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Abstract
Translating successful preclinical research in neurodegenerative diseases into clinical practice has been difficult. The pre-
clinical disease models used for testing new drugs not always appear predictive of the effects of the agents in the human 
disease state. Human induced pluripotent stem cells, obtained by reprogramming of adult somatic cells, represent a powerful 
system to study the molecular mechanisms of the disease onset and pathogenesis. However, these cells require a long time 
to differentiate into functional neural cells and the resetting of epigenetic information during reprogramming, might miss 
the information imparted by age. On the contrary, the direct conversion of somatic cells to neuronal cells is much faster and 
more efficient, it is safer for cell therapy and allows to preserve the signatures of donors’ age. Direct reprogramming can be 
induced by lineage-specific transcription factors or chemical cocktails and represents a powerful tool for modeling neuro-
logical diseases and for regenerative medicine. In this Commentary we present and discuss strength and weakness of several 
strategies for the direct cellular reprogramming from somatic cells to generate human brain cells which maintain age‐related 
features. In particular, we describe and discuss chemical strategy for cellular reprogramming as it represents a valuable tool 
for many applications such as aged brain modeling, drug screening and personalized medicine.

Commentary

Adult cells are believed to maintain their differentiated status 
under stable homeostatic conditions, while cellular identity 
can become plastic when homeostasis is perturbed such as 
during an injury and inflammation [1]. Indeed, it is now 
evident that cell identity is more flexible and plastic than 
previously thought. In particular, recent studies have shown 
that it is possible to influence cell fate through artificial 
manipulation such as exogenous expression of a set of tran-
scription factors (TFs) that results in the reprogramming of 
adult skin fibroblasts to a pluripotent state [2]. In addition, 
recent reports have demonstrated that one type of differenti-
ated somatic cell can be directly reprogrammed to another 
type of cell, without rejuvenation to a pluripotent state, in a 
process called transdifferentiation [3, 4]. Transdifferentiation 
is an epigenetic acquisition by a cell of a given type of the 

properties and features of another cell type, loosing its own 
phenotype [5].

Adult brain has very limited regeneration capability, thus, 
the possibility of a direct neuronal reprogramming from non-
neuronal cells, bypassing a pluripotent state, would induce 
the formation of precious neuronal cells. This direct cellular 
generation thus represents a potential remedy for neuronal 
loss caused by brain injuries or neurodegeneration. In addi-
tion, the direct conversion of patient-specific cells could 
be used to implement disease-relevant in vitro platforms to 
generate models for neurodegenerative diseases, identify tar-
gets, and screen potential therapeutic drugs. Indeed, 100s of 
millions of people worldwide are affected by neurological 
disorders, making them one of the greatest threats to public 
health.

This Commentary discusses current knowledge on direct 
reprogramming towards neuronal cell identity, and more 
specifically, recent advances in transdifferentiation medi-
ated by the exclusive use of chemical cocktails, remarking 
advantages and limits. To our opinion, direct reprogramming 
approaches represent an innovative strategy to overcome 
major barrier of the inaccessibility of human brain to obtain 
human neurons for studies of pathological mechanisms of 
diseases (Fig. 1). Moreover, directly converted induced 
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neurons (iNs) from human donor-derived fibroblasts pos-
sess important features of cellular aging, including global 
transcriptomic changes, nuclear pore defects, and DNA 
methylation, rendering them a valuable tool for the study 
of age-related neurological diseases [3, 6–8]. The impor-
tance of age preservation for disease modeling was recently 
illustrated also in Hungtington’s disease where aggregation 
of the disease-causing mutant Huntingtin protein can be 
recapitulated in directly converted striatal neurons but not 
in neurons derived-iPSC, probably linked to the erasure of 
age signatures [9].

Among the various strategies to obtain direct reprogram-
ming, ectopic expression of TFs in non-neuronal cells has 
generated neurons and neural progenitors both in vitro and in 
vivo [10–26]. Direct conversion by TFs stands on their abil-
ity to bind to inaccessible neuronal genes in differentiated 
non‐neuronal cell types which are generally called as pio-
neer TFs (Fig. 1).

The first direct conversion strategy was achieved by the 
overexpression of the three TFs, namely Ascl1, Brn2, and 
Myt1l (BAM factors), in mouse fibroblasts [27], and was 
then extended to BAM with NeuroD1 to convert human 
fibroblasts to iNs with a similar efficacy [28]. Recently, it has 
been suggested that a huge variety of TF combinations can 
be applied to generate subtype‐specific iNs from fibroblasts 
(Table 1) and TF screening studies for iN conversion have 
led to the identification of additional pro‐neuronal factors, 
such as Brn3a/b/c, Brn4s, and Ezh2 [29, 30]. Particularly 
interesting appear the recent advances in direct neuronal 
reprogramming in various defects linked to genetic altera-
tions and ageing such as diabetic retinopathies, glaucoma, 
and macular degeneration that cause the death of retinal 
neurons and profound vision loss [31]. Indeed, Lu et al. pre-
sent evidence that the ectopic expression of OCT4, SOX2 
and KLF4 (OSK) TFs safely restores in vivo youthful DNA 
methylation patterns and transcriptomes of aged retinal 

Fig. 1   Advantages and disad-
vantages of direct reprogram-
ming using different exogenous 
factors
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ganglion cells and propose that epigenetic reprogramming, 
either by gene therapy or other means, may promote tissue 
repair and thus, may be a promising strategy for reverting 
age-related decline and aged-induced pathologies in humans 
[32].

More interestingly, TFs and endogenous genes vital to 
the transdifferentiation process can be specifically targeted 
and silenced or upregulated, using methods that focus on 
the direct manipulation of DNA or the epigenetic environ-
ment, such as CRISPR/Cas9 [33, 34]. Moreover, the abil-
ity to drive direct reprogramming is not limited to TFs, as 
non-coding RNAs can promote it as well [35, 36]. In addi-
tion, the culture conditions, including increased time in cul-
ture and developing coculture with astrocytes, may have an 

impact in terms of both phenotypic fate and efficiency of 
reprogramming.

The use of viral vectors to introduce exogenous transgenes 
into cells is currently the most prominent method to induce 
transdifferentiation. Generally, lentiviruses and retroviruses 
are mostly used due to their ability to effectively integrate 
directly into the genome of the host cell and confer a proper 
level of TF expression. However, viral delivery of TFs pos-
sesses undesirable side effects, including possible mutations 
leading to oncogenesis, thus posing problems for possible 
clinical trial application. That is the reason why non-inte-
grating vectors have been developed, although associated 
with lower efficiencies of transdifferentiation, including: cer-
tain serotypes of AAVs reported to successfully cross the 

Table 1   A summary of recent in vitro strategies discussed in this Commentary for direct reprogramming, focusing on chemicals, using human 
cells

Cell source Direct conversion strategy Type of neurons Methods PROS/CONS Citations

Fibroblasts BAM + LMX1a, FOXA2 GLUT + DOPA Viral vector, health concern [10]
BAM + NEUROD1 GLUT Viral vector, health concern [28]
ASCL1, NGN2 GLUT, GABA, DOPA Viral vector and chemicals

High efficiency
Health concern

[3, 8, 11, 12, 53, 57]

Chemical cocktail Valporic 
acid, Forskolin, Repsox, 
CHIR99021, SP600125, 
GO6983, Y-27632

GLUT Only chemical compounds
Low efficiency, no health 

concern

[49]

miRNA 9/9*, miRNA 124 ISL1 
and LHX3

Motor neurons Viral vector, health concern [35]

miRNA 9/9*, miRNA 
124 + TFs (BCL11B, DLX1, 
DLX2, and MYT1L)

Striatal medium spiny neurons Viral vector, health concern [36]

Retinal Müller cells OCT4, SOX2, KLF4 Retinal neurons with regenera-
tion abilitites and recovered 
youthful epigenetic informa-
tion

Viral vector, health concern [32]

Blood cells BAM + NGN2 GLUT, GABA Viral vector, health concern [13]
Nasal olfactory cells Chemical and growth fac-

tor cocktail BDNF, GDNF, 
ascorbic acid, cyclic 
AMP, CHIR99021, NT3, 
LDN-193189 Noggin, and 
SB-431542

DOPA Only chemical compounds
Not working on fibroblasts
No health concern,
Possible application in cell 

transplants

[60]

Glia cells Chemical cocktail LDN193189, 
SB431542, TTNPB, Tzv, 
CHIR99021, DAPT, VPA, 
SAG, and Purmo

Mainly GLUT, few GABA Only chemical compounds
No health concern,
Works only with glia from brain 

not spinal cord
Fetal human cells, ethical 

concern

[50]

Chemical cocktail VPA, 
CHIR99021, Repsox, Forsko-
lin, i-Bet151, and ISX-9

GLUT Only chemical compounds
No health concern,
Adult glia cells, no ethical 

concern

[51]

Chemical cocktail SB431542, 
LDN193189, CHIR99021, 
and DAPT

GLUT Only chemical compounds
No health concern
Fetal human cells, ethical 

concern

[73]
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blood–brain barrier, Sendai virus, plasmid vectors, minicir-
cles, and mRNA vectors which remain in the cytoplasm 
where they are translated into proteins [37–39]. Alternative 
non-viral methods, such as transient transfection and elec-
troporation (for retina [40, 41], for brain [42–44]) can also 
be applied. However, due to their low efficiency, transgene 
silencing, inflammation and poor nuclear uptake, are less 
commonly used in transdifferentiation studies [45]. Lately, 
the use of neural exosomes [46] and the protein transduction 
domains (PTDs) fused to TFs allow the direct delivery of 
exogenous TFs avoiding the problems associated with DNA 
integration into the host genome [47] opening up new strate-
gies for possible clinical applications.

Besides TFs, small molecules, modulating specific targets 
and epigenetic mechanisms, have been used to produce neu-
ral progenitors [48] and neurons [49–51] in in vitro cultures 
(Fig. 1). Small molecules can be applied in combination 
with viral agent-mediated TF delivery to improve the repro-
gramming efficiency [52–57] although, chemical reprogram-
ming alone can be easily administrated and converted into 
therapeutic intervention. In the last years, several groups 
have identified combinations of small molecules capable of 
transdifferentiating somatic cells such as fibroblasts, astro-
cytes and even glioblastoma cells into neurons [48–51, 54, 
58] (Table 1). Small molecules can convert human astrocytes 
or fibroblasts into functional neurons (chemical induced 
Neurons, ciNs), with a yield of up to 85% neurons from fetal 
and adult astrocytes [50, 51], which is lower from human 
fibroblasts, with an efficiency of no more than 15% [49]. For 
sure, fibroblasts are better starting cells for direct neuronal 
reprogramming because of easier access for acquisition than 
astrocytes, although their lower reprogramming efficiency 
to neurons needs to be increased for broader application in 
neurological diseases. For example, Yang et al. reported 
that human fibroblasts can be efficiently and directly repro-
grammed into glutamatergic neurons by serially exposing 
cells to a combination of twelve small molecules [59]. These 
ciNs displayed neuronal transcriptional networks, and also 
exhibited mature firing patterns and formed functional syn-
apses. Although many reports have demonstrated that small 
molecules can convert one type of terminally differentiated 
somatic cell to another fully differentiated cell type, there 
are still various major aspects ahead that must be overcome. 
Indeed, protocols using small molecules produce mainly glu-
tamatergic subtypes with rare gabaergic and dopaminergic 
neurons (Table 1). The inability to produce the neuronal sub-
types which are lost in neurodegenerative disorders like Par-
kinson’s disease, Alzheimer’s disease, Amyotrophic Lateral 
Sclerosis, Huntingdon’s disease represents a major limitation 
in current small molecules transdifferentiation field. How-
ever, it was showed that a single TF such as ASCL1, using 
a novel protein intracellular delivery technology, in combi-
nation with the small molecules LDN193189, SB431542, 

DAPT and valproic acid can rapidly reprogram astrocytes 
into mature GABAergic and glutamatergic interneurons with 
high efficiency [47]. Moreover, Chabrat et al. developed a 
novel in vitro model of dopaminergic-like neurons derived 
from human nasal olfactory stem cells through a six step 
transdifferentiation protocol based on a specific combina-
tion of signaling pathway modulators [60]. Indeed, chemical 
cocktails offer the possibility of fine-tuning their effects by 
altering their concentrations and combinations. Thus, it is 
reasonable to envisage that by performing screening assays 
with different small molecules combinations, for example 
exploiting microfluidic and chip technology, along with 
slight modifications of the chemical recipe, depending on 
the starting somatic cell, it would be possible to achieve 
higher efficiency and additional neuronal lineages.

The main disadvantages of transdifferentiation by chemi-
cal approach to generate brain cells with specific properties 
consist in a low efficiency, a mixed population of neurons 
with different degrees of maturity and a unique subtype of 
neurons, although capable to maintain the age-related fea-
tures associated with the human pathology (Fig. 1). In this 
respect, it is noteworthy that generation of neurons by direct 
reprogramming with age and pathology memory, would be 
important for disease modeling and drug screening studies 
but would represent a limit for autologous cell transplanta-
tion due to the preservation of the pathological features.

Forced expression of exogenous TFs for the direct repro-
gramming is supposed to damage proper epigenetic marks 
and genome integrity, whereas chemical compound-based 
conversion should be milder, leading to a better conservation 
of the ageing conditions. Thus, we believe that the chemical 
strategy may represent a new valid method for generating 
cells for both basic research and clinical applications. It is 
important to consider that the rapid metabolic transition that 
takes place during the fate switch from somatic cell to neu-
ron puts enormous stress on the cell, leading to the formation 
of reactive oxygen species (ROS), known to induce toxicity 
and affect cell fate regulation, representing a major barrier 
to transdifferentiation [61]. For this reason an intermediate 
stage of reprogramming would reduce this oxidative stress, 
promoting a safer transition between cell fates and improv-
ing efficiency [21]. In this respect, the generation of neural 
stem or progenitor cells (NPCs) from other somatic cells, 
can largely improve the efficiency of the protocol since each 
neural stem cell can produce several neurons.

Small molecules can also facilitate the approach of Cell 
Activation and Signaling-Directed (CASD) reprogram-
ming, which leads cells into an epigenetically activated 
transition state (cell activation) that, in conjunction with 
lineage-specific signals (signaling-directed), reprograms 
somatic cells into NPCs [62–66]. In this respect, Zhu et al. 
demonstrated that a single gene, Oct4, in conjunction with 
a chemical cocktail containing CHIR99021, A-83-01, 
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NaB, LPA, rolipram, and SP600125 was sufficient to con-
vert human fibroblasts into expandable NPCs [67].

The most exciting perspective of direct reprogramming 
is the possibility that it might be achievable in patients 
in vivo [68–70]. Performing in vivo transdifferentiation 
would eliminate the need for cell transplantation and 
immunosuppression depending on the target application. 
However, potential adverse effects of direct reprogram-
ming in vivo could include inappropriate differentiation 
into other cell types or even tumor cells. In addition, 
induced cells could be dysfunctional and detrimental to 
the brain structure. On the other hand, implantation of 
patient-derived midbrain dopaminergic progenitor cells, 
differentiated in vitro from autologous iPSCs, was suc-
cesfull to stabilize/improve symptoms of PD without the 
need for immunosuppression [71].

In animal models, transdifferentiation in vivo is now 
currently feasible, revealing the important role of resident 
glial cells in the generation of specific neurons to restore 
lost neuronal circuitries. For example, reactive astro-
cytes and NG2 cells can be directly reprogrammed into 
functional neurons inside mouse brain with the expres-
sion of a single neural TF, NEUROD1 [19]. Other TFs, 
such as neurogenin 2 (NGN2), ASCL1, and SOX2, have 
also been reported to reprogram glial cells into neurons 
both in vitro and in vivo [72].

Unfortunately, so far, in vivo studies to induce chemi-
cal transdifferentiation accomplished only with small mol-
ecules resulted either in promoting only an increase in 
adult brain neurogenesis [73] or reprogramming of mouse 
astrocytes into scattered functional mature neurons with 
electrophysiological characteristics and integration with 
resident neurons in the brain [74]. In complex, current 
in vivo studies although appealing are still superficial 
and limited to confirm reprogrammed cell capabilities, 
cell survival and integration and a more extensive testing 
in animal models is necessary before finding a clinical 
application.

In conclusion, over the past years, several strategies for 
direct cellular reprogramming have been developed to gener-
ate brain cells with age‐preserved features rendering them 
a valuable tool for many applications such as aged brain 
modeling and age‐related diseases.

Although transdifferentiation methods, due to the low 
efficiency, are quite limited, there is ongoing research 
that aims at improving this limit specially with the advent 
of in situ transdifferentiation, and with the emergence of 
CRISPR/Cas9 system as an alternative to TF overexpression 
methods. In addition, although some disadvantages need to 
be overcome, transdifferentiation by chemical reprogram-
ming remains an important tool not only in vitro for disease 
modeling, new biomarkers discovery and drug screening, but 
also for future possible application in regenerative medicine.
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