Skip to main content

Advertisement

Log in

Noise Induced Depression-Like Behavior, Neuroinflammation and Synaptic Plasticity Impairments: The Protective Effects of Luteolin

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Noise is a kind of sound that causes agitation and harms human health. Studies have shown that noise can lead to neuroinflammation, damage to synaptic plasticity and altered levels of neurotransmitters that may result in depression. The present study demonstrated that luteolin exerted antidepressant-like effects by improving neuroinflammation in a mouse model of noise-induced depression. Luteolin significantly alleviated noise-induced depression-like behavior. Notably, luteolin treatment not only remarkably ameliorated noise-induced inflammation in the hippocampus and prefrontal cortex, but also increased synapsin. Furthermore, luteolin treatment significantly increased the contents of serum 5-hydroxytryptamine and norepinephrine in noise-induced mice. In sum, luteolin exerts antidepressant effects indepression-like mice caused by noise, which can serve as a potential agent for the treatment of chronic noise-induced depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Babisch W (2002) The noise/stress concept, risk assessment and research needs. Noise Health 4(1):1–11

    PubMed  Google Scholar 

  2. Min JY, Min KB (2018) Night noise exposure and risk of death by suicide in adults living in metropolitan areas. Depress Anxiety 35:876–883. https://doi.org/10.1002/da.22789

    Article  PubMed  Google Scholar 

  3. Seidler A, Hegewald J, Seidler AL et al (2017) Association between aircraft, road and railway traffic noise and depression in a large case-control study based on secondary data. Environ Res 152:263–271. https://doi.org/10.1016/j.envres.2016.10.017

    Article  CAS  PubMed  Google Scholar 

  4. Clark C, Paunovic K (2018) WHO environmental noise guidelines for the european region: a systematic review on environmental noise and quality of life, wellbeing and mental health. Int J Environ Res Public Health 15:1–27. https://doi.org/10.3390/ijerph15112400

    Article  Google Scholar 

  5. Hahad O, Prochaska JH, Daiber A et al (2019) Environmental noise-induced effects on stress hormones, oxidative stress, and vascular dysfunction: key factors in the relationship between cerebrocardiovascular and psychological disorders. Oxid Med Cell Longev 2019:4623109. https://doi.org/10.1155/2019/4623109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Graff LA, Walker JR, Bernstein CN (2009) Depression and anxiety in inflammatory bowel disease: a review of comorbidity and management. Inflamm Bowel Dis 15:1105–1118. https://doi.org/10.1002/ibd.20873

    Article  PubMed  Google Scholar 

  7. Schmidt FM, Kirkby KC, Lichtblau N (2016) Inflammation and immune regulation as potential drug targets in antidepressant treatment. Curr Neuropharmacol 14:674–687. https://doi.org/10.2174/1570159x14666160115130414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dowlati Y, Herrmann N, Swardfager W et al (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67:446–457. https://doi.org/10.1016/j.biopsych.2009.09.033

    Article  CAS  PubMed  Google Scholar 

  9. Cui W, Ning Y, Hong W et al (2019) Crosstalk between inflammation and glutamate system in depression: signaling pathway and molecular biomarkers for ketamine’s antidepressant effect. Mol Neurobiol 56:3484–3500. https://doi.org/10.1007/s12035-018-1306-3

    Article  CAS  PubMed  Google Scholar 

  10. Black C, Miller BJ (2015) Meta-analysis of cytokines and chemokines in suicidality: distinguishing suicidal versus nonsuicidal patients. Biol Psychiatry 78:28–37. https://doi.org/10.1016/j.biopsych.2014.10.014

    Article  CAS  PubMed  Google Scholar 

  11. Serafini G, Pompili M, Elena SM et al (2013) The role of inflammatory cytokines in suicidal behavior: a systematic review. Eur Neuropsychopharmacol 23:1672–1686. https://doi.org/10.1016/j.euroneuro.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  12. Kim YK, Na KS, Myint AM et al (2016) The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog Neuropsychopharmacol Biol Psychiatry 64:277–284. https://doi.org/10.1016/j.pnpbp.2015.06.008

    Article  CAS  PubMed  Google Scholar 

  13. Li HR, Xiao YH, Li H et al (2021) Ganoderma lucidum polysaccharides ameliorated depression-like behaviors in the chronic social defeat stress depression model via modulation of Dectin-1 and the innate immune system. Brain Res Bull 171:16–24. https://doi.org/10.1016/j.brainresbull.2021.03.002

    Article  CAS  PubMed  Google Scholar 

  14. Robson MJ, Quinlan MA, Blakely RD (2017) Immune system activation and depression: roles of serotonin in the central nervous system and periphery. ACS Chem Neurosci 8:932–942. https://doi.org/10.1021/acschemneuro.6b00412

    Article  CAS  PubMed  Google Scholar 

  15. Wang S, Yu Y, Feng Y et al (2016) Protective effect of the orientin on noise-induced cognitive impairments in mice. Behav Brain Res 296:290–300. https://doi.org/10.1016/j.bbr.2015.09.024

    Article  CAS  PubMed  Google Scholar 

  16. Zhao Y, Wang Q, Jia M et al (2019) (+)-Sesamin attenuates chronic unpredictable mild stress-induced depressive-like behaviors and memory deficits via suppression of neuroinflammation. J Nutr Biochem 64:61–71. https://doi.org/10.1016/j.jnutbio.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  17. Tianzhu Z, Shihai Y, Juan D (2014) Antidepressant-like effects of cordycepin in a mice model of chronic unpredictable mild stress. Evid Based Complement Alternat Med 2014:438–506. https://doi.org/10.1155/2014/438506

    Article  Google Scholar 

  18. Bus BAA, Molendijk ML, Tendolkar I et al (2015) Chronic depression is associated with a pronounced decrease in serum brain-derived neurotrophic factor over time. Mol Psychiatry 20:602–608. https://doi.org/10.1038/mp.2014.83

    Article  CAS  PubMed  Google Scholar 

  19. Dwivedi Y, Rizavi HS, Conley RR et al (2003) Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 60:804–815. https://doi.org/10.1001/archpsyc.60.8.804

    Article  CAS  PubMed  Google Scholar 

  20. Russo-Neustadt A (2003) Brain-derived neurotrophic factor, behavior, and new directions for the treatment of mental disorders. Semin Clin Neuropsychiatry 8:109–118. https://doi.org/10.1053/scnp.2003.50014

    Article  PubMed  Google Scholar 

  21. Pivac N, Kozaric-Kovacic D, Grubisic-Ilic M et al (2012) The association between brain-derived neurotrophic factor Val66Met variants and psychotic symptoms in posttraumatic stress disorder. World J Biol Psychiatry 13:306–311. https://doi.org/10.3109/15622975.2011.582883

    Article  PubMed  Google Scholar 

  22. Li N, Lee B, Liu RJ et al (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959–964. https://doi.org/10.1126/science.1190287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhuo J, Chen B, Sun C et al (2020) Patchouli alcohol protects against chronic unpredictable mild stress-induced depressant-like behavior through inhibiting excessive autophagy via activation of mTOR signaling pathway. Biomed Pharmacother 127:110–115. https://doi.org/10.1016/j.biopha.2020.110115

    Article  CAS  Google Scholar 

  24. Xia B, Huang X, Sun G et al (2021) Iridoids from gardeniae fructus ameliorates depression by enhancing synaptic plasticity via ampa receptor-mtor signaling. J Ethnopharmacol 268:113665. https://doi.org/10.1016/j.jep.2020.113665

    Article  CAS  PubMed  Google Scholar 

  25. Zhang B, Guo F, Ma Y et al (2017) Activation of D1R/PKA/mTOR signaling cascade in medial prefrontal cortex underlying the antidepressant effects of l-SPD. Sci Rep 7:3809. https://doi.org/10.1038/s41598-017-03680-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Y, Lan N, Ren J et al (2015) Orientin improves depression-like behavior and BDNF in chronic stressed mice. Mol Nutr Food Res 59:1130–1142. https://doi.org/10.1002/mnfr.201400753

    Article  CAS  PubMed  Google Scholar 

  27. Ruhe HG, Mason NS, Schene AH (2007) Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry 12:331–359. https://doi.org/10.1038/sj.mp.4001949

    Article  CAS  PubMed  Google Scholar 

  28. Ressler KJ, Nemeroff CB (2000) Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety 12(Suppl 1):2–19. https://doi.org/10.1002/1520-6394(2000)12:1+%3c2::AID-DA2%3e3.0.CO;2-4

    Article  PubMed  Google Scholar 

  29. Vegas-Suarez S, Paredes-Rodriguez E, Aristieta A et al (2019) Dysfunction of serotonergic neurons in Parkinson’s disease and dyskinesia. Int Rev Neurobiol 146:259–279. https://doi.org/10.1016/bs.irn.2019.06.013

    Article  CAS  PubMed  Google Scholar 

  30. Hamon M, Blier P (2013) Monoamine neurocircuitry in depression and strategies for new treatments. Prog Neuropsychopharmacol Biol Psychiatry 45:54–63. https://doi.org/10.1016/j.pnpbp.2013.04.009

    Article  CAS  PubMed  Google Scholar 

  31. Kennedy SH (2006) A review of antidepressant treatments today. Eur Neuropsychopharmacol 16:S619–S623. https://doi.org/10.1016/S0924-977x(06)70007-4

    Article  CAS  Google Scholar 

  32. Van Zanden JJ, Geraets L, Wortelboer HM et al (2004) Structural requirements for the flavonoid-mediated modulation of glutathione S-transferase P1–1 and GS-X pump activity in MCF7 breast cancer cells. Biochem Pharmacol 67:1607–1617. https://doi.org/10.1016/j.bcp.2003.12.032

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Huang J, Zheng X et al (2017) Luteolin, a natural flavonoid, inhibits methylglyoxal induced apoptosis via the mTOR/4E-BP1 signaling pathway. Sci Rep 7:7877. https://doi.org/10.1038/s41598-017-08204-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu Y, Gou LS, Tian X et al (2013) Protective effects of luteolin on cognitive impairments induced by psychological stress in mice. Exp Biol Med (Maywood) 238:418–425. https://doi.org/10.1177/1535370213477985

    Article  CAS  Google Scholar 

  35. Tsai FS, Peng WH, Wang WH et al (2007) Effects of luteolin on learning acquisition in rats: involvement of the central cholinergic system. Life Sci 80:1692–1698. https://doi.org/10.1016/j.lfs.2007.01.055

    Article  CAS  PubMed  Google Scholar 

  36. Park S, Kim DS, Kang S et al (2018) The combination of luteolin and l-theanine improved Alzheimer disease-like symptoms by potentiating hippocampal insulin signaling and decreasing neuroinflammation and norepinephrine degradation in amyloid-beta-infused rats. Nutr Res 60:116–131. https://doi.org/10.1016/j.nutres.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  37. Lin Y, Yang N, Bao B et al (2020) Luteolin reduces fat storage in Caenorhabditis elegans by promoting the central serotonin pathway. Food Funct 11:730–740. https://doi.org/10.1039/c9fo02095k

    Article  CAS  PubMed  Google Scholar 

  38. Cheng L, Wang SH, Chen QC et al (2011) Moderate noise induced cognition impairment of mice and its underlying mechanisms. Physiol Behav 104:981–988. https://doi.org/10.1016/j.physbeh.2011.06.018

    Article  CAS  PubMed  Google Scholar 

  39. Zhang FF, Peng W, Sweeney JA, Jia ZY, Gong QY (2017) Brain structure alterations in depression: psychoradiological evidence. CNS Neurosci Ther 2018:1–10. https://doi.org/10.1111/cns.12835

    Article  Google Scholar 

  40. Yogesh D (2009) Brain-derived neurotrophic factor: role in depression and suicide. Neuropsychiatr Dis Treat 2009:433–449. https://doi.org/10.2147/ndt.s5700

    Article  Google Scholar 

  41. Kenji H (2016) Role of BDNF-TrkB-mTOR signaling in the treatment of depression. Japanese J Biol Psychiatry 27:22–25

    Google Scholar 

  42. Perona MT, Waters S, Hall FS et al (2008) Animal models of depression in dopamine, serotonin, and norepinephrine transporter knockout mice: prominent effects of dopamine transporter deletions. Behav Pharmacol 19:566–574. https://doi.org/10.1097/FBP.0b013e32830cd80f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Duman RS, Aghajanian GK (2012) Synaptic dysfunction in depression: potential therapeutic targets. Science 338:68–72. https://doi.org/10.1126/science.1222939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Holmes SE, Scheinost D, Finnema SJ et al (2019) Lower synaptic density is associated with depression severity and network alterations. Nat Commun 10:1529. https://doi.org/10.1038/s41467-019-09562-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. He S, Smargiassi A, Low N et al (2019) Residential noise exposure and the longitudinal risk of hospitalization for depression after pregnancy: postpartum and beyond. Environ Res 170:26–32. https://doi.org/10.1016/j.envres.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  46. Niemann H, Bonnefoy X, Braubach M et al (2006) Noise-induced annoyance and morbidity results from the pan-European LARES study. Noise Health 8:63–79. https://doi.org/10.4103/1463-1741.33537

    Article  CAS  PubMed  Google Scholar 

  47. Vogel I, Van De Looij-Jansen PM, Mieloo CL et al (2014) Risky music listening, permanent tinnitus and depression, anxiety, thoughts about suicide and adverse general health. PLoS ONE 9:e98912. https://doi.org/10.1371/journal.pone.0098912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kumar B, Kuhad A, Chopra K (2011) Neuropsychopharmacological effect of sesamol in unpredictable chronic mild stress model of depression: behavioral and biochemical evidences. Psychopharmacology 214:819–828. https://doi.org/10.1007/s00213-010-2094-2

    Article  CAS  PubMed  Google Scholar 

  49. Mao QQ, Xian YF, Ip SP et al (2010) Long-term treatment with peony glycosides reverses chronic unpredictable mild stress-induced depressive-like behavior via increasing expression of neurotrophins in rat brain. Behav Brain Res 210:171–177. https://doi.org/10.1016/j.bbr.2010.02.026

    Article  CAS  PubMed  Google Scholar 

  50. Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29:571–625. https://doi.org/10.1016/j.neubiorev.2005.03.009

    Article  CAS  PubMed  Google Scholar 

  51. Ishisaka M, Kakefuda K, Yamauchi M et al (2011) Luteolin shows an antidepressant-like effect via suppressing endoplasmic reticulum stress. Biol Pharm Bull 34:1481–1486. https://doi.org/10.1248/bpb.34.1481

    Article  CAS  PubMed  Google Scholar 

  52. Li DD, Xie H, Du YF et al (2018) Antidepressant-like effect of zileuton is accompanied by hippocampal neuroinflammation reduction and CREB/BDNF upregulation in lipopolysaccharide-challenged mice. J Affect Disord 227:672–680. https://doi.org/10.1016/j.jad.2017.11.047

    Article  CAS  PubMed  Google Scholar 

  53. Lima GB, Doorduin J, Klein HC et al (2019) Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol 56:3295–3312. https://doi.org/10.1007/s12035-018-1283-6

    Article  CAS  Google Scholar 

  54. Palucha A, Pilc A (2005) The involvement of glutamate in the pathophysiology of depression. Drug News Perspect 18:262–268. https://doi.org/10.1358/dnp.2005.18.4.908661

    Article  CAS  PubMed  Google Scholar 

  55. Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54:597–606. https://doi.org/10.1001/archpsyc.1997.01830190015002

    Article  CAS  PubMed  Google Scholar 

  56. Smith RS (1991) The macrophage theory of depression. Med Hypotheses 35:298–306. https://doi.org/10.1016/0306-9877(91)90272-z

    Article  CAS  PubMed  Google Scholar 

  57. Kohler-Forsberg O, Lydholm CN, Hjorthoj C et al (2019) Efficacy of anti-inflammatory treatment on major depressive disorder or depressive symptoms: meta-analysis of clinical trials. Acta Psychiatr Scand 139:404–419. https://doi.org/10.1111/acps.13016

    Article  CAS  PubMed  Google Scholar 

  58. Farazi N, Mahmoudi J, Sadigh-Eteghad S et al (2022) Synergistic effects of combined therapy with transcranial photobiomodulation and enriched environment on depressive- and anxiety-like behaviors in a mice model of noise stress. Lasers Med Sci 37:1181–1191. https://doi.org/10.1007/s10103-021-03370-6

    Article  PubMed  Google Scholar 

  59. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127. https://doi.org/10.1016/j.biopsych.2006.02.013

    Article  CAS  PubMed  Google Scholar 

  60. Sen S, Duman R, Sanacora G (2008) Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry 64:527–532. https://doi.org/10.1016/j.biopsych.2008.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sayson LV, Botanas CJ, Custodio RJP et al (2019) The novel methoxetamine analogs N-ethylnorketamine hydrochloride (NENK), 2-MeO-N-ethylketamine hydrochloride (2-MeO-NEK), and 4-MeO-N-ethylketamine hydrochloride (4-MeO-NEK) elicit rapid antidepressant effects via activation of AMPA and 5-HT2 receptors. Psychopharmacology 236:2201–2210. https://doi.org/10.1007/s00213-019-05219-x

    Article  CAS  PubMed  Google Scholar 

  62. Hosang GM, Shiles C, Tansey KE et al (2014) Interaction between stress and the BDNF Val66Met polymorphism in depression: a systematic review and meta-analysis. BMC Med 12:7. https://doi.org/10.1186/1741-7015-12-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rocha RB, Dondossola ER, Grande AJ et al (2016) Increased BDNF levels after electroconvulsive therapy in patients with major depressive disorder: a meta-analysis study. J Psychiatr Res 83:47–53. https://doi.org/10.1016/j.jpsychires.2016.08.004

    Article  PubMed  Google Scholar 

  64. Crupi R, Paterniti I, Ahmad A et al (2013) Effects of palmitoylethanolamide and luteolin in an animal model of anxiety/depression. CNS Neurol Disord Drug Targets 12:989–1001. https://doi.org/10.2174/18715273113129990084

    Article  CAS  PubMed  Google Scholar 

  65. Khamsing D, Lebrun S, Fanget I et al (2021) A role for BDNF- and NMDAR-induced lysosomal recruitment of mTORC1 in the regulation of neuronal mTORC1 activity. Mol Brain 14:112. https://doi.org/10.1186/s13041-021-00820-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hoeffer CA, Klann E (2010) mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 33:67–75. https://doi.org/10.1016/j.tins.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  67. Abelaira HM, Reus GZ, Ignacio ZM et al (2017) Ketamine exhibits different neuroanatomical profile after mammalian target of rapamycin inhibition in the prefrontal cortex: The role of inflammation and oxidative stress. Mol Neurobiol 54:5335–5346. https://doi.org/10.1007/s12035-016-0071-4

    Article  CAS  PubMed  Google Scholar 

  68. Wang CQ, Ye Y, Chen F et al (2017) Posttraumatic administration of a sub-anesthetic dose of ketamine exerts neuroprotection via attenuating inflammation and autophagy. Neuroscience 343:30–38. https://doi.org/10.1016/j.neuroscience.2016.11.029

    Article  CAS  PubMed  Google Scholar 

  69. Costa-Mattioli M, Sossin WS, Klann E et al (2009) Translational control of long-lasting synaptic plasticity and memory. Neuron 61:10–26. https://doi.org/10.1016/j.neuron.2008.10.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lloyd BA, Hake HS, Ishiwata T et al (2017) Exercise increases mTOR signaling in brain regions involved in cognition and emotional behavior. Behav Brain Res 323:56–67. https://doi.org/10.1016/j.bbr.2017.01.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ehlers MR, Ross CJD, Todd RM (2019) The influence of the noradrenergic/stress system on perceptual biases for reward. Cogn Affect Behav Neurosci 19:715–725. https://doi.org/10.3758/s13415-018-00657-0

    Article  CAS  PubMed  Google Scholar 

  72. Yang R, Zhang MQ, Xue Y et al (2019) Dietary of n-3 polyunsaturated fatty acids influence neurotransmitter systems of rats exposed to unpredictable chronic mild stress. Behav Brain Res 376:112–172. https://doi.org/10.1016/j.bbr.2019.112172

    Article  CAS  Google Scholar 

  73. Holmes A, Heilig M, Rupniak NMJ et al (2003) Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends Pharmacol Sci 24:580–588. https://doi.org/10.1016/j.tips.2003.09.011

    Article  CAS  PubMed  Google Scholar 

  74. Ahmad A, Rasheed N, Banu N et al (2010) Alterations in monoamine levels and oxidative systems in frontal cortex, striatum, and hippocampus of the rat brain during chronic unpredictable stress. Stress 13:355–364. https://doi.org/10.3109/10253891003667862

    Article  PubMed  Google Scholar 

  75. Sasaki K, El Omri A, Kondo S et al (2013) Rosmarinus officinalis polyphenols produce anti-depressant like effect through monoaminergic and cholinergic functions modulation. Behav Brain Res 238:86–94. https://doi.org/10.1016/j.bbr.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  76. Maes M, Leonard BE, Myint AM et al (2011) The new “5-HT” hypothesis of depression: Cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 35:702–721. https://doi.org/10.1016/j.pnpbp.2010.12.017

    Article  CAS  PubMed  Google Scholar 

  77. Belleau EL, Treadway MT, Pizzagalli DA (2019) The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biol Psychiatry 85:443–453. https://doi.org/10.1016/j.biopsych.2018.09.031

    Article  PubMed  Google Scholar 

  78. Trivedi MH, Desaiah D, Ossanna MJ et al (2008) Clinical evidence for serotonin and norepinephrine reuptake inhibition of duloxetine. Int Clin Psychopharmacol 23:161–169. https://doi.org/10.1097/YIC.0b013e3282f41d7e

    Article  PubMed  Google Scholar 

  79. De La Pena JB, Kim CA, Lee HL et al (2014) Luteolin mediates the antidepressant-like effects of Cirsium japonicum in mice, possibly through modulation of the GABAA receptor. Arch Pharm Res 37:263–269. https://doi.org/10.1007/s12272-013-0229-9

    Article  CAS  PubMed  Google Scholar 

  80. Zheng ZH, Tu JL, Li XH et al (2021) Neuroinflammation induces anxiety- and depressive-like behavior by modulating neuronal plasticity in the basolateral amygdala. Brain Behav Immun 91:505–518. https://doi.org/10.1016/j.bbi.2020.11.007

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Technology Innovation Project for the Special Social Development of Public Health in Xuzhou City (Grant No.KC20168) and the Open Research Project of Research Center of Biochemistry and Molecular Biology Jiangsu Key Laboratory of Brain Disease Bioinformation (Grant No. JSBL201802).

Author information

Authors and Affiliations

Authors

Contributions

YL and JG: contributed to the study conception and design. XW, MZ, QF and YS: material preparation, data collection and analysis were performed. YC and YY: the first draft of the manuscript was written, all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yi Liu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Wang, X., Yu, Y. et al. Noise Induced Depression-Like Behavior, Neuroinflammation and Synaptic Plasticity Impairments: The Protective Effects of Luteolin. Neurochem Res 47, 3318–3330 (2022). https://doi.org/10.1007/s11064-022-03683-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03683-0

Keywords

Navigation