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Abstract
Calcineurin (CaN), a  Ca2+/calmodulin-activated serine/threonine phosphatase, acts as a  Ca2+-sensitive switch regulat-
ing cellular functions through protein dephosphorylation and activation of gene transcription. In astrocytes, the principal 
homeostatic cells in the CNS, over-activation of CaN is known to drive pathological transcriptional remodelling, associated 
with neuroinflammation in diseases such as Alzheimer’s disease, epilepsy and brain trauma. Recent reports suggest that, 
in physiological conditions, the activity of CaN in astrocytes is transcription-independent and is required for maintenance 
of basal protein synthesis rate and activation of astrocytic  Na+/K+ pump thereby contributing to neuronal functions such 
as neuronal excitability and memory formation. In this contribution we overview the role of  Ca2+ and CaN signalling in 
astroglial pathophysiology focusing on the emerging physiological role of CaN in astrocytes. We propose a model for the 
context-dependent switch of CaN activity from the post-transcriptional regulation of cell proteostasis in healthy astrocytes 
to the CaN-dependent transcriptional activation in neuroinflammation-associated diseases.
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Introduction

Astrocytes represent a logistic arm of the CNS, assum-
ing full homeostatic control over the CNS development 
and functions [1, 2]. In all these activities  Ca2+ signals are 
thought to play important roles [3–6]. During the last two 
decades significant progress has been made in understanding 
the spatio-temporal properties of  Ca2+ signals in astrocytes 
and their role in synaptic plasticity, memory, cognition, sleep 
and behaviour [3, 7–15]. This progress regarded mainly the 
properties and roles of  Ca2+ signals themselves, while little 
was known about astrocyte-intrinsic mechanisms of decod-
ing  Ca2+ signals and their mechanistic link with homeostatic 

and signalling events in astrocytes [4]. The importance of 
such signalling for cell physiology can be exemplified by the 
role of two  Ca2+-sensitive switches, CaMKII and CaN, in 
neuronal physiology, including synaptic plasticity and mem-
ory [16–18]. In astrocytes, CaMKII has been mainly studied 
in vitro (reviewed in [4]). CaN expression and activation in 
astrocytes has been detected both in vitro and in vivo and 
has mainly been studied in association with its downstream 
inflammation-related targets, transcription factors NFAT 
and NF-kB, in pathological conditions [19–21]. Recently, it 
has been suggested CaN may participate in short- and long-
lasting morpho-functional changes that astrocytes undergo 
during neuronal activity, so called astrocytic plasticity [21]. 
Shortly after, evidence has been provided that CaN in astro-
cytes are not only implicated in the development of reactive 
gliosis and neuroinflammation, but have also a role in astro-
cytic physiology, opening to the possibility that  Ca2+ and 
CaM-regulated molecular switches are important for astro-
cytic functions, albeit by different mechanisms [22, 23]. In 
this contribution we review i) astrocytic  Ca2+ signalling in 
the context of CaN activation; ii) the role and mechanisms of 
CaN overactivation in neuropathological conditions; and iii) 
the mechanisms of CaN regulation of astrocytic homeostatic 
and signalling functions.
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Astroglial  Ca2+ Signaling: An Overview

Astroglial  Ca2+ Signaling Toolkit

Astrocytes do not generate action potentials and there-
fore are considered to be non-excitable cells, although the 
expression of voltage-gated ion channels in astrocytes has 
been demonstrated [2]. Ligand-operated signaling through 
ionotropic or metabotropic receptors, linked to the release 
of  Ca2+ from internal stores, represents for astrocytes the 
main mean of signal transduction [4, 24]. Therefore, the 
ER membrane (endomembrane) represents an excitable 
media and  Ca2+ is the substrate for the astrocytic excit-
ability [25, 26]. Astrocytes express an array of metabo-
tropic receptors linked to trimeric G-proteins containing 
Gαq/11, which, through activation of PLCβ, hydrolyze  PIP2 
to generate the diffusible second messenger  IP3.  IP3 act on 
 IP3-sensitive ligand-gated channels  (IP3Rs) located on the 
endomembrane allowing a controlled release of  Ca2+ from 
the ER and related organelles, such as the Golgi apparatus 
[27–32].  IP3R is coded by three genes, ITPR1-3, result-
ing in three protein isoforms,  IP3R1-3, respectively, with 
multiple splice variants [33]. Although all three isoforms 
have been found in astrocytes at mRNA level, two of them, 
namely  IP3R1 and  IP3R2 have been mainly implicated in 
 Ca2+ release from the ER [14].  IP3R2 is thought to be the 
most abundant  IP3 receptor. It mediates  Ca2+ release from 
the ER in the cell soma, main and secondary astrocytic 
processes, named as branches and branchlets, respectively 
[4, 14]. Astrocyte-specific KO of  IP3R2 abrogated the 
majority of massive, high amplitude  Ca2+ signals, but not 
peripheral local small amplitude  Ca2+ events. Therefore, 
it is thought that  IP3R2 is responsible for the global  Ca2+ 
response and for spreading of intracellular  Ca2+ waves 
through the astrocyte. Instead,  IP3R1 has been found in 
peripheral processes and in peri-synaptic processes, where 
it mediates local  Ca2+ signals [13, 14, 34].

Ca2+ entry may occur through a number of ligand-
gated channels which include glutamate-sensitive NMDA 
receptors, purinergic P2X7 receptors, dopamine D1/D2 
receptors, α7-containing nicotinic acetylcholine recep-
tors, which are expressed in a brain region-specific man-
ner. Store-operated  Ca2+ channels, activated in response to 
ER  Ca2+ depletion, include Orai and TRP channels. STIM 
serves as an ER luminal  Ca2+ sensor and transduces the 
change of the ER  [Ca2+] to the plasma membrane. It has 
been suggested, in astrocytes, that TRPC channels (iso-
forms 1, 3 and 5) play a major role in SOCE [2, 4].

Ca2+ dynamics in astrocytes are tightly coupled with 
 Na+ fluxes. The coordinating role of NCX in  Ca2+-Na+ 
signaling interplay has been extensively discussed [35]. 
Functional role and  Ca2+ entry mechanism in vivo is not 

completely understood and this field currently is under 
intensive investigation [36–38].

Complexity and Diversity of Astrocytic  Ca2+ Signals

Astrocytes display a remarkable diversity of cytosolic  Ca2+ 
signals, which can roughly be divided in global  Ca2+ events 
and local propagating or non-propagating  Ca2+ events. 
In situ and in vivo astrocytes generate frequent spontaneous 
 Ca2+ signals, which occur locally in branches, branchlets and 
endfeet, and are independent on somatic  IP3R2-dependent 
 Ca2+ signals. Local  Ca2+ signals may originate from (i) 
 IP3R1-mediated  Ca2+ release; (ii)  Ca2+ influx through 
ligand-gated  Ca2+ channels, TRP channels or reverse mode 
acting NCX; (iii) controlled  Ca2+ efflux from mitochondria 
through mitochondrial permeability transition pore or from 
 Na+/Ca2+/Li+ exchanger NCLX. Spontaneous  Ca2+ events 
are likely to represent, or respond to the changes of meta-
bolic or RedOx states of astrocytes. Triggered  Ca2+ events 
can be evoked in response to neuronal activity as well as a 
part of propagating inter-cellular  Ca2+ wave [4, 8, 12, 15, 
39, 40].

Technological advances in fast volumetric imaging have 
allowed recording of three-dimensional  Ca2+ signals with 
high speed [41]. These measurements have confirmed a rich 
repertoire of spontaneous and evoked  Ca2+ signals in astro-
cytes, highlighting their spatio-temporal complexity and 
emphasizing the challenges in their detection and interpre-
tation [12, 40, 42].

Functional Significance of  Ca2+ Signals in Astrocytes: The 
State of the Art

Ca2+ signals are implicated in the regulation of a plethora of 
cellular functions and the overarching question in the field 
regards their functional significance [3, 4, 6]. Functionally, 
 Ca2+ signaling in astrocytes can be generally divided in two 
categories: (1) ‘domestic’ signaling and (2) astrocyte func-
tions-specific signaling (Fig. 1). Domestic homeostatic  Ca2+ 
signaling regulates activities, common to most cells, such 
as (i) maintenance of  Ca2+ homeostasis itself, (ii) secretion 
[43], (iii) protein synthesis and degradation [44], (iv) gene 
transcription [45–47], (v) proliferation and cellular motility 
[48, 49] and (vi) metabolism and bioenergetics [50]. Being 
homeostatic cells in the CNS, astrocytes use  Ca2+ signals 
for sensing the environment and for translation of the envi-
ronmental changes into homeostatic and signaling activities. 
Therefore, ‘domestic’  Ca2+ signaling is subordinated to the 
inter-cellular astrocytic responses during communication 
with other cells in the CNS.

Astrocyte-specific functions of  Ca2+ signaling are thought 
to participate in the CNS activities at several levels, the low-
est level being the control over synaptic transmission at the 
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tripartite synapse. The next level may be represented by 
the control of synaptic and neuronal circuits through par-
ticipation in the establishment of so called ‘guiding tem-
plates’—supra-cellular spatio-temporal patterns of signaling 
molecules which ‘guide’ the excitation flow in the neuronal 
networks. The next level of complexity may be represented 
by the control over systemic blood flow, respiratory con-
trol, locomotion, sleep and higher brain functions including 
memory formation and cognition (reviewed in [3, 12, 39, 
51, 52]. All these levels have been experimentally tested for 
being controlled directly by astrocytic  Ca2+ signals, mainly 
through the release of neuro- or vaso-active gliotransmit-
ters and control of the ionic composition of the extracellular 
milieu.

However, many functions are likely to be controlled by 
 Ca2+ indirectly, therefore,  Ca2+ signals need to be ‘decoded’ 
and translated into modulation of protein activities, sign-
aling events, metabolic reactions, or gene transcription 
events. Such  Ca2+ ‘decoders’, represented by a limited 
group of  Ca2+-binding proteins including CaMKII, CaN, 

 Ca2+-activated adenylate cyclase, DREAM etc., have been 
studied in neurons [16, 45, 47, 53, 54], while in astrocytes 
there is a significant gap in knowledge. Recently, CaN has 
been identified as a physiologically relevant  Ca2+ sensitive 
switch to drive the most important astrocytic activities [22, 
55].

Calcineurin Structure, Activation and Protein 
Binding

Calcineurin Structure and Activation

CaN has been discovered in the late seventies as one of the 
most abundant proteins in the CNS [56, 57]. While highly 
enriched in neurons and in lymphoid cells, however, CaN 
is ubiquitously expressed in most cellular types, including 
astrocytes. Structurally, CaN is a heterodimer composed 
of one catalytic subunit (∼60 kDa, known as calcineurin 
A or CaNA) and one regulatory subunit (∼19 kDa, known 

Fig. 1  Generic and cell-specific functions of astrocytic  Ca2+ signals. 
Generic  Ca2+-regulated processes in astrocytes include: (1) regula-
tion of  Ca2+ homeostasis, (2) metabolism and cellular bioenergetics, 
(3) excitation-secretion coupling, (4) gene transcription, (5) protein 
synthesis, (6) proteasomal and (7) autophagosomal degradation, (8) 
motility and growth. Cell-specific functions of astrocytic  Ca2+ signals 
classified by the complexity of the regulated functions: A modula-
tion of synaptic transmission and regulation of local hemodynamic; 
B  Ca2+ activity pattern in astrocytic syncytium and generation of 
guiding templates for neuronal networks; C control of systemic blood 

pressure and contribution to higher brain functions including respira-
tory control, sleep, locomotion, memory and cognition. The regula-
tion may further be classified as (i) processes directly regulated by 
 Ca2+ ions (blue arrows) like vesicular exocytosis (gliocrine function) 
and regulation of the activity of ion channels and transporters; (ii) 
indirect regulation which implicates decodification of the spatio-tem-
poral pattern of  [Ca2+]i (red arrows and text) by calmodulin and other 
 Ca2+-binding enzymes. To date, only calcineurin (CaN) has been 
identified in astrocytes as a  Ca2+-sensitive molecular switch
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as calcineurin B or CaNB). In mammals, three isoforms of 
CaNA have been identified: α, β and γ [58, 59]. The isoforms 
α and β are ubiquitously distributed, while the expression 
of γ isoform is restricted to testis. Three functional domains 
can be identified in the CaNA sequence: N-terminal globular 
catalytic domain, CaNB binding domain, and C-terminal tail 
containing a domain binding  Ca2+/CaM complex (calmodu-
lin-binding domain, CaMBD) and an autoinhibitory domain.

Two isoforms of CaNB have been identified (CaNB1 and 
CaNB2), with CaNB1 found to be expressed in the CNS 
[60]. CaNB is indispensable for the catalytic activity of 
CaNA, therefore its genetic deletion has been widely used to 
knock-out CaN in different tissues and organs. Cell-specific 
deletion of CaB1 has been used to ablate CaN activity in 
neurons and astrocytes [22, 61]. The CaNB possesses four 
EF-hands  Ca2+ binding domains [62]. The first 2 EF-hands 
at the N-terminal lobe serve as low affinity  Ca2+-sensing 
motifs, while the other 2 EF-hands at the C-terminal lobe 
bind  Ca2+ with high affinity with a constant of dissociation 
(Kd) in the nanomolar range (30–150 nM for purified CaNB) 
[63]. The low affinity motifs have a regulatory role serv-
ing as sensors of the calcium fluctuations, whereas the high 
affinity motifs on the C-terminal lobe serve for stabilization 
of the heterodimer [64, 65].

In the inactive state, CaNB interacts with CaNA through 
N-terminal lobe, while its C-terminal lobe is loosely bound 
(or unbound) to the catalytic subunit. It is thought that at 
resting conditions the high affinity  Ca2+-binding sites on 
the C-terminal lobe of CaNB are saturated with  Ca2+ and 
this serves for stabilization of the CaNB-CaNA interaction. 
C-terminal tail of CaNA, containing CaMBD and autoinhib-
itory domains, is folded and interacts with CaNA catalytic 
site and with CaNB-binding part, impeding the interaction 
of substrate proteins with the catalytic site [66].

Activation of CaN has been postulated to occur in two 
steps. Firstly, upon elevation of cytosolic  [Ca2+],  Ca2+ binds 
to the low affinity  Ca2+-binding sites at the N-terminal lobe 
of CaNB. This induces the displacement and unfolding of 
CaMBD and its conversion to a disordered state. This allows 
the interaction between the C-terminal lobe of CaNB and 
CaNA, and exposes the CaMBD to  Ca2+/CaM complex. This 
state is considered as partially active and can be maintained 
in the absence of CaM. Subsequent binding of  Ca2+/CaM 
complex to CaMB promotes the displacement of the autoin-
hibitory domain from the catalytic site of CaNA, resulting in 
full activation of CaN [65, 67]. Recent reports suggest that 
the displacement of the AID from the catalytic site requires 
CaM binding to the sites outside the CaMBD [68, 69].

CaN Interaction with Proteins

Most of the knowledge on CaN binding to its substrates 
has been gathered studying CaN interaction with the NFAT 

transcription factors family [70]. Two substrate-interaction 
sites have been identified in the CaN holoenzyme. The 
PxIxIT-binding pocket is located on the side surface of 
the N-terminal lobe of CaNA subunit. The second site, the 
LxVP-binding pocket, is formed at the interface of CaNA 
and CaNB interaction. The PxIxIT and LxVP pockets are 
named after corresponding CaN-binding motifs of NFAT 
transcription factors family [70]. The PxIxIT pocket is acces-
sible to CaN-binding proteins in both inactive and activated 
CaN states and is thought to mediate CaN-protein interaction 
in resting condition. Hypothetically, proteins binding to the 
PxIxIT pocket is possible in the absence of the regulatory 
CaNB subunit. In resting conditions the LxVP pocket is 
blocked by the interaction with CaMBD and is not accessi-
ble for CaN-binding proteins. Upon deletion of CaNB subu-
nit, the LxVP pocket is disrupted and this leads to permanent 
inactivation of phosphatase CaN activity. This suggests that 
the substrate binding to the LxVP pocket is essential for 
the catalytic CaN holoenzyme activity. This conclusion is 
supported by the constitutive and  Ca2+-independent CaN 
holoenzyme activation upon proteolytic cleavage of the 
C-terminal tail of CaNA containing CaMBD and AID. This 
also suggests that  Ca2+ binding to CaNB is necessary exclu-
sively for the displacement of the CaMBD and AID and does 
not affect catalytic activity of CaNA.

It has also been shown that the LxVP and PxIxIT motifs 
bind jointly to overlapping epitopes on CaNA catalytic 
domain distant to the regulatory domain suggesting that the 
ratio and the affinities of LxVP and PxIxIT motifs to CaNA 
define the occupancy of peptide-binding sites on CaNA [71].

During the last decade, the CaN-protein interaction field 
experienced a significant progress due to in silico identifica-
tion of putative CaN-interacting peptides called short linear 
motifs (SLiMs). Hundreds of new CaN-interacting proteins 
have been identified containing SLiMs similar to canoni-
cal PxIxIT and LxVP motiffs and novel inhibitors of CaN 
signaling have been generated [72–77]. The results of these 
investigation suggest that: (i) binding of a protein to CaN 
does not automatically mean its de-phosphorylation, some 
CaN-binding proteins provide a scaffold for the CaN interac-
tion with its substrates; (ii) PxIxIT- and LxVP-like motifs of 
CaN-binding proteins may differ from the canonical motifs, 
differing also in the affinity to the relative protein binding 
pockets on CaN; (iii) in many CaN substrates only one of 
two CaN binding motifs, either PxIxIT- or LxVP-like SLiM, 
has been identified. Considering the requirement of two-site 
interaction for dephosphorylation activation, this suggests 
the presence of yet not identified degenerated CaN-binding 
motifs. Otherwise, this suggests that, in certain conditions, 
the one-site interaction is sufficient to promote the catalysis 
of dephosphorylation.

Based on the above considerations and on recent reports, 
the following variables may define the catalytic CaN activity 
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towards specific substrates in the intracellular environment: 
(i) expression levels and localization of CaNA and CaNB 
subunits and isoforms; (ii) spatio-temporal pattern of  Ca2+ 
signals defined as a combination of spatial (global, local or 
in specific sub-cellular compartments) and temporal (ampli-
tude, frequency and the duration of  Ca2+ signals) proper-
ties [78]; (iii) intracellular distribution and concentration of 
CaM [79]; (iv) intracellular distribution and concentration 
of CaN-binding proteins, competing for binding to CaN in 
function of the presence and affinity of their CaN-binding 
motifs; (v) intracellular distribution and levels of endog-
enous CaN inhibitors, such as RCAN [80–82]; (vi) pathol-
ogy-related constitutive activation of CaN upon cleavage by 
 Ca2+-activated proteases [83, 84].

Pathology of Astroglial Calcium 
and Calcineurin Signaling

Astrocytic  Ca2+ signals have been shown to be altered 
in vitro and in vivo in many cell and animal models of neu-
rodegenerative diseases with a general consensus on chronic 
cellular  Ca2+ overload. In the last decade, the topic has been 
covered by a number of reviews and is outside the scope 
of this contribution [85–93]. CaN pathology in astrocytes 
has mainly been documented and studied in cerebro-vascu-
lar disorders, Alzheimer’s disease (AD) and brain trauma 
[19–21, 94, 95]. In response to chronic  Ca2+ overload, both 
over-expression of CaN and its over-activation by calpain-
mediated cleavage of the autoinhibitory  Ca2+/CaM-binding 
tail leads to the activation of inflammation-related NFAT 
and NF-kB signaling. NFAT is a direct target of CaN stud-
ied in detail in immune cells [96]. In astrocytes, CaN/
NFAT-mediated activation of transcriptional reprogram-
ming towards reactive gliosis and neuroinflammation has 
been observed in AD models and in AD human brains [97]. 
In this context, the importance of astrocyte-specific CaN/
NFAT signaling for the development of neuroinflammation 
and neuronal dysfunction, both in acute and chronic brain 
diseases, has been proved through molecular uncoupling of 
CaN from NFAT by VIVIT peptide representing a variant 
of CaN binding site of NFAT, optimized to bind CaN with 
high affinity [98–100].

There is an ample evidence of the role of NF-kB in astro-
glial physiology and pathology [101–103]. In astrocytes, 
interaction of CaN with NF-kB signaling occurs at several 
levels: (i) at the level of the ternary complex between Bcl10, 
MALT1 and CARMA1, in which Aβ-induced CaN dephos-
phorylation of Bcl10 positively regulates NF-kB signaling 
[104]; (ii) CaN dephosphorylates IkBα, thus precluding its 
degradation which inhibits NF-kB nuclear translocation in 
culture in response to anti-inflammatory action of IGF-1 
[105]; (iii) CaN, in complex with NF-kB and FOXO3, is 

required for TNFα- induced NF-kB nuclear translocation 
and activation of transcription [106, 107]. The final outcome 
in terms of NF-kB-mediated transcriptional activation and 
neuroinflammatory reaction appears to be stimulus- and con-
text-dependent, specifically, dependent on the presence of 
microglial cells. E.g., regulated expression of constitutively 
active calcineurin in astrocytes markedly reduced inflamma-
tory injury in transgenic mice [108], while in purified cul-
tures of hippocampal astrocytes pro-inflammatory stimuli, 
such as TNF, Il1β or LPS, promoted IkB degradation and 
NF-kB activation [109].

The therapeutic potential of CaN inhibition is exempli-
fied by reports showing that systemic treatment of mice 
with CaN inhibitors mitigate neuropathology and behavior 
[110, 111]. Furthermore, in humans it has been shown that 
patients with solid organ transplants and treated with immu-
nosuppressant CaN inhibitors for prevention of the organ 
rejection have a reduced risk to develop dementia [112]. 
This is in spite of the prior co-morbid conditions predispos-
ing to the development of neurodegenerative diseases [112].

Taken together, the above reports suggest that overexpres-
sion and over-activation of CaN in astrocytes is required for 
their transition from healthy to reactive phenotype and for 
development of neuroinflammation.

Physiology of Astroglial Calcineurin 
Signaling

Until recently little was known about physiological role 
of CaN in astrocytes, as CaN activation only reported in 
pathological conditions. A proof of principal study was pub-
lished five years ago showing that CaN in astrocytes can be 
robustly activated in mixed astrocyte-neuron hippocampal 
primary cultures in response to chemical induction of LTP 
[23], showing that in principle, astrocytic CaN can be acti-
vated during neuronal activity. Further work on an astrocyte-
specific conditional CaN KO (ACN-KO mice) showed that 
the spectrum of physiological activities of CaN in astrocytes 
differs from that in brain pathology as it does not involve 
transcriptional remodeling of astrocytes [22, 55].

Control of Neuronal Excitability

It has been found that ACN-KO mice show a severe impair-
ment of excitability of cerebellar granule cells and hip-
pocampal pyramidal neurons. It has been suggested that 
this impairment is due to functional inactivation of astro-
cytic Na /K+ ATPase (NKA) and inability of astrocytes to 
clear  K+ from external space resulting in prolongation of 
the neuronal hyperpolarization and extension of the refrac-
tory period [22]. This conclusion has been corroborated by 
the inhibition of neuronal excitability by NKA inhibitor 
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ouabain. Extracellular  K+ buffering, the most archetypal 
homeostatic task of the astrocytes, initially attributed to the 
activity of Kir4.1 channels, has been demonstrated to occur 
through astrocytic NKA [113, 114]. It has been shown that 
there is an active low affinity and high capacity  K+ uptake 
by the astrocyte-specific NKA isoform, composed of α2β2 
isoforms [115, 116]. These data highlight the role of astro-
glial NKA in  K+ clearance [116].

Another hint that astroglial CaN is implicated in con-
trol of neuronal excitability comes from the finding that in 
ACN-KO astrocytes the release of glutamate was inhibited 
in concomitance with the upregulation of astrocyte-specific 
glutamate transporter GLAST [22, 117]. Astrocytic control 
over the ambient glutamate concentrations is important for 
the extrasynaptic NMDA receptor tone, which is paramount 
for the excitability of neuronal networks and for the balance 
between excitation and inhibition [118]. The deficiency of 
astrocytic glutamate transport leads to neuronal hyper-excit-
ability which has been associated with epileptic seizures and 
pathological conditions [119, 120].

It has been found that, from 5–8 months of life, ACN-
KO mice show an elevated risk to develop epileptic seizures 
[55]. At the age of 12 months about 50% of mice, both males 
and females, showed at least one seizure event. Because of 
the onset of Cre recombinase expression in astrocytes of 
ACN-KO mice, hence CaN KO, occurs very early in mouse 
ontogenesis (from the second postnatal week), it is unlikely 
that seizure are the direct effect of CaN inactivation. Rather, 
the several months lag between CaN KO and seizure events 
suggests that chronic deficiency of CaN activity in astrocytes 
leads to compensatory or dis-compensatory reactions which 
in turn result in neuronal hyper-excitability and seizures.

In summary, data suggest that the acute CaN deficiency 
results in neuronal hypo-excitability, while chronic CaN 
ablation leads to hyper-excitability. Further experiments are 
needed to dissect mechanistic cascade leading from CaN 
ablation to hyper-excitability and seizures.

Control of Spatial Memory

Using Barnes maze paradigm of spatial memory assess-
ment, it has been shown that ACN-KO mice do not have 
spatial memory impairment, i.e., they learn the position of 
the escape box [55]. However the way they find the box was 
drastically different from ACN-WT mice. ACN-WT mice 
use direct search using spatial queues to locate the escape 
box position. Instead, ACN-KO mice use serial search, 
which is a spatial queue-independent strategy consisting 
in sequential exploring holes until the right hole with the 
escape box is found [55]. Interestingly, the improvement of 
the primary latency (e.g., time to approach the hole) and the 
entry latency (time to enter the escape box) over the sessions 
was not different between ACN-WT and ACN-KO mice. 

i.e., ACN-KO mice remember the existence of the escape 
box and maintain the motivation to find it, but are likely 
unable to use spatial queues to locate the box (Fig. 2A). 
Strikingly, similar effect, i.e. use of serial instead of direct 
search strategy in Barnes maze learning paradigm, was 
reported in mice expressing  Ca2+-insensitive mutants of 
CaMKII [121]. Later, it was suggested that hippocampus is 
used for non-spatial memory processing due to its ability to 
time-parse elementary memory events to integrate temporal 
(when), episodic (what), spatial (where) information into 
memory traces [122, 123]. In light of this view it is plausible 
to conclude that ACN-KO mice fail to develop spatial search 
and avail to serial exploration of holes due to functional 
dissociation of temporal and spatial representations both of 
which are hippocampus-dependent [122]. Interestingly, such 
a dissociation has been found in the hippocampus of an AD 
mouse model, rTg4510 mice, in which temporal sequences 
of neuronal firing can persist while spatial firing is disrupted 
[124]. The loss of the ability to use spatial (direct) search 
was found in different model of AD and epilepsy [125, 126].

While the link between astrocytic CaN and neuronal 
CaMKII at present is not clear, we hypothesized that, if there 
is a link, the expression of immediate early genes (IEGs), 
activated downstream CaMKII in response to the ambient 
stimulus, may be affected [127–129]. Indeed, we found that 
the induction of IEGs at the first exposure of mice to Barnes 
maze and at the end of training sessions, was changed oppo-
sitely: at the first exposure there is a significantly enhanced 
mRNA expression of Egr1 and Egr2 in ACN-KO mice com-
pared with ACN-KO mice, while after the last session of 
the learning paradigm the induction of all four IEGs tested 
(c-Fos, Arc, Egr1 and Egr2) was completely suppressed in 
ACN-KO mice (Fig. 2B). While the mechanistic explana-
tion of such effects requires further investigation, one could 
speculate that the mechanisms may include (i) altered mech-
anisms of memory consolidation which requires expression 
of IEGs [130]; (ii) astrocytic control of neuronal protein 
synthesis, discussed in the next section, and (iii) the link 
between neuronal excitability, found to be impaired in ACN-
KO mice [22], and the activity of CaMKII in neurons [131].

Post‑Transcriptional Control of Protein Synthesis

RNA-sequencing of hippocampal and cerebellar tissues 
from 1 month-old ACN-KO mice showed no background 
astrocytic CaN-dependent transcriptional activity in the 
CNS [55]. Only two genes were found to be differen-
tially expressed in hippocampus and cerebellum (Rab31 
and Vapa, in hippocampus and Dsp and Rab31 in the cer-
ebellum). This was in striking contrast to what is known 
about astrocytic CaN activity in pathology-related gliosis 
and neuroinflammation [19, 95], suggesting that, in rest-
ing condition in healthy CNS, CaN in astrocytes does not 
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regulate gene transcription. However, it should be clarified 
that such transcriptional inactivity specifically regards non 
stimulated resting conditions. Instead, reports suggest that 
CaN-mediated NFAT activation and gene transcription may 
occur in response to neuronal activity. First, chemical acti-
vation of neuronal activity in vitro induced robust nuclear 
translocation of overexpressed NFAT-GFP probe into the 
nucleus, suggesting that neuronal activity stimulates CaN 
interaction with and dephosphorylation of NFAT [23]. In 
this frame, early report had demonstrated that in both astro-
cytes and pericytes of rat cortical brain slices electrical field 
stimulation induced CaN-dependent nuclear translocation of 
NFATc3 [132]. Together, these reports suggest that neuronal 

activity may stimulates CaN-dependent NFAT activation 
and, in principle, gene transcription, although functional 
consequences of such activation is yet to be investigated.

Further assessment of protein expression by shotgun 
mass spectrometry proteomics revealed massive changes 
in protein expression profile both in the hippocampus and 
cerebellum suggesting that the activity of CaN in astrocytes 
is directed towards regulation of posttranscriptional protein 
synthesis [55]. Several features make ACN-KO hippocampal 
and cerebellar proteomes unique with a clear association to 
neuropathology.

First, astrocyte-specific deletion of CaN affected protein 
expression in all CNS cellular types, including neurons, 

Fig. 2  Mice with astrocyte-specific knock-out of CaNB1 learned the 
Barnes maze task, but use serial search strategy. Barnes maze spa-
tial learning test was performed on 2  month-old astrocyte-specific 
CaNB1 knock-out mice (named as ACN-Ctr and ACN-KO mice) 
as described elsewhere [55]. The test consisted in one habituation 
session (180  s) followed by 8 acquisition training sessions (AT ses-
sions) 90 s each during which mice were subjected to a mild intensity 
stress (loud sound and bright illumination). During AT sessions mice 
learned location of hidden escape box and the time spent to locate 
and enter the box (entry latency) was measured. A, performance of 
ACN-Ctr and ACN-KO mice across training sessions in Barnes maze 
learning paradigm. A1, no differences were found between  entry 
latency learning curves suggesting that both ACN-Ctr and ACN-KO 
(statistical analysis was performed using 2-way ANOVA for repeated 
measures, F(1,18) = 0.45; p = 0.51, n = 10 mice for each genotype). 
A2, Comparison of search strategies adopted by ACN-Ctr and ACN-
KO mice during acquisition trainings (Chi-square (Fisher's exact) 
test, p = 0.020,, n = 10 mice for each genotype). A3, representative 

traces of ACN-Ctr (blue) and ACN-KO (orange) mice of the search 
strategies to locate the escape box. Note that ACN-Ctr prefer direct 
search, while ACN-KO prefer serial search. Adapted from [55]. B, 
dorsal hippocampi were harvested either immediately after fist AT 
session B1 or at the end of the last AT session B2, and were pro-
cessed for total RNA extraction using TRIzol reagent. First cDNA 
strand was synthetized from 1 μg total RNA. Real-time quantitative 
PCR (qPCR) was performed as described elsewhere [55] using spe-
cific oligonucleotide primers for C-fos, Arc, Egr1 and Egr2 immedi-
ate early genes (IEGs). In ACN-Ctr mice, IEGs were robustly induced 
both at the beginning and at the end of Barnes maze test. Note higher 
induction of Egr1 and Egr2 IEGs after the first AT session in ACN-
KO mice compared with ACN-Ctr B1. Strikingly, at the end of the 
last AT session, no induction of IEGs in ACN-KO mice was observed 
B2. *, p < 0.05 for ACN-Ctr mice exposed to compared with mice 
which have not been exposed to Barnes maze. #, p < 0.05 and ##, 
p < 0.01 for ACN-KO mice compared with ACN-KO mice for respec-
tive genes (n = 6 mice for each genotype)
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astrocytes, microglia and endothelial cells, with the major 
part of the differentially expressed proteins being neuron-
specific or enriched in neurons, while there were only a few 
astrocyte-specific proteins. This suggests that CaN activity 
in astrocytes is important for the maintenance of proteostasis 
not only in astrocytes themselves, but in the entire CNS, 
which may reflect the archetypal homeostatic functions of 
astrocytes. Such a control may be exerted, e.g., through the 
control over extracellular glutamate levels [22, 117]. There 
is a firm association between synaptic and extra-synaptic 
glutamate in the CNS and protein synthesis and degradation 
in neurons [133–135].

Second, gene ontology analysis suggest that the major 
impact of CaN deletion from astrocytes is on protein syn-
thesis and mitochondria [55]. Both disproteostasis and mito-
chondrial dysfunction are early alterations of many neurode-
generative and neurological diseases, and are interdependent 
phenomena [136, 137]. In vitro experiments on mouse and 
human astrocytic primary cultures suggest that inhibition of 
CaN results in a biphasic alteration of protein synthesis of 
selected proteins. Thus, GLAST was downregulated upon 
acute CaN inhibition, while chronic CaN inhibition results 
in GLAST upregulation and a reduction of extracellular glu-
tamate [22, 117]. Moreover, CaN inhibition affected both 
protein synthesis and protein degradation [117]

Third, signaling pathway analysis using IPA suggested 
that hypothetical upstream regulators of the changes found 
in ACN-KO mouse hippocampus could be the AD-causing 
proteins MAPT, APP and PSEN and HD-causing HTT [55]. 
Because of the observed proteome alterations in ACN-KO 
mice, that are the result of the deletion of CaN from astro-
cytes, it is plausible to speculate that similar CaN dysfunc-
tion may occurs in neurodegenerative disease, specifically 
in AD. Further confirmation of this speculation is found in 
a significant overlap between the ACN-KO hippocampal 
proteome and the proteome of 5xFAD mice at early symp-
tomatic stage: of 18 proteins found to be common in two 
datasets, 13 were co-regulated, 8 were co-upregulated and 5 
were co-downregulated, suggesting that alterations of CaN 
activation in astrocytes may represent a common element 
[55, 138, 139].

CaN regulation of protein synthesis and degrada-
tion machineries may involve several mechanisms. At 
the level of ribosomal translational machinery, at least 
four factors, eukaryotic translation initiation factor 2B 
(eIF2B), eukaryotic translation initiation factor 4E bind-
ing protein 1 (4EBP1), eukaryotic translation initiation 
factor 4F (eIF4F) and eukaryotic translation elongation 
factor 2 (eEF2), have been suggested to be directly regu-
lated by CaN [140]. Lysosomal protein degradation and 
autophagy have also been associated with CaN activity 
[141–143]. ER stress/unfolded protein response (UPR) is 
a stereotyped cellular reaction to stress, triggered by the 

accumulation of misfolded/aggregated proteins along the 
secretory pathway and/or by the ER  Ca2+ dyshomeostasis 
[144]. There is ample evidence for the role of CaN in ER 
stress/UPR-associated disproteostasis [145–150].

A Model for a Switch in CaN Activity 
in Astrocytes from Physiology to Pathology

Based on the above discussed, we hypothesize that, in astro-
glial cells, the spectrum of CaN-binding partners as well 
as substrates for dephosphorylation may change during the 
transition from healthy CNS environment to pathological 
states, such as reactive astrogliosis-related and unrelated 
alterations. The model includes three main states (columns 
B-D in Fig. 3). First, in healthy CNS CaN in astrocytes does 
not interact with transcription factors, such as NFAT or 
NF-kB, and does not exert significant transcriptional regu-
lation. Instead, CaN activity is required to maintain basal 
protein synthesis rate and degradation at the posttranscrip-
tional level, perhaps regulating ribosomal protein synthe-
sis and proteasomal protein degradation. The second state 
considers the deficiency of CaN activity due to alterations 
in  Ca2+ and/or CaM signaling in response of both intrin-
sic and extrinsic factors which leads to disproteostasis with 
signatures of neuropathologies such as AD and epilepsy. 
Importantly, in the second state the disproteostasis does not 
involve activation of NFAT or NF-kB or other inflammation-
related transcription factors and does not immediately result 
in astrocytic activation and/or neuroinflammation. This sec-
ond state is based on the experiments with CaN deletion 
or pharmacological inhibition, it is speculative and requires 
experimental prove. Nevertheless, it may provide a frame-
work for further investigation of astrocytic CaN dysfunction 
at early stages of neuropathologies. The third state considers 
the consolidated over-activation of CaN and activation of 
CaN → NFAT/NF-kB pathways with consequent transcrip-
tional remodeling and development of neuroinflammation, 
described in a number of experimental and human patholo-
gies including AD, epilepsy and brain trauma. This, termi-
nal, CaN activation involves: (i) chronic overload of the cell 
with  Ca2+ which generates non-physiological  Ca2+ signal 
for CaN activation; (ii) overexpression of CaM, CaN subu-
nits and substrates such as CaNA and NFAT; and (iii) CaN 
cleavage of  Ca2+-activated proteases and generation of  Ca2+ 
and CaM-independent constitutively active CaN species. An 
important implication of the proposed model is represented 
by the change of the CaN-binding partners during the transi-
tion from physiological to pathological states (Fig. 3). Iden-
tification of CaN-binding proteins and substrates in healthy 
and diseased astrocytes will be determinant for understand-
ing the physio-pathology of astrocytic CaN signaling.
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Conclusions and Future Directions

In astrocytes, the canonical view on CaN signaling con-
siders the activation of pro-inflammatory CaN → NFAT/
NF-kB axes governing astrocytic transcriptional remode-
ling in pathological conditions [19, 21, 95]. Recent reports 
from our lab challenged this paradigm, suggesting that in 
healthy astrocytes transcription-independent CaN activ-
ity is required for maintenance of basal protein synthesis 
possibly through dephosphorylation of eIF2α, thereby 
regulating astrocytic and neuronal functions such as neu-
ronal excitability and memory formation [22, 55, 117, 
151]. To provide a framework for further investigation of 
the role and mechanisms of activation of CaN in astro-
cytes in physiology and pathology, we propose a model 
of the transition of astrocytic CaN from the transcription-
independent functions in healthy CNS to the activation 
of CaN → NFAT/NF-kB-mediated transcriptional repro-
graming in diseases accompanied by neuroinflammatory 
reaction. The transition may include a context-dependent 
switch of CaN binding protein partners. To assess the 
validity of this model and deepen our knowledge about 
physiological role of astroglial CaN, further experiments 
are necessary addressing following issues: (i) identification 
of CaN-binding partners and substrates in physiological 

and in astrogliosis/neuroinflammation-related conditions; 
(ii) characterization of synaptic connectivity and plastic-
ity in mice bearing CaN KO in astrocytes; (iii) detailed 
characterization, in ACN-KO mice, of functions related 
to maintenance of CNS homeostasis such as neurotrans-
mitter, water and electrolyte, metabolic homeostasis; (iv) 
investigation of transition from transcription-inactive to 
transcription competent CaN states; (v) better phenotypic 
and mechanistic characterization of delayed alterations in 
mice with astrocytic CaN KO, such as epileptic seizures 
and concomitant neuroinflammation.
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