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Abstract
The mechanisms underlying cerebral vascular dysfunction and edema during hepatic encephalopathy (HE) are unclear. 
Blood–brain barrier (BBB) impairment, resulting from increased vascular permeability, has been reported in acute and 
chronic HE. Mitochondrial dysfunction is a well-documented result of HE mainly affecting astrocytes, but much less so in 
the BBB-forming endothelial cells. Here we review literature reports and own experimental data obtained in HE models 
emphasizing alterations in mitochondrial dynamics and function as a possible contributor to the status of brain endothelial 
cell mitochondria in HE. Own studies on the expression of the mitochondrial fusion-fission controlling genes rendered 
HE animal model-dependent effects: increase of mitochondrial fusion controlling genes opa1, mfn1 in cerebral vessels in 
ammonium acetate-induced hyperammonemia, but a decrease of the two former genes and increase of fis1 in vessels in 
thioacetamide-induced HE. In endothelial cell line (RBE4) after 24 h ammonia and/or TNFα treatment, conditions mimick-
ing crucial aspects of HE in vivo, we observed altered expression of mitochondrial fission/fusion genes: a decrease of opa1, 
mfn1, and, increase of the fission related fis1 gene. The effect in vitro was paralleled by the generation of reactive oxygen 
species, decreased total antioxidant capacity, decreased mitochondrial membrane potential, as well as increased permeability 
of RBE4 cell monolayer to fluorescein isothiocyanate dextran. Electron microscopy documented enlarged mitochondria in 
the brain endothelial cells of rats in both in vivo models. Collectively, the here observed alterations of cerebral endothelial 
mitochondria are indicative of their fission, and decreased potential of endothelial mitochondria are likely to contribute to 
BBB dysfunction in HE.
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Hepatic Encephalopathy: A Brief Overview 
of Clinical Characteristics and Pathogenesis

Hepatic encephalopathy (HE) is a complex neuropsychi-
atric disorder that results from impaired liver function. 
As a consequence, insufficient clearance of toxins from 
blood, mainly ammonia, results in their accumulation in 
the brain. Impaired liver function, associated with acute, 
chronic liver failure or cirrhosis, often results in a wide 
range of neurological alterations, including cognitive and 
motor disturbances [1].

The cellular and molecular mechanisms underlying HE 
are complex and have not yet been fully deciphered. How-
ever, there is a consensus that ammonia, as a major neuro-
toxin, interferes with various aspects of brain metabolism 
and neural transmission, and impairs cerebral water-ion 
homeostasis [2, 3]. The above-listed abnormalities contrib-
ute to brain edema, the key pathologic manifestation of acute 
HE [4, 5]. The important role of inflammation in the patho-
genesis of HE is being more and more emphasized [6–8].

In acute HE, brain edema leads to the patients’ death 
in more than 50% of cases, which is a consequence of 
increased intracranial pressure and herniation [4, 9]. While 
by analogy to other brain pathologies, brain edema associ-
ated with HE is likely elicited by a combination of cyto-
toxic and vasogenic factors their relative roles have long 
remained a matter of debate [4, 10].

The well-established view is that in brain astrocytes 
detoxify ammonia by an enzymatic reaction catalyzed by 
glutamine synthase [11]. The subsequent accumulation of 
glutamine most likely results in cellular edema formation, 
despite potential compensatory mechanisms. In agreement 
with the long-held view that HE is a primarily gliopathy 
[11, 12]. The development of brain edema in HE is believed 
to be primarily due to pathological cell swelling referred as 
cytotoxic edema. Cytotoxic component of brain edema in 
HE is thought to primarily reflect swelling of astrocytes by 
mechanisms related to intracellular metabolic and ion imbal-
ance and the ensuing intracellular accumulation of water 
[13]. The molecular mechanisms underlying HE-induced 
cytotoxic edema have been relatively well delineated. Both 
clinical and animal model studies favor the direct role of 
ammonia in inducing cytotoxic components of brain edema. 
The current view proposes that ammonia induced astrocytic 
swelling by a complex interplay of (i) oxidative/nitrosative 
stress (ONS) (ii) impairment of import and export of osmoti-
cally active substances leading to intracellular osmotic 
imbalance, (iii) mitochondrial dysfunction related to exces-
sive accumulation of ammonia-derived glutamine and suc-
cessive intra-mitochondrial release of neurotoxic concentra-
tions of ammonia [12, 14]. Some details warrant to be the 
highlight here.

In the astrocytic mitochondria, ammonia induces ONS by 
the formation of free radicals that in turn lead to the patho-
logical condition called mitochondrial permeability transi-
tion pore (mPTP) [15]. The mPTP is characterized by a rapid 
loss of inner membrane potential and collapsed mitochon-
drial ATP-synthesis. Additionally, high intracellular  Ca2+ 
concentration is considered to mediate mPTP and altered 
mitochondrial redox-state and pH [16]. Although mPTP 
has been extensively investigated due to its involvement in 
apoptosis in different diseases (e.g., traumatic brain injury, 
neurodegenerative diseases, and ischemia–reperfusion) the 
pore complex in the mitochondrial inner membrane respon-
sible for the increase in permeability has not been structur-
ally identified [17]. The occurrence of mPTP in ammonia-
treated cultured astrocytes has been associated with cell 
volume increase suggesting its role in astrocyte swelling 
[18]. Furthermore, cultured astrocytes treated with ammo-
nia and different cytokines: TNF-α, interleukin-1β, interleu-
kin-6, and interferon-γ, presented the induction of the mPTP 
in a time-dependent and additive manner [19]. Studies on 
patients with HE have shown metabolic disturbances in the 
brain indicating a compromised oxidative metabolism most 
likely due to mitochondrial dysfunction, that were correlated 
with elevated levels of glutamine [20].

Experimental evidence underscores the contribution of 
the inflammatory component (peripheral or intracerebral) to 
cytotoxic brain edema [21, 22]. In turn, the term vasogenic 
brain edema reflects water accumulation in the extracellular 
space, and is related to its uncontrolled flux across a selec-
tive blood–brain barrier (BBB), in association with periph-
eral osmotically active substances. In contrast to cytotoxic 
edema, the role of the vasogenic component in the induction 
of brain edema in HE has been disputed [23]. The evidence 
is still contradictory and the underlying mechanisms remain 
obscure.

Below we discuss BBB alterations in HE pathology, and 
the discussion is preceded by a characterization of the com-
position and cytoarchitecture of BBB. Next, we discuss and 
present data regarding HE-related impairment in processes 
that contribute to endothelial dysfunction and culminate in 
increased BBB dysfunctionality, which is understood as a 
consequence of the disruption in mitochondrial quality con-
trol processes.

Blood–Brain Barrier

The histological structure of the BBB is organized by the 
basement membrane, endothelial cells, pericytes, and astro-
cyte end-feet. The penetrability of this highly selective fas-
tener between blood and CNS is controlled by two check-
points: (1) the endothelial cells, whose cohesive properties 
and physical resistance of, supported by the inter-endothelial 
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tight junction (TJ) proteins: zonula occludens-1 (ZO-1), 
claudin-5, occludin, junctional adhesion molecules (JAM); 
and, the adherents complexes, E-cadherin; and (2) the basal 
lamina. Both the endothelial cell permeability barrier and 
the basal lamina matrix derive from the cooperation between 
the endothelium and astrocytes and together constitute the 
BBB [24]. The endothelial cell barrier properties are only 
partly attributable to TJs proteins [25]; an important role 
is played by the stability of the endothelial cell–astrocyte 
assembly, which requires matrix adhesion. This view is sup-
ported by (i) high expression of integrins and dystroglycan 
at the BBB; (ii) correlation of alterations in the expression 
of integrins and dystroglycan with the degree of BBB per-
meability, and subsequent glial activation and neuronal 
injury; (iii) breakdown of the cerebral vasculature in trans-
genic mice in which specific integrins are absent [26]. The 
above considerations have collectively implicated that BBB 
consists of an array of different components, including TJs 
and the inter-endothelial adherens complexes (ACs), matrix 
adhesion complexes formed between adhesion receptors 
integrins on both endothelial cells and astrocytes, dystro-
glycan, a single heterodimeric transmembrane receptor, 
distinct from integrins that forms a physical link between 
the intracellular cytoskeleton and the extracellular matrix 
and anchors astrocytes (for reviews and references see del 
Zoppo and Milner [27]). Of note, vertical adhesion could be 
a central determinant of the endothelial portion of the intact 
BBB. This statement is supported by data indicating dis-
turbed BBB permeability and decreased occludin-5 expres-
sion in mice after functional blocking of 1β-integrin [28].

Pericytes are important constituents of BBB regulating 
its functional aspects. While pericytes do not per se induce 
BBB-specific gene expression in endothelial cells, they 
inhibit the expression of molecules that increase vascular 
permeability and CNS immune cell infiltration [29]. Only 
recently, a link between pericytes’ loss and symptoms asso-
ciated with neurologic diseases has begun to be elucidated 
[30, 31]. Uniquely positioned within the neurovascular unit 
between endothelial cells of brain capillaries, astrocytes, 
and neurons, pericytes regulate BBB formation and mainte-
nance, vesicle trafficking in endothelial cells, vascular sta-
bility, capillary blood flow, and clearance of toxic cellular 
by-products necessary for normal functioning of the CNS 
[32]. Whether pericytes’ impairment contributes to BBB 
dysfunction in HE has not been addressed.

Alteration of the BBB Function and Structure 
in HE

Fundamental ultrastructural analysis of the cerebral cortex of 
patients diagnosed with ALF reported by Kato et al., docu-
mented swelling of astrocytes end-feet and increased number 

of vacuoles and vesicles in endothelial cells and pericytes. 
The study also documented that the basement membrane 
were enlarged, with generalized rarefaction and vacuoliza-
tion, while TJs of endothelial cells were intact [33]. The 
above findings were indicative of BBB disruption in ALF. 
Otherwise, the contribution of BBB impairment to HE has 
been a matter of contradictory reports. Rats with severe, 
acute HE induced by ip. injection of galactosamine and 
azoxymethane, have presented brain extravasation to Evans 
Blue and alpha-aminoisobutyric acid, the classical markers 
of BBB leakage and altered transport, respectively [34, 35]. 
The reduction in the expression of TJs proteins (occludin, 
claudin-5, ZO-1, -2) contributing to a reduction in the integ-
rity of the BBB have become evident in brains from this 
rat models [36, 37]. On the other hand, in galactosamine-
induced acute HE in the rabbit, capillary endothelial cells 
appeared normal, and no evidence of brain extravasation 
to horseradish peroxidase was observed [38]. Discrepant 
results have been obtained in animal models of acute HE 
based on hepatic devascularization [39, 40].

Reported inconsistencies in the observed BBB impair-
ment may be due to differences in the use of animal spe-
cies and/or acuteness vs chronicity of HE (etiology; toxins/
surgical procedures). In a rat model of chronic HE induced 
by bile duct ligation (BDL), an electron microscopy study 
revealed anatomically intact BBB structure [41] and decom-
position of ZO proteins expression [42]. Furthermore, in the 
same model, no brain extravasation of Evans blue or sodium 
fluorescein was found [9], nor any changes in the expres-
sion of the TJs proteins were detected. No breakdown of the 
BBB was likewise demonstrated in a rat model of chronic 
HE induced by portocaval anastomosis [43]. It is unknown, 
whether HE may lead to alterations in the matrix elements, 
matrix adhesion receptor expression by both endothelial 
cells and astrocytes, factors affecting vascular permeability. 
Concluding, alternations of the BBB resulting in permeabil-
ity increase were reported in most of reproducible and well-
characterized animal models of HE (Table 1).

In the above mentioned studies chronic HE produced 
minimal HE and, therefore, it remains to be determined 
whether BBB breakdown is associated with overt HE. Inter-
estingly, a magnetic resonance imaging study in cirrhotic 
patients demonstrated the co-existence of both cytotoxic and 
vasogenic brain edema [64]. Early works indicates a signifi-
cant increase in the BBB permeability for ammonia [65], 
but subsequent studies have not substantiated alternations 
of the permeability-surface area of the BBB for ammonia in 
HE [66, 67]. Collectively, the role of increased permeability 
of the BBB in brain edema development and/or progression 
deserves more complex and detailed investigation (for dis-
cussion see Scott et al. [21]).

Importantly, some studies underscore the contribution of 
inflammatory factors to the vasogenic component of brain 
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edema under HE. Inflammatory mediators in peripheral 
blood are not able to cross the BBB due to their molecular 
size. However, different types of cytokines can modulate 
endothelial TJs and thus unlock the BBB [68], or initiate 
endothelial inflammatory processes that involve downstream 
cyclooxygenase (COX), prostanoids, and NO signaling, 
allowing the direct interaction with astrocytes. Increased 
brain levels of TNFα, IL-1β, and IL6 and activation of 
microglia as a source for intracerebral cytokine production 
were reported in experimental models of ALF [69]. Upon 
systemic inflammation, microglial cells and astrocytes have 
been shown to release proinflammatory cytokines, which 
were suggested to contribute to enhanced neuropsychologi-
cal impairment induced by hyperammonemia [11, 70, 71]. 
The study by Lv et al. suggested that deleterious effects 
of systemic inflammation for the brain are linked with the 
observed alterations in the BBB [37]. Mentioned study doc-
umented the crucial role of TNF-α in the development of 
BBB abnormalities and corroborated well with the observa-
tion of increased TNF-α in patients with ALF [37]. In aceta-
minophen-induced ALF mice, it was found that increases 
in BBB permeability positively correlated with elevated 
serum TNF-α levels, which could be prevented by adminis-
tering anti-TNFα-IgG [47]. Similarly, TNF-α or TNF-α-R1 
antibodies increased the expression of TJs proteins occlu-
din and ZO-1, which result in decreased leakage of Evans 
Blue in brains of ALF mice induced by d-galactosamine 
and lipopolysaccharide [72]. Additionally, a possible mutual 
relation between neuroinflammation, cerebral blood flow, 
and intracranial hypertension have been suggested [73, 74].

Because cerebral endothelial dysfunction is often associ-
ated with compromised BBB, understanding the endothelial 
factors that regulate vessel function to maintain BBB role 
and prevent vascular permeability may provide insights into 
disease prevention and treatment.

Mitochondrial‑Derived Reactive Oxygen 
Species (ROS) in the Endothelial Cells: 
Implication to Cerebral Dysfunction 
Observed in HE

Endothelium relies predominantly on anaerobic glycolysis 
for ATP turnover and mitochondria make up 2–5% of the 
cytoplasmic volume of endothelial cells in most vascular 
units [75]. Besides its metabolic role mitochondria integrate 
signals from the environment, perceive cellular stresses, con-
trol cell death signaling to list a key function. Since mito-
chondria as a major source of oxidative stress contribute to 
the pathogenesis of HE, its role as a potential trigger of the 
brain endothelial dysfunction upon HE should be uncovered.

Mitochondrial ROS generation in the endothelial cells is 
considered as one of the primary cell signaling pathways. 

Endothelial cells produce different types of ROS, including 
superoxide  (O2

−), hydrogen peroxide  (H2O2), peroxynitrite 
 (ONOO–), hydroxyl radicals  (OH⋅), and other reactive oxy-
gen and nitrogen species [76, 77].

However, oxidative stress that results from increased oxi-
dant production, reduced antioxidant capacity or both, leads 
to endothelial dysfunction by reducing nitric oxide (NO) 
bioavailability [78, 79]. Importantly, other sources of ROS 
in the vessels include NADPH oxidase (NOX) and xanthine 
oxidase [77].

Ammonia was found to cause the increased generation 
of ROS in rat brain endothelial cell line (RBE4) [80] and 
primary cultures of brain ECs [81]. In RBE4 cells, treatment 
with ammonia increased permeability of endothelial cells 
monolayer to fluorescein isothiocyanate (FITC)-dextran 
(40 kDa). This effect was ameliorated by co-treatment with 
a matrix metalloproteinase inhibitor, or an antioxidant, glu-
tathione diethyl ester [80]. The matrix metalloproteinase 9 
(MMP9) was also increased in the brain of BDL rats which 
accompanied an increase in permeability to sodium fluores-
cein, Evans blue, and FITC-dextran along with an increase 
in brain water content [82].

Increased levels of hydroxyl radicals were observed in rat 
brain vessels isolated from thioacetamide-induced HE [83]. 
An increase of hydroxyl radicals  (OH⋅) was observed in rat 
brains in vivo after direct infusion of ammonium chloride to 
the striatum through a microdialysis probe [84]. Increased 
levels of nitrites and nitrates (markers of NO production) 
were also frequently detected in the brains of animals with 
experimentally induced HE [85–87]. Additionally, hyper-
ammonemia in vivo was associated with increased expres-
sion and activity of heme oxygenase-1 (HO-1), a ubiquitous 
marker of oxidative stress [88, 89].

It has been shown that exogenously added l-glutamine 
reduces NO generation in the brain by inhibiting l-arginine 
transport via y + LAT2 exchanger. This effect was addition-
ally potentiated after a direct infusion of ammonia to the 
brain via microdialysis probe [87], or when l-glutamine 
accumulated in there during HE [86]. Tentatively, the mech-
anism may also operate in the cerebral capillary endothelial 
cells forming the BBB, where enhanced glutamine level also 
would modulate l-arginine transport. Of note, increased 
expression of y + LAT2 was observed in RBE4 cells upon 
ammonia exposure [80], and in rat brains upon hyperam-
monemia in situ [86]. However, the outcome of carrier oper-
ation would depend on l-glutamine cell membrane gradient. 
The importance of this mechanism comes to light when con-
fronted with the previous observation that l-glutamine infu-
sion in the absence of hyperammonemia impairs cerebro-
vascular  CO2 reactivity, most likely by reducing l-arginine 
availability and NO synthesis [90]. A recent study from our 
laboratory demonstrated strong differences in the reactiv-
ity of the middle cerebral arteries and in their response to 
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extravascular l-arginine application between vessels isolated 
from rats with TAA-induced HE and control animals, impli-
cating that impaired vascular tone of cerebral arteries, which 
may involve, among other factors, their persistent exposure 
to high l-glutamine [91].

Excess of ROS reduces NO bioavailability through 
mechanisms including NO scavenging that occurs when 
 O2

− reacts with NO to form  ONOO−, which broadly con-
tributes to cellular ONS and uncoupling of endothelial 
nitric oxide synthase (eNOS) [92]. Moreover, dissociation 
of eNOS monomers in the uncoupled eNOS is associated 
with a higher ratio of eNOS monomer-to-eNOS dimers [83, 
93]. In addition,  O2

− can oxidize the essential eNOS cofactor 
BH4 to BH2, which subsequently leads to eNOS uncoupling 
whereby eNOS produces more  O2

− and less NO and lead 
to inactivation of proteins through the nitration of tyros-
ine residues. Such proteins include the antioxidant enzyme 
MnSOD [94, 95].

In our very recent study, a decrease of eNOS content and 
its uncoupling concurred with and was likely causally related 
to, both increased brain content of ROS and decreased cere-
bral cortical blood flow (CBF) in the thioacetamide-induced 
animal model of acute HE [83].

The specific mechanisms by which mitochondria in the 
endothelium release ROS and uncouple eNOS involve mito-
chondrial ATP-dependent potassium channel  (MitoK+ATP) 
activation and subsequent induction of mPTP.  MitoK+ATP 
activity is regulated by falling ATP and rising ADP levels, 
thus linking cellular metabolism with membrane excitability 
[96].

It was recently reported, that the  MitoK+ATP channel is 
involved in Parkinson’s disease (PD) mainly via the regula-
tion of mitochondrial biogenesis and fission/fusion [97]. At 
the molecular level, the authors using in vivo and in vitro 
rotenone models of PD documented that the pore subunit 
of Kir6.1, the major component of the  MitoK+ATP channel 
was the key contributor in its interaction with mitochondrial 
dynamics.

It is important to underline that mitochondria are both 
the source and a target of excess ROS. Excessive genera-
tion of ROS, particularly of  ONOO− can result in oxidative 
damage to the mitochondrial respiratory complexes [98]. 
Cytoplasmic ROS may elicit mitochondria depolariza-
tion, at least in part through the opening of  MitoK+ATP 
channels, which results in mitochondrial ROS release by 
respiratory complexes and the mPTP. The release of mito-
chondrial ROS may further activate NADPH oxidase via 
protein kinase C, resulting in increased cytoplasmic  O−2 
production and reduced NO bioavailability [99]. On the 
other hand, hyperammonemia was also found to be associ-
ated with a decreased activity of antioxidant enzymes (glu-
tathione peroxidase, superoxide dismutase, and catalase) in 
the brain, both in the cytosolic and mitochondrial fractions 

[100]. In line, glutathione accumulation in the extracellu-
lar space of rat prefrontal cortex upon ammonia infusion 
was previously documented [101]. Of note, manipulations 
resulting in the recovery of the enzyme activities of the GSH 
metabolism ameliorated HE symptoms both in experimental 
animals [102] and in human patients [103]. Moreover, excess 
 ONOO− can also lead to inactivation of the endogenous pro-
teins, antioxidant mechanisms (i.e., mitochondrial SOD2) 
through nitration. Changes in nitrated proteins content sup-
porting this scenario were observed in brain homogenates 
obtained from rats with TAA-induced acute HE [83]. The 
above data support the concept that ONS contribute to the 
alterations in BBB permeability and thus to the vasogenic 
component of cerebral edema associated with HE.

Aberrant Mitochondrial Quality Control 
Linked to Endothelial Dysfunction

The role of mitochondria in brain endothelial cells has previ-
ously been underestimated since vascular endothelial cells 
are located in juxtaposition to types of cells, that heavily 
rely on oxidative phosphorylation. Such cells, which in the 
periphery are represented by skeletal muscle cells and car-
diomyocytes, predominantly rely on anaerobic glycolysis 
for ATP turnover, and mitochondria make up 2–5% of their 
cytoplasmic volume [104].

The location of the mitochondria within the endothe-
lial cell of different organs and locations differs, largely 
depending on the signaling required. For instance, in pul-
monary artery endothelial cells where oxygen sensing 
is relevant, mitochondria are localized near the nucleus, 
ensuring hypoxia-induced transcriptional regulation [105]. 
In turn in coronary arterioles, endothelial mitochondria 
are anchored to the cytoskeleton, initiating vasodilation 
in response to shear stress [79].

Cellular mitochondrial content is tightly regulated 
and is determined by the balance between mitochon-
drial biogenesis and degradation through the process 
called mitophagy, the form of autophagy in mitochondria 
(removal of damaged organelles). Mitochondrial organiza-
tion, which is fundamental in determining their function, 
is determined by the balance between fusion and fission 
that determines the mitochondrial number, morphology, 
and size (Fig. 1) [106]. The cytoskeletal organization, 
which has a relevant role in maintaining mitochondrial 
network and function [107]. Mitochondrial quality control 
is required for optimal mitochondrial function, therefore 
dysregulation of these processes due to disease-related 
alterations initiate mitochondria-mediated cell senescence 
and apoptosis [78, 108]. In the brain, pathological state-
associated disturbances in mitochondria quality control 
purportedly leading to cerebral endothelial dysfunction, 
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and BBB impairment have gained attention only lastly 
[109]. In more general terms, the imbalance between 
controlling processes was documented and discussed in 
various disorders such as cancer, neurodegenerative and 
cardiovascular diseases [110–112].

Decreased mitochondrial biogenesis, one of the deregula-
tory events in the endothelium, is related to the regulator’s 
peroxisome proliferator-activated receptor-γ coactivator-1α 
(PGC-1α) and mitochondrial transcription factor A (TFAM) 
[113]. Further, dysregulation of mitochondrial dynamics is 
caused by an imbalance between proteins involved in fission 
[dynamin-related protein 1 (DRP1) and fission 1 (FIS1)] and 
fusion (transmembrane GTPases mitofusin 1 (MFN1) and 2 
(MFN2) and the optic atrophy protein 1 (OPA1)). Mitochon-
drial fusion allows the transfer of gene products between 
mitochondria for proper functioning in normal conditions 
and specifically during metabolic and oxidative stress. In 
turn, mitochondrial fission is crucial for mitochondrial divi-
sion and quality control. The role of mitochondrial failure 
was often described as associated with dysfunctional BBB 
in different neurologic disorders, including stroke, Alzhei-
mer’s disease, Parkinson’s disease, Huntington’s disease, 
and epilepsy [114–119]. In so far, the role of altered mito-
chondrial dynamics involving fission, fusion, and mitophagy 
processes, has not been adequately explored in the context 
of BBB dysfunction upon HE.

Effects of HE‑Key Factors: Ammonia 
and TNFα on the Mitochondrial Membrane 
Potential, the Expression of Genes Involved 
in Mitochondrial Fusion and Fission, 
and Morphology of Mitochondria in Cerebral 
Endothelial Cell

We analyzed mitochondrial membrane potential and the 
expression of genes involved in mitochondrial fusion and fis-
sion in the rat brain endothelial cells (RBE4 cell line) treated 
with 5 mM ammonium chloride “ammonia” and 50 ng/ml 
of rat recombinant TNFα (Sigma-Aldrich, St, Louis, MO, 
USA). Both compounds were added into the cell culture 
medium for 24 h. We haven’t noticed any cell culture density 
changes or morphological alterations under inverted micro-
scope (Fig. 2A). The expression analysis of genes coding 
mitochondrial fusion/fission proteins: opa1, mfn1, fis1, and 
mff (mitochondrial fission factor; MFF) revealed a decrease 
of opa1, mfn1, and, evident, but to be confirmed tendency to 
increase of the fission related fis1 gene indicating disturbed 
fission process in the mitochondria of RBE4 cells upon treat-
ments with both factors (Fig. 2B). Besides Fis1 participation 
in the mitochondrial fission via interactions with the Drp1, 
or by prevention of mitochondrial fusion through the inhibi-
tion of Mfn2/Opa1, Fis1 participates in mitophagy through 
recruitment of TBC1D15/17 and Syntaxin17 to mitochon-
dria [120]. Fis1 is also proposed to interact with BAP31, 

Fig. 1  Schema of fusion/fission 
processes in the mitochondria. 
Mitofusin 1/2 and OPA1 are 
major proteins that control 
mitochondrial fusion. Mfn1 
and Mfn2 locate in the outer 
mitochondrial membrane with 
their GTPase site facing the 
cytosol to coordinate the fusion 
process with the outer mem-
brane of opposing mitochon-
dria. OPA1 protein, localized 
in the intermembrane side, 
controls the fusion of the inner 
mitochondria membrane. DRP1, 
Mff, and Fis1 proteins regulated 
mitochondrial fission. DRP1 
is localized in the cytosol and 
recruited to the outer mitochon-
drial membrane during fission. 
Fis1 and Mff are located in the 
outer mitochondrial membrane 
and work as the adaptor for 
DRP1
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Fig. 2  The effect of ammonia and/or TNFα treatment (5  mM 
ammonium chloride; 50  ng/ml TNFα; 24  h; Sigma-Aldrich; St. 
Louis, MO, USA) on RBE4 cell culture morphology and growth 
(A), mitochondrial gene expression (B), mitochondrial membrane 
potential (MMP) (C), monolayer permeability for fluorescein iso-
thiocyanate (FITC) dextran 40  kDa (D). Relative gene expression 
was analyzed using the real-time PCR method followed by ΔΔCt 
quantification analysis in relation to beta actin gene expression. 
Probes for opa1(#Rn00592200_m1), mf1 (#Rn00594496_m1), 
fis1(#Rn01480911_m1), mff (#Rn01400790_m1) and actb (Rn 
0066789_m1) were purchased from Applied Biosystems, Waltham, 

USA. MMP was established using a Mitochondrial Membrane 
Potential kit, based on a JC-10 fluorescence probe, according to the 
manufacturer’s protocol (cat# MAK159, Sigma-Aldrich, Saint Louis, 
USA). Cells monolayer permeability for FITC-dextran (30 min expo-
sition) was measured fluorometrically at 485/520  nm. Results are 
mean ± SD (n = 4); Two-way ANOVA test with Dunnett’s multiple 
comparisons test was performed using Graph Pad Software *p < 0.05 
vs control; **p < 0.01 vs control; # 0.05 < p < 0.1 (tend toward sig-
nificance) (panel B). One-way ANOVA test with Dunnett post-hoc 
test was performed using Graph Pad Software *p < 0.05 vs control; 
**p < 0.01 vs control; **p < 0.001 vs control (panel C and D)
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inciting apoptosis [121]. Thus, Fis1 may act an important 
role in mitochondrial alternations during HE.

The measurement of mitochondrial membrane poten-
tial (MMP) revealed engrossing observation. MMP was 
decreased in both ammonia-treated groups after a short 30’ 
exposition. In turn, MMP was not significantly affected by 
ammonia but reduced in both TNFα- treated groups after 
24 h (Fig. 2C). The short exposition of ammonia exerts 
probably toxic effects mainly by disturbing the pH balance. 
Ammonia in solution is present as  NH3 or  NH4

+.  NH3 is 
a weak base in gaseous form, since  NH4

+ is a weak acid. 
Because ammonia pKa is relatively high (approximately 9.2) 
most of total ammonia at physiologic pH is  NH4

+ [122, 123]. 
Ammonia toxicity results from disruption of the  H+ gradient 
across the inner membranes of mitochondria. Due to relative 
alkalinity of the mitochondrial pH as compared to the cyto-
plasmic pH ammonia exits the mitochondrial matrix along 
this gradient and binds to  H+ in the inter-membrane space, 
thereby eliminating the  H+ gradient necessary for ATP 
synthesis [124]. In addition,  NH4

+ could compete with  K+ 
ions at the  K+ binding site of  K+-channels and affect excit-
ability and membrane potential in neurons [125]. Whether 
the same applies to endothelial mitochondria is not clear. In 
turn, the effects of TNFα may be linked with TNFα receptor 

activation and further signals transducing. In the endothe-
lium, TNFα induces inflammatory responses by enhancing 
adhesion molecule expression and cytokine secretion [126, 
127].

To verify if ammonia/TNFα treatment and observed 
mitochondrial impairment disturb endothelium function 
we measured cell monolayer permeability to isothiocyanate 
FITC-dextran. Simultaneous ammonia/TNFα administration 
caused a significant increase in permeability indicative of a 
disturbed barrier function of the endothelial cells (Fig. 2D). 
Experiments demonstrated an almost fourfold increase 
in ROS content in all treated cells with an accompanying 
decrease of total antioxidant capacity (TAC) especially, after 
simultaneous ammonia and TNFα treatment (Fig. 3).

We verified the morphology of mitochondria in cerebral 
vessels isolated from rats with hyperammonemia (OA) and 
thioacetamide (TAA)—induced acute liver failure. Both 
models were performed on male Sprague–Dawley rats (Tac: 
Cmd: SD, weight 200–220 g) supplied by the Animal House 
of Mossakowski Medical Research Centre, Warsaw, Poland 
(Approval no. 57/2015 (14 May 2015 from the 4th Local 
Ethics Committee for Animal Experimentation, Warsaw, 
Poland, as compliant with Polish Law). Briefly, hyperam-
monemia (OA) was induced by ip. injections of ammonium 

Fig. 3  The effect of ammonia and/or TNFα treatment (5 mM ammo-
nium chloride; 50 ng/ml TNFα; 24 h; Sigma-Aldrich; St. Louis, MO, 
USA) on the content of reactive oxygen species (ROS) (A) and total 
antioxidant capacity (TAC) (B). ROS levels were measured using the 
fluorescent probe 2′,7′-dichlorofluorescein diacetate (DCF-DA) 5 μM 
for 30  min at 37  °C. The fluorescence of cells was detected using 
Fluorescence Microplate Reader FLUOstar OMEGA (BMG Labtech, 
Ortenberg, Germany) with an excitation wavelength of 485/20  nm 
and emission wavelength of 528/20 nm. TAC was measured using the 

TAC Assay kit (cat# MAK187, Sigma-Aldrich, Saint Louise, USA) 
according to the manufacturer's instructions by the estimation of the 
capacity of the total antioxidants in the sample to convert  Cu2+ in its 
reduced form,  Cu+ which chelates with a colorimetric probe, giving 
a broad absorbance peak at ∼570 nm. Results are mean ± SD (n = 4); 
One-way ANOVA test with Dunnett post-hoc test was performed 
using Graph Pad Software **p < 0.01 vs control; ***p < 0.001 vs con-
trol
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acetate (600 mg per kg) at 12 h intervals for three days. 
Acute liver failure was induced by thioacetamide (TAA) ip. 
administration (300 mg per kg at 24 intervals for three days). 
The control (sham) group received 0.3 mL of 0.9% NaCl 
(ip. for 3 days). Brain cortex microvessels were isolated on 
saccharose gradient as described earlier [63].

Electron microscopy documented enlarged mitochondria 
in the brain endothelial cells of OA and TAA rats suggesting 
mitochondrial swelling that occurs in both models (Fig. 4A), 
however, the mitochondria aspect ratio (width/length) 
evaluated using Digimizer Software (MedCalc Software 
Ltd., Ostend, Belgium) was unchanged. The mitochondrial 
membrane potential measurement in rat brain microvessels 
revealed a tendency toward a decrease in both experimental 
models which implies mitochondrial dysfunction leading 
to brain vessels energy depletion (Fig. 4B). The expression 
analysis of genes coding key fusion/fission proteins: opa1, 
mfn, fis1, and mff indicated possible increased fission of OA 
cerebral mitochondria and a decreased fusion of cerebral 
mitochondria from TAA rats, but further experiments are 
needed to prove this phenomenon (Fig. 4D), since gene 
expression changes are not necessarily reflected at the pro-
tein level.

Roles of Mitochondrial Membrane Potential 
(Δψ) and Calcium for ROS Generation 
by the Mitochondria

The issues circumscribed by the title of this section have not 
been elaborated in our laboratory, but, definitely deserve 
comment. The role of mitochondrial membrane potential 

(Δψ) in ROS production is ambiguous. The complexity of 
the issue is underscored by findings variably associating 
ROS production with hyperpolarization and depolarization, 
likely depending on pharmacologically active agents and 
substrates being used, and the respiratory and cytoplasmic 
redox potential of the mitochondria. Selective  MitoK+ATP 
openers that decrease Δψ in the cerebrovasculature do not 
increase ROS production [128].

The role of mitochondrial Δψ and ROS production in 
vascular dysfunction derives from data demonstrating that 
compared to healthy controls, arterioles and circulating 
mononuclear cells from patients with obesity and type 2 
diabetes are characterized by mitochondrial membrane 
hyperpolarization (more negative Δψ), reduced mitochon-
drial mass, and greater ROS production [129–131]. Impor-
tantly, differences in mitochondrial membrane potential 
were observed as well. Mitochondrial alterations including 
membrane hyperpolarization reduced NO bioavailability and 
affected vascular function [103, 104]. In the former study, 
mitochondrial ROS production in monocytes was negatively 
correlated with artery flow-mediated dilation [129], a marker 
of endothelial function in humans.

Intracellular  Ca2+ is essential for maintaining endothe-
lium integrity and function [132]. In particular, the inter-
action of mitochondria with the endoplasmic reticulum 
is central in regulating intracellular  Ca2+ levels, and this 
process directly involves mitochondrial  Ca2+ uptake and 
cycling [133]. In addition to intracellular  Ca2+ homeosta-
sis control, mitochondrial  Ca2+ levels play obvious roles in 
mitochondrial metabolism, cell signaling, biogenesis, and 
morphology [134], processes pertinent to optimal vascu-
lar function. In endothelial cells, increases in intracellular 
 Ca2+ lead to eNOS activation and subsequent NO produc-
tion [132]. As previously documented by our group, high 
levels of ammonia evoked a durable decrease of the basal 
intracellular  Ca2+ level in RBE4 cells [135], which may 
contribute to cerebral vascular endothelial dysfunction 
associated with hyperammonemia and/or HE. The pres-
ence of ammonia-sensitive intracellular  Ca2+ reservoirs 
has been previously described in bovine aortic endothelial 
cells [136]. However, the details of the evolution of  Ca2+ 
to BBB dysfunction associated with HE have not been 
unraveled in those studies. Of note, increased  Ca2+ efflux 
from brain mitochondria was observed in rats injected with 
ammonia [137].

Whether and how  Ca2+ fluxes or other intermediary 
events occurring at the molecular or cellular level affect 
the function of cerebral blood vessels are translated into 
their functioning are intriguing questions worth further 
investigation.

Fig. 4  Mitochondria of cerebral vessels isolated from the brains of 
rats with hyperammonemia (OA) and thioacetamide (TAA)-induced 
acute liver failure. The length of the mitochondria in the brain ves-
sels endothelium in the electron microscopy images was determined 
by quantitative evaluation using Digimizer Image Analysis Software 
(MedCalc Software Ltd, Ostend, Belgium) (A). Mitochondrial mem-
brane potential (MMP) in cerebral vessels mitochondria of control, 
(OA), and (TAA)-administered rats was determined using Mitochon-
drial Membrane Potential kit (cat# MAK159, Sigma-Aldrich, Saint 
Louis, USA) (B). Representative electron microscopy images of cer-
ebral vessel mitochondria and confocal microscopic image of vessels 
with von Willebrand factor immunostaining (C). Relative mitochon-
drial gene expression was measured using the real-time PCR method 
followed by ΔΔCt quantification analysis to beta-actin gene expres-
sion. Details of probes used are listed in the legend to Fig. 3 (D). All 
results are mean ± SD (n = 4); Two-way ANOVA test with Dunnett’s 
multiple comparisons test was performed using Graph Pad Soft-
ware *p < 0.05 vs control; **p < 0.01 vs control (panel B). One-way 
ANOVA test with Dunnett post-hoc test was performed using Graph 
Pad Software *p < 0.05; **p < 0.01; ***p < 0.001 (panel C and D)

◂
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Conclusions

Investigations carried out to date revealed numerous poten-
tial links between various aspects of mitochondrial dynamics 
in rat brain endothelial cells and BBB dysfunction and its 
role in the pathogenesis of HE. However, the picture is far 
from being complete and the roads to the goal are filled with 
methodological obstacles. In terms of mitochondrial dynam-
ics itself, the evidence regarding responses of its executors is 
still in a very preliminary stage. In terms of its link to BBB 
disruption, the status is obscured by a great model-to-model 
variability, which makes it difficult to translate the experi-
mental results to clinical observations. Undoubtedly, an 
extension of the present knowledge on endothelial ammonia 
metabolism and how it affects the endothelial mitochondria 
is needed. Issues such as the role of glutamine metabolism 
and transport, operation of the glutamate/glutamine cycle, 
very well described in astrocytes, remain almost unad-
dressed concerning brain endothelial cells. Raising the level 
of knowledge of the above aspects of metabolism in HE-
affected endothelial mitochondria to that already acquired 
about astrocytic mitochondria should help to unravel the 
secrets of BBB disruption and brain edema in HE.
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