Skip to main content
Log in

Kaempferol Mediated AMPK/mTOR Signal Pathway Has a Protective Effect on Cerebral Ischemic-Reperfusion Injury in Rats by Inducing Autophagy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ischemia/reperfusion (I/R) caused by ischemic stroke treatments leads to brain injury and its pathological mechanism is related to autophagy. The underlying mechanism of kaempferol on cerebral I/R injury needs to be explored. To establish I/R injury, we used a middle cerebral artery occlusion-reperfusion (MCAO) model in rats. MCAO rats were treated with the same amount of saline (I/R group); Treatment group rats were treated orally with kaempferol (50, 100, 200 mg/kg) for 7 days before surgery. After reperfusion for 24 h, the scores of neurological deficits and infarct volume in each group were evaluated. LC3, Beclin-1 p62, AMPK and mTOR protein expression levels were examined by TTC staining, immunofluorescence staining, qRT-PCR and western blotting assay. H&E and TTC staining showed that compared with model group, the infarction size of rats in kaempferol group was markedly reduced. Meanwhile, the results showed that kaempferol had a dose-dependent nerve function repairability. Nissl and TUNEL staining showed that kaempferol could reduce neuronal apoptosis and ameliorate neuronal impairment after I/R. Western blotting and qRT-PCR results showed that kaempferol could protect the brain from ischemia reperfusion by activating autophagy. In addition, add AMPK inhibitor, western blotting and immumohistochemical staining showed that kaempferol mediated AMPK/mTOR signal pathway in MCAO rats. Kaempferol could mediate the AMPK signal pathway to regulate autophagy and inhibit apoptosis to protect brain against I/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Abbreviations

MCAO:

Middle cerebral artery occlusion-reperfusion

I/R:

Ischemia/reperfusion

MAPK:

Mitogen activated protein kinase

TTC:

2,3,5-Triphenyltetrazolium chloride

H&E:

Hematoxylin and eosin

TUNEL:

Terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling

PVDF:

Polyvinylidene difluoride

BCA:

Bicinchoninic Acid

Dor:

Dorsomorphin

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

References

  1. Wang H et al (2016) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1459–1544

    Article  Google Scholar 

  2. Guo QQ et al (2020) ATM-CHK2-beclin 1 axis promotes autophagy to maintain ROS homeostasis under oxidative stress. EMBO J 39(10):e103111

    Article  CAS  Google Scholar 

  3. Youn DH et al (2020) Extracellular mitochondrial dysfunction in cerebrospinal fluid of patients with delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Neurocrit Care 33(2):422–428

    Article  CAS  Google Scholar 

  4. Lai Y et al (2020) Restoration of L-OPA1 alleviates acute ischemic stroke injury in rats via inhibiting neuronal apoptosis and preserving mitochondrial function. Redox Biol 34:101503

    Article  CAS  Google Scholar 

  5. Chen C et al (2020) Electroacupuncture pretreatment prevents ischemic stroke and inhibits Wnt signaling-mediated autophagy through the regulation of GSK-3β phosphorylation. Brain Res Bull 158:90–98

    Article  CAS  Google Scholar 

  6. Wu B et al (2017) Succinate-induced neuronal mitochondrial fission and hexokinase II malfunction in ischemic stroke: therapeutical effects of kaempferol. Biochim Biophys Acta Mol Basis Dis 1863(9):2307–2318

    Article  CAS  Google Scholar 

  7. Mishra SK et al (2020) Emerging roles for human glycolipid transfer protein superfamily members in the regulation of autophagy, inflammation, and cell death. Prog Lipid Res 78:101031

    Article  CAS  Google Scholar 

  8. Lin Z et al (2020) RNA m(6) a methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy. EMBO J 39(12):e103181

    Article  CAS  Google Scholar 

  9. Wu D, Zhang K, Hu P (2019) The role of autophagy in acute myocardial infarction. Front Pharmacol 10:551

    Article  CAS  Google Scholar 

  10. Wang M et al (2019) Homocysteine enhances neural stem cell autophagy in in vivo and in vitro model of ischemic stroke. Cell Death Dis 10(8):561

    Article  CAS  Google Scholar 

  11. Mo Y, Sun YY, Liu KY (2020) Autophagy and inflammation in ischemic stroke. Neural Regen Res 15(8):1388–1396

    Article  Google Scholar 

  12. Zeng C et al (2016) Crocin-elicited autophagy rescues myocardial ischemia/reperfusion injury via paradoxical mechanisms. Am J Chin Med 44(3):515–530

    Article  CAS  Google Scholar 

  13. Guo Z et al (2014) A combination of four active compounds alleviates cerebral ischemia-reperfusion injury in correlation with inhibition of autophagy and modulation of AMPK/mTOR and JNK pathways. J Neurosci Res 92(10):1295–1306

    Article  CAS  Google Scholar 

  14. Lagoa R et al (2009) Kaempferol protects against rat striatal degeneration induced by 3-nitropropionic acid. J Neurochem 111(2):473–487

    Article  CAS  Google Scholar 

  15. Suchal K et al (2017) Molecular pathways involved in the amelioration of myocardial injury in diabetic rats by kaempferol. Int J Mol Sci 18(5):1001

    Article  Google Scholar 

  16. Li WH et al (2019) Kaempferol attenuates neuroinflammation and blood brain barrier dysfunction to improve neurological deficits in cerebral ischemia/reperfusion rats. Brain Res 1722:146361

    Article  CAS  Google Scholar 

  17. Zhang K, Zhang Q (2019) ALK5 signaling pathway mediates neurogenesis and functional recovery after cerebral ischemia/reperfusion in rats via Gadd45b. Cell Death Dis 10(5):360

    Article  Google Scholar 

  18. Longa EZ et al (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20(1):84–91

    Article  CAS  Google Scholar 

  19. Guang HM, Du GH (2006) Protections of pinocembrin on brain mitochondria contribute to cognitive improvement in chronic cerebral hypoperfused rats. Eur J Pharmacol 542(1–3):77–83

    Article  CAS  Google Scholar 

  20. Gao M et al (2008) Acute neurovascular unit protective action of pinocembrin against permanent cerebral ischemia in rats. J Asian Nat Prod Res 10(5–6):551–558

    Article  CAS  Google Scholar 

  21. Stamatovic SM et al (2020) A novel approach to treatment of thromboembolic stroke in mice: redirecting neutrophils toward a peripherally implanted CXCL1-soaked sponge. Exp Neurol 330:113336

    Article  CAS  Google Scholar 

  22. Zannad F et al (2020) SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 396(10254):819–829

    Article  Google Scholar 

  23. Aimo A et al (2021) Relative efficacy of Sacubitril-Valsartan, Vericiguat, and SGLT2 inhibitors in heart failure with reduced ejection fraction: a systematic review and network meta-analysis. Cardiovasc Drugs Ther 35(5):1067–1076

    Article  CAS  Google Scholar 

  24. Sica V et al (2015) Organelle-specific initiation of autophagy. Mol Cell 59(4):522–539

    Article  CAS  Google Scholar 

  25. Shao M et al (2018) Protectiveness of artesunate given prior ischemic cerebral infarction is mediated by increased autophagy. Front Neurol 9:634

    Article  Google Scholar 

  26. Yao X et al (2019) LncRNA SNHG12 as a potent autophagy inducer exerts neuroprotective effects against cerebral ischemia/reperfusion injury. Biochem Biophys Res Commun 514(2):490–496

    Article  CAS  Google Scholar 

  27. Li B et al (2020) MiR-202-5p attenuates neurological deficits and neuronal injury in MCAO model rats and OGD-induced injury in neuro-2a cells by targeting eIF4E-mediated induction of autophagy and inhibition of Akt/GSK-3β pathway. Mol Cell Probes 51:101497

    Article  CAS  Google Scholar 

  28. Zhang M et al (2018) SIRT3 protects rotenone-induced injury in SH-SY5Y cells by promoting autophagy through the LKB1-AMPK-mTOR pathway. Aging Dis 9(2):273–286

    Article  Google Scholar 

  29. Wang M et al (2016) Silibinin prevents autophagic cell death upon oxidative stress in cortical neurons and cerebral ischemia-reperfusion injury. Mol Neurobiol 53(2):932–943

    Article  CAS  Google Scholar 

  30. Wang J et al (2017) Long non-coding RNA H19 induces cerebral ischemia reperfusion injury via activation of autophagy. Aging Dis 8(1):71–84

    Article  Google Scholar 

  31. Zhang Y et al (2019) The role of astragaloside IV against cerebral ischemia/reperfusion injury: suppression of apoptosis via promotion of P62-LC3-autophagy. Molecules 24(9):1838

    Article  CAS  Google Scholar 

  32. Montero ML et al (2020) Docosahexaenoic acid protection against palmitic acid-induced lipotoxicity in NGF-differentiated PC12 cells involves enhancement of autophagy and inhibition of apoptosis and necroptosis. J Neurochem 155(5):559–576

    Article  CAS  Google Scholar 

  33. Dai J et al (2018) Inhibition of curcumin on influenza A virus infection and influenzal pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and NF-κB pathways. Int Immunopharmacol 54:177–187

    Article  CAS  Google Scholar 

  34. Kim J et al (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141

    Article  CAS  Google Scholar 

  35. Jia J et al (2019) Galectins control MTOR and AMPK in response to lysosomal damage to induce autophagy. Autophagy 15(1):169–171

    Article  CAS  Google Scholar 

  36. Zhang DM et al (2019) TIGAR alleviates ischemia/reperfusion-induced autophagy and ischemic brain injury. Free Radic Biol Med 137:13–23

    Article  CAS  Google Scholar 

  37. Di S et al (2020) The protective effects of melatonin against LPS-induced septic myocardial injury: a potential role of AMPK-mediated autophagy. Front Endocrinol (Lausanne) 11:162

    Article  Google Scholar 

  38. Ren PH et al (2020) Yangxinkang tablet protects against cardiac dysfunction and remodelling after myocardial infarction in rats through inhibition of AMPK/mTOR-mediated autophagy. Pharm Biol 58(1):321–327

    Article  CAS  Google Scholar 

  39. Sun X et al (2020) Eugenol attenuates cerebral ischemia-reperfusion injury by enhancing autophagy via AMPK-mTOR-P70S6K pathway. Front Pharmacol 11:84

    Article  CAS  Google Scholar 

  40. Varshney R, Gupta S, Roy P (2017) Cytoprotective effect of kaempferol against palmitic acid-induced pancreatic β-cell death through modulation of autophagy via AMPK/mTOR signaling pathway. Mol Cell Endocrinol 448:1–20

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to all participates for their contributions for the present study. The supporting funding projects of the manuscript are as follows: National Natural Science Foundation of China (Grants No. 81501140). National Natural Science Foundation of China (Grants No. 81502656)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Xu.

Ethics declarations

Conflict of interest

All authors declare that there is no any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Xia, F., Gao, R. et al. Kaempferol Mediated AMPK/mTOR Signal Pathway Has a Protective Effect on Cerebral Ischemic-Reperfusion Injury in Rats by Inducing Autophagy. Neurochem Res 47, 2187–2197 (2022). https://doi.org/10.1007/s11064-022-03604-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03604-1

Keywords

Navigation