Skip to main content
Log in

Coupling of GABA Metabolism to Mitochondrial Glucose Phosphorylation

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glucose and oxygen (O2) are vital to the brain. Glucose metabolism and mitochondria play a pivotal role in this process, culminating in the increase of reactive O2 species. Hexokinase (HK) is a key enzyme on glucose metabolism and is coupled to the brain mitochondrial redox modulation by recycling ADP for oxidative phosphorylation (OXPHOS). GABA shunt is an alternative pathway to GABA metabolism that increases succinate levels, a Krebs cycle intermediate. Although glucose and GABA metabolisms are intrinsically connected, their interplay coordinating mitochondrial function is poorly understood. Here, we hypothesize that the HK and the GABA shunt interact to control mitochondrial metabolism differently in the cortex and the hypothalamus. The GABA shunt stimulated mitochondrial O2 consumption and H2O2 production higher in hypothalamic synaptosomes (HSy) than cortical synaptosomes (CSy). The GABA shunt increased the HK coupled to OXPHOS activity in both population of synaptosomes, but the rate of activation was higher in HSy than CSy. Significantly, malonate and vigabatrin blocked the effects of the GABA shunt in the HK activity coupled to OXPHOS. It indicates that the glucose phosphorylation is linked to GABA and Krebs cycle reactions. Together, these data shed light on the HK and SDH role on the metabolism of each region fed by GABA turnover, which depends on the neurons' metabolic route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Abbreviations

α-KG :

Alpha ketoglutarate

ΔΨm :

Mitochondrial membrane potential

2-DG :

2-Deoxyglucose

Ap5A :

P1,P5-Di(adenosine-5') pentaphosphate

CSy :

Cortical synaptosome

ETS :

Electron transport system

FCCP :

Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone

GABA-t :

Gamma transaminase

GAD :

Glutamate decarboxylase

GDH :

Glutamate dehydrogenase

Glc :

Glucose

G6P :

Glucose-6-phosphate

HK :

Hexokinase

HSy :

Hypothalamic synaptosome

mROS :

Mitochondrial reactive oxygen species

mt-HK :

Mitochondrial-bound hexokinase

NAG :

N-Acetyl-Glucosamine

OXPHOS :

Oxidative phosphorylation

SDH :

Succinate dehydrogenase

SSADH :

Succinic semialdehyde dehydrogenase

Succ :

Succinate

TCA :

Tricarboxylic acid cycle

References

  1. Roberts E, Frankel S (1950) Gamma-aminobutyric acid in brain: its formation from glutamic acid. J Biol Chem 187(1):55–63

    Article  CAS  PubMed  Google Scholar 

  2. Curtis DR, Phillis JW, Watkins JC (1959) The depression of spinal neurones by gamma-amino-n-butyric acid and beta-alanine. J Physiol 146(1):185–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Soghomonian JJ, Martin DL (1998) Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci 19(12):500–505

    Article  CAS  PubMed  Google Scholar 

  4. Martin DL, Rimvall K (1993) Regulation of gamma-aminobutyric acid synthesis in the brain. J Neurochem 60(2):395–407

    Article  CAS  PubMed  Google Scholar 

  5. Saito K et al (1974) Immunohistochemical localization of glutamate decarboxylase in rat cerebellum. Proc Natl Acad Sci U S A 71(2):269–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Walls AB et al (2011) Knockout of GAD65 has major impact on synaptic GABA synthesized from astrocyte-derived glutamine. J Cereb Blood Flow Metab 31(2):494–503

    Article  CAS  PubMed  Google Scholar 

  7. Rowley NM et al (2012) Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control. Neurochem Int 61(4):546–558

    Article  CAS  PubMed  Google Scholar 

  8. Balazs R et al (1970) The operation of the gamma-aminobutyrate bypath of the tricarboxylic acid cycle in brain tissue in vitro. Biochem J 116(3):445–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Patel AJ, Balazs R, Richter D (1970) Contribution of the GABA bypath to glucose oxidation, and the development of compartmentation in the brain. Nature 226(5251):1160–1161

    Article  CAS  PubMed  Google Scholar 

  10. Myles WS, Wood JD (1968) The effect of hyperbaric oxygen on the GABA shunt pathway in brain homogenates. Can J Physiol Pharmacol 46(4):669–671

    Article  CAS  PubMed  Google Scholar 

  11. Walsh JM, Clark JB (1976) Studies on the control of 4-aminobutyrate metabolism in “synaptosomal” and free rat brain mitochondria. Biochem J 160(2):147–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ravasz D et al (2017) Catabolism of GABA, succinic semialdehyde or gamma-hydroxybutyrate through the GABA shunt impair mitochondrial substrate-level phosphorylation. Neurochem Int 109:41–53

    Article  CAS  PubMed  Google Scholar 

  13. Salminen A et al (2016) Hypoxia and GABA shunt activation in the pathogenesis of Alzheimer’s disease. Neurochem Int 92:13–24

    Article  CAS  PubMed  Google Scholar 

  14. Parviz M et al (2014) Disorders of GABA metabolism: SSADH and GABA-transaminase deficiencies. J Pediatr Epilepsy 3(4):217–227

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation I. Kinetics of oxygen utilization. J Biol Chem 217(1):383–93

    Article  CAS  PubMed  Google Scholar 

  16. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  CAS  PubMed  Google Scholar 

  17. Vafai SB, Mootha VK (2012) Mitochondrial disorders as windows into an ancient organelle. Nature 491(7424):374–383

    Article  CAS  PubMed  Google Scholar 

  18. Kadenbach B (2003) Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochim Biophys Acta 1604(2):77–94

    Article  CAS  PubMed  Google Scholar 

  19. Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416(1):15–18

    Article  CAS  PubMed  Google Scholar 

  20. Havel PJ (2001) Peripheral signals conveying metabolic information to the brain: short-term and long-term regulation of food intake and energy homeostasis. Exp Biol Med (Maywood) 226(11):963–977

    Article  CAS  Google Scholar 

  21. Rutter J, Winge DR, Schiffman JD (2010) Succinate dehydrogenase - assembly, regulation and role in human disease. Mitochondrion 10(4):393–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mills E, O’Neill LA (2014) Succinate: a metabolic signal in inflammation. Trends Cell Biol 24(5):313–320

    Article  CAS  PubMed  Google Scholar 

  23. Benit P et al (2014) Unsuspected task for an old team: succinate, fumarate and other Krebs cycle acids in metabolic remodeling. Biochim Biophys Acta 1837(8):1330–1337

    Article  CAS  PubMed  Google Scholar 

  24. Tretter L, Patocs A, Chinopoulos C (2016) Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim Biophys Acta 1857(8):1086–1101

    Article  CAS  PubMed  Google Scholar 

  25. Dienel, G.A. 2012 Fueling and imaging brain activation. ASN Neuro 4(5)

  26. Schousboe A (2019) Metabolic signaling in the brain and the role of astrocytes in control of glutamate and GABA neurotransmission. Neurosci Lett 689:11–13

    Article  CAS  PubMed  Google Scholar 

  27. Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206(Pt 12):2049–2057

    Article  CAS  PubMed  Google Scholar 

  28. Santiago AP et al (2008) Reactive oxygen species generation is modulated by mitochondrial kinases: correlation with mitochondrial antioxidant peroxidases in rat tissues. Biochimie 90(10):1566–1577

    Article  CAS  PubMed  Google Scholar 

  29. da Silva WS et al (2004) Mitochondrial bound hexokinase activity as a preventive antioxidant defense: steady-state ADP formation as a regulatory mechanism of membrane potential and reactive oxygen species generation in mitochondria. J Biol Chem 279(38):39846–39855

    Article  Google Scholar 

  30. Camacho-Pereira J et al (2009) Reactive oxygen species production by potato tuber mitochondria is modulated by mitochondrially bound hexokinase activity. Plant Physiol 149(2):1099–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rodrigues-Ferreira C, da Silva AP, Galina A (2012) Effect of the antitumoral alkylating agent 3-bromopyruvate on mitochondrial respiration: role of mitochondrially bound hexokinase. J Bioenerg Biomembr 44(1):39–49

    Article  CAS  PubMed  Google Scholar 

  32. Cavalcanti-de-Albuquerque JP et al (2018) Mitochondria-bound hexokinase (mt-HK) activity differ in cortical and hypothalamic synaptosomes: differential role of mt-HK in H2O2 depuration. Mol Neurobiol 55(7):5889–5900

    Article  CAS  PubMed  Google Scholar 

  33. Hendry SH et al (1987) Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J Neurosci 7(5):1503–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Buzsaki G, Kaila K, Raichle M (2007) Inhibition and brain work. Neuron 56(5):771–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vincent SR, Hokfelt T, Wu JY (1982) GABA neuron systems in hypothalamus and the pituitary gland. Immunohistochemical demonstration using antibodies against glutamate decarboxylase. Neuroendocrinology 34(2):117–125

    Article  CAS  PubMed  Google Scholar 

  36. Decavel C, Van den Pol AN (1990) GABA: a dominant neurotransmitter in the hypothalamus. J Comp Neurol 302(4):1019–1037

    Article  CAS  PubMed  Google Scholar 

  37. Decavel C, van den Pol AN (1992) Converging GABA- and glutamate-immunoreactive axons make synaptic contact with identified hypothalamic neurosecretory neurons. J Comp Neurol 316(1):104–116

    Article  CAS  PubMed  Google Scholar 

  38. Dunkley PR, Jarvie PE, Robinson PJ (2008) A rapid Percoll gradient procedure for preparation of synaptosomes. Nat Protoc 3(11):1718–1728

    Article  CAS  PubMed  Google Scholar 

  39. Sims NR, Anderson MF (2008) Isolation of mitochondria from rat brain using Percoll density gradient centrifugation. Nat Protoc 3(7):1228–1239

    Article  CAS  PubMed  Google Scholar 

  40. Muller AP et al (2013) Insulin prevents mitochondrial generation of H(2)O(2) in rat brain. Exp Neurol 247:66–72

    Article  CAS  PubMed  Google Scholar 

  41. Gnaiger E (2009) Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology. Int J Biochem Cell Biol 41(10):1837–1845

    Article  CAS  PubMed  Google Scholar 

  42. Kurebayashi N, Kodama T, Ogawa Y (1980) P1, P5-Di(adenosine-5’)pentaphosphate(Ap5A) as an inhibitor of adenylate kinase in studies of fragmented sarcoplasmic reticulum from bullfrog skeletal muscle. J Biochem 88(3):871–876

    Article  CAS  PubMed  Google Scholar 

  43. Cavalcanti-de-Albuquerque JP et al (2014) Role of estrogen on skeletal muscle mitochondrial function in ovariectomized rats: a time course study in different fiber types. J Appl Physiol 116(7):779–789

    Article  CAS  PubMed  Google Scholar 

  44. de Souza Ferreira E et al (2019) Mitochondria-coupled glucose phosphorylation develops after birth to modulate H2 O2 release and calcium handling in rat brain. J Neurochem 149(5):624–640

    Article  Google Scholar 

  45. Johnson MK (1960) The intracellular distribution of glycolytic and other enzymes in rat-brain homogenates and mitochondrial preparations. Biochem J 77:610–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carbone S, Lavie CJ, Arena R (2017) Obesity and Heart Failure: focus on the obesity paradox. Mayo Clin Proc 92(2):266–279

    Article  PubMed  Google Scholar 

  47. Beattie DS, Sloan HR, Basford RE (1963) Brain mitochondria Ii. The relationship of brain mitochondria to glycolysis. J Cell Biol 19:309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wilson JE (1968) Brain hexokinase. A proposed relation between soluble-particulate distribution and activity in vivo. J Biol Chem 243(13):3640–3647

    Article  CAS  PubMed  Google Scholar 

  49. Crane RK, Sols A (1953) The association of hexokinase with particulate fractions of brain and other tissue homogenates. J Biol Chem 203(1):273–292

    Article  CAS  PubMed  Google Scholar 

  50. BeltrandelRio H, Wilson JE (1991) Hexokinase of rat brain mitochondria: relative importance of adenylate kinase and oxidative phosphorylation as sources of substrate ATP, and interaction with intramitochondrial compartments of ATP and ADP. Arch Biochem Biophys 286(1):183–194

    Article  CAS  PubMed  Google Scholar 

  51. BeltrandelRio H, Wilson JE (1992) Coordinated regulation of cerebral glycolytic and oxidative metabolism, mediated by mitochondrially bound hexokinase dependent on intramitochondrially generated ATP. Arch Biochem Biophys 296(2):667–677

    Article  CAS  PubMed  Google Scholar 

  52. BeltrandelRio H, Wilson JE (1992) Interaction of mitochondrially bound rat brain hexokinase with intramitochondrial compartments of ATP generated by oxidative phosphorylation and creatine kinase. Arch Biochem Biophys 299(1):116–124

    Article  CAS  PubMed  Google Scholar 

  53. de Cerqueira Cesar M, Wilson JE (1995) Application of a double isotopic labeling method to a study of the interaction of mitochondrially bound rat brain hexokinase with intramitochondrial compartments of ATP generated by oxidative phosphorylation. Arch Biochem Biophys 324(1):9–14

    Article  PubMed  Google Scholar 

  54. de Cerqueira Cesar M, Wilson JE (2002) Functional characteristics of hexokinase bound to the type a and type B sites of bovine brain mitochondria. Arch Biochem Biophys 397(1):106–112

    Article  PubMed  Google Scholar 

  55. Cesar Mde C, Wilson JE (1998) Further studies on the coupling of mitochondrially bound hexokinase to intramitochondrially compartmented ATP, generated by oxidative phosphorylation. Arch Biochem Biophys 350(1):109–117

    Article  PubMed  Google Scholar 

  56. Okur V et al (2019) De novo variants in HK1 associated with neurodevelopmental abnormalities and visual impairment. Eur J Hum Genet 27(7):1081–1089

    Article  PubMed  PubMed Central  Google Scholar 

  57. Asadi Shahmirzadi A et al (2020) Alpha-Ketoglutarate, an Endogenous Metabolite, Extends Lifespan and Compresses Morbidity in Aging Mice. Cell Metab 32(3):447–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zdzisinska B, Zurek A, Kandefer-Szerszen M (2017) Alpha-ketoglutarate as a molecule with pleiotropic activity: well-known and novel possibilities of therapeutic use. Arch Immunol Ther Exp (Warsz) 65(1):21–36

    Article  CAS  Google Scholar 

  59. Brugnara L et al (2012) Metabolomics approach for analyzing the effects of exercise in subjects with type 1 diabetes mellitus. PLoS One 7(7):e40600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Otto C, Yovkova V, Barth G (2011) Overproduction and secretion of alpha-ketoglutaric acid by microorganisms. Appl Microbiol Biotechnol 92(4):689–695

    Article  CAS  PubMed  Google Scholar 

  61. Michaeli S et al (2011) A mitochondrial GABA permease connects the GABA shunt and the TCA cycle, and is essential for normal carbon metabolism. Plant J 67(3):485–498

    Article  CAS  PubMed  Google Scholar 

  62. Brand MD, Chappell JB (1974) Permeability of mitochondria from rat brain and rat liver to GABA. J Neurochem 22(1):47–51

    Article  CAS  PubMed  Google Scholar 

  63. Lai JC, Cooper AJ (1986) Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors. J Neurochem 47(5):1376–1386

    Article  CAS  PubMed  Google Scholar 

  64. Brown MR, Sullivan PG, Geddes JW (2006) Synaptic mitochondria are more susceptible to Ca2+overload than nonsynaptic mitochondria. J Biol Chem 281(17):11658–11668

    Article  CAS  PubMed  Google Scholar 

  65. Krishnan H, Baquer NZ, Singh R (1981) Changes in gamma-aminobutyric acid-shunt enzymes in regions of rat brain with ketamine anaesthesia. Neuropharmacology 20(6):567–574

    Article  CAS  PubMed  Google Scholar 

  66. Gabellec MM et al (1980) Regional distributions of gamma-aminobutyric acid (GABA), glutamate decarboxylase (GAD), and gamma-aminobutyrate transaminase (GABA-T) in the central nervous brains of C57/BR, C3H/He, and F1 hybrid mice. Neurochem Res 5(3):309–317

    Article  CAS  PubMed  Google Scholar 

  67. Buerstatte CR et al (2000) Brain regional development of the activity of alpha-ketoglutarate dehydrogenase complex in the rat. Brain Res Dev Brain Res 125(1–2):139–145

    Article  CAS  PubMed  Google Scholar 

  68. Gronborg M et al (2010) Quantitative comparison of glutamatergic and GABAergic synaptic vesicles unveils selectivity for few proteins including MAL2, a novel synaptic vesicle protein. J Neurosci 30(1):2–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Boyken J et al (2013) Molecular profiling of synaptic vesicle docking sites reveals novel proteins but few differences between glutamatergic and GABAergic synapses. Neuron 78(2):285–297

    Article  CAS  PubMed  Google Scholar 

  70. Lassek M, Weingarten J, Volknandt W (2015) The synaptic proteome. Cell Tissue Res 359(1):255–265

    Article  CAS  PubMed  Google Scholar 

  71. Lassek M, Weingarten J, Volknandt W (2014) The Proteome of the Murine Presynaptic Active Zone. Proteomes 2(2):243–257

    Article  PubMed  PubMed Central  Google Scholar 

  72. Volknandt W, Karas M (2012) Proteomic analysis of the presynaptic active zone. Exp Brain Res 217(3–4):449–461

    Article  CAS  PubMed  Google Scholar 

  73. Xu Y et al (2021) Proteomic insights into synaptic signaling in the brain: the past, present and future. Mol Brain 14(1):37

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pedroso AP et al (2019) A proteomics-metabolomics approach indicates changes in hypothalamic glutamate-GABA metabolism of adult female rats submitted to intrauterine growth restriction. Eur J Nutr 58(8):3059–3068

    Article  CAS  PubMed  Google Scholar 

  75. Che-Othman MH et al (2020) Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress. New Phytol 225(3):1166–1180

    Article  CAS  PubMed  Google Scholar 

  76. Kratz SV (2009) Sensory integration intervention: historical concepts, treatment strategies and clinical experiences in three patients with succinic semialdehyde dehydrogenase (SSADH) deficiency. J Inherit Metab Dis 32(3):353–360

    Article  CAS  PubMed  Google Scholar 

  77. Kim KJ et al (2011) Succinic semialdehyde dehydrogenase: biochemical-molecular-clinical disease mechanisms, redox regulation, and functional significance. Antioxid Redox Signal 15(3):691–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Koenig MK et al (2017) Phenotype of GABA-transaminase deficiency. Neurology 88(20):1919–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hegde AU et al (2019) GABA Transaminase Deficiency With Survival Into Adulthood. J Child Neurol 34(4):216–220

    Article  PubMed  PubMed Central  Google Scholar 

  80. Schousboe A, Bak LK, Waagepetersen HS (2013) Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Front Endocrinol (Lausanne) 4:102

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Brazil; scholarship number 88887.335745/2019-00 to JPCA), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ/Brazil; grant number E-26/203.004/2017 to AG), Instituto Nacional de Ciência e Tecnologia-Excitotoxicidade e Neuroproteção (INCT-EN) and Conselho Nacional de Desenvolvimento Científico e Tecnológico.

Funding

João Paulo Cavalcanti-de-Albuquerque is currently supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Brazil; scholarship number 88887.335745/2019–00). Antonio Galina is a fellow from FAPERJ-CNE Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Cientista do Nosso Estado (grant numbers E-26/203.004/2017) and Instituto Nacional de Ciência e Tecnologia-Excitotoxicidade e Neuroproteção (INCT-EN). The study was supported by research grants from CNPq, FAPERJ and CAPES.

Author information

Authors and Affiliations

Authors

Contributions

JPCA—Responsible for the development, organization, execution and the writing of the study. ESF—Assisted in animal handling, oxygen consumption and in the hexokinase and citrate synthase activity experiments. DPC—Intellectual contribution. AG—Intellectual contribution and writing.

Corresponding authors

Correspondence to Joao Paulo Cavalcanti-de-Albuquerque or Antonio Galina.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethical Approval

The Rio de Janeiro Federal University Institutional Committee for Evaluation of Animal Use in Research (CEUA – CCS – IBCCF179) approved this study, which was in accordance with the International Guiding Principles for Biomedical Research Involving Animals (Geneva, Switzerland).

Consent to Participate

Not applicable.

Consent for Publication

The authors agree with the manuscript publication in case of acceptance.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavalcanti-de-Albuquerque, J.P., de-Souza-Ferreira, E., de Carvalho, D.P. et al. Coupling of GABA Metabolism to Mitochondrial Glucose Phosphorylation. Neurochem Res 47, 470–480 (2022). https://doi.org/10.1007/s11064-021-03463-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03463-2

Keywords

Navigation