pharmacological inhibition of ADK 
during the chronic phase of KA-induced epilepsy amelio-
rates seizures [84]. Moreover, overexpression of ADK in 
the brain induces hyperexcitability and seizures [85, 86], 
while adenosine augmentation therapies possess seizure 
suppressing and anti-epileptogenic effects [87–90]. Inter-
estingly, ADK expression depends on the stage of epilepsy, 
with decreased expression immediately following intrahip-
pocampal kainate injection, but increased expression during 
the latent or chronic periods (≥ 3 d) of epilepsy [84, 91]. 
Accordingly, transient administration of an ADK inhibitor 
during a period of elevated ADK expression in the latent 
period reduced seizure activity and granule cell dispersion at 
later stages of the disease [91]. Together these findings sup-
port an important role of adenosine in epilepsy and indicate 
the potential of ADK-targeting and adenosine-enhancing 
therapies for the treatment of the disease. It should be noted 
however that ADK is primarily expressed by astrocytes and 
other glial cells in rodents [92, 93], whereas its expression 
is more homogeneous across cell types according to human 
sequencing data [94].

Another possible explanation for the increased glutamate 
concentrations in epileptic tissue could be excessive astro-
cytic release of the neurotransmitter. Indeed, astrocytes are 
believed to not only detect and react to neuronal activity, but 
also to respond and actively regulate neuronal excitability 
and synaptic transmission through Ca2+-dependent release 
of neuroactive substances (so-called gliotransmitters like 
glutamate, ATP, and D-serine) [95, 96]. Such bidirectional 
signaling between astrocytes and neurons has also been 
demonstrated in human brain tissue from drug resistant TLE 
patients, but it remained unclear whether this represented 
a pathological or a physiological phenomenon, as control 
tissue was not analyzed [97]. Up-regulation of astrocytic 
metabotropic glutamate receptors (mGluRs), which are also 
involved in neuron-glia interactions, has been demonstrated 
in human TLE [98–101] and may indicate altered gliotrans-
mission. However, direct evidence for an involvement of 
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a few relevant aspects, such as K+ channels, astrocytic gap 
junction coupling, glutamate uptake and metabolism, water 
transport and adenosine signaling  (Fig. 1). This list is not 
exhaustive, but these examples highlight candidate mecha-
nisms supported by particularly strong evidence obtained in 
epilepsy models of TLE and human TLE.

As discussed above, for a perturbation of astrocyte func-
tion (e.g. change of protein expression, function, signaling) 
to be causal in the development of TLE it needs to meet 
several requirements. For instance, it must occur before the 
onset of epilepsy. Also, preventing that astrocytic change 
should prevent the development of TLE too, for instance in 
an animal model. Ideally, reproducing that astrocyte change 
in isolation would also lead to the development of TLE. 
Establishing causality to this extent remains a challenge. 
Astrocytic gap junction uncoupling is a good example (see 
above for details). The uncoupling occurs before the onset 
of chronic epilepsy. However, complete inhibition of cou-
pling in genetically modified mice does not directly lead to 
chronic epilepsy, which suggest that more than one factor 
is involved. Identifying those additional factors remains a 
challenge. Also, preventing uncoupling experimentally in 
an epilepsy model is difficult because it requires precise 
knowledge of how uncoupling was triggered mechanisti-
cally. A follow-up question is then if what was learnt about 
additional factors and mechanisms leading to the develop-
ment of chronic seizure in a TLE model using, for instance, 
chemoconvulsants can be transferred to human TLE where 
the triggers and how they lead to TLE is incompletely 
understood. Naturally, these considerations apply to any 
astrocytic candidate mechanism for the initiation of TLE. 
Using mice where epilepsy-relevant glial candidate genes 
are selective and inducibly deleted or manipulated might be 
of great help in answering some of the open questions.
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