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Abstract
Cellular homeostasis plays a critical role in how an organism will develop and age. Disruption of this fragile equilibrium is 
often associated with health degradation and ultimately, death. Reactive oxygen species (ROS) have been closely associated 
with health decline and neurological disorders, such as Alzheimer’s disease or Parkinson’s disease. ROS were first identified 
as by-products of the cellular activity, mainly mitochondrial respiration, and their high reactivity is linked to a disruption of 
macromolecules such as proteins, lipids and DNA. More recent research suggests more complex function of ROS, reaching 
far beyond the cellular dysfunction. ROS are active actors in most of the signaling cascades involved in cell development, 
proliferation and survival, constituting important second messengers. In the brain, their impact on neurons and astrocytes 
has been associated with synaptic plasticity and neuron survival. This review provides an overview of ROS function in cell 
signaling in the context of aging and degeneration in the brain and guarding the fragile balance between health and disease.
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Introduction

The cellular functions rely on a variety of extracellular 
signals and intracellular signaling that function in concert 
to maintain cellular homeostasis. Most, if not all, cellular 
processes require considerable energy. Mitochondria are 
known to fulfill this crucial role, producing the majority of 
the energy supporting cell growth and homeostasis. How-
ever, the dark side of energy production is the formation of 
reactive oxygen species (ROS) as a by-product by the mito-
chondria’s electron transport chain [1]. Until recently, ROS 
were essentially considered to be responsible for significant 
cellular damages [2], causing premature aging and neurode-
generative disorders. Since the 1950s and Harman’s Free-
radical theory of aging [3], a compelling amount of research 
has investigated how ROS and reactive nitrogen species 
(RNS) influence disease progression. However, this theory is 

now being challenged on the basis of considerable evidence 
suggesting that ROS can act as second messengers. Fur-
thermore, antioxidants that purportedly should antagonize 
the putative oxidative damage produced ROS have largely 
been ineffective in preventing disorders in which ROS are 
the considered as being the cause [4–7]. It is clear that ROS 
have complex influences on the cells, depending on their 
concentration. While their role in macromolecular damage 
and cell death upon loss of redox homeostasis is still a valid 
model, a mild increase of reactive species triggers various 
cellular signaling cascades that allow cell growth and sur-
vival [8–10]. Recently the concept of hormesis (which can 
also be dubbed “what does not kill you makes you stronger”) 
has been applied to ROS. Indeed, a contained production of 
these reactive species promotes stress resistance and lon-
gevity in model organisms such as Caenorhabditis elegans 
[11–13], Drosophila melanogaster [14, 15] and rodents [16].

Nature of Reactive Species

ROS are, by definition, chemical molecules containing one 
oxygen atom that, through cellular and extracellular reac-
tions become more reactive than oxygen itself. Reactive spe-
cies are present in both radical, with and unpaired electron, 
and non-radical form. An example of ROS is the superoxide 
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anion  (O2
•−) produced as a by-product of the mitochondrial 

respiration and NADPH oxidase activity. Other ROS include 
the hydroxyl radicals  (OH•) and hydrogen peroxide  (H2O2) 
a non-radical species. Another group is called RNS. Nitric 
oxide  (NO•) is produced from l-arginine, by nitric oxide 
synthase (NOS) and acts a potent second messenger. NO 
promotes glycolytic metabolism by inhibiting mitochondrial 
respiration through cytochrome c oxidase and increased 
AMPK phosphorylation [17, 18]. In parallel,  NO•− inter-
acts with superoxide  (O2

•−) to form peroxynitrite  (ONOO•−) 
a highly reactive molecule capable of protein nitrosylation 
and target glutathione, a critical non-enzymatic antioxidant 
[17, 18].

Sources of Reactive species

Reactive species originate from two primary sources. ROS 
can either be released as by-products of oxidative metab-
olism, mainly through mitochondrial respiration or pro-
duced during cellular response to xenobiotics or cytokines 
released as part of a defense mechanism [19, 20] (Fig. 1). 
Energy production by the mitochondrial electron transport 
chain accounts for the majority of ROS in the cell. This 
leak of protons, originating from the oxidation of NADH 
and  FADH2, at the complexes I (NADH dehydrogenase) 
and III (coenzyme Q and cytochrome c oxidoreductase) 

Fig. 1  Schematic representation of the impact of ROS on cellular 
physiology. Low and Mild ROS level have a large impact on cell 
signaling, promoting activation of growth signals and kinases (Erk-
1/2, PI3K, ATF4 and mTOR) and the transcription of pro-survival 
(Nrf2, PGC1α) factors. This interactive signaling culminates in the 
increased expression of antioxidant enzyme (SOD, CAT, GST), the 

effectors of the survival response. However, increased concentration 
of ROS disrupt cell signaling and activate pro-apoptotic signals in 
the mitochondria, as well as lipid peroxidation, protein oxidation and 
DNA damage. The accumulation of macromolecules and cell damage 
leads to a wide range of disorders and is associated with accelerate 
aging
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[21, 22] of the electron transport chain, produce a reduced 
oxygen ion known as superoxide  (O2

•−) [1].
The second primary source of ROS is the enzyme 

complex Nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase. Mammals possess seven NADPH oxi-
dases (NOX1–5 and DUOX1–2) that produce ROS in the 
cytoplasm in response to a variety to stimuli. Initially identi-
fied in neutrophils, NADPH oxidase is a membrane-associ-
ated enzymatic complex involved in cellular signaling and 
disease through ROS production in the cytoplasm. Various 
ligands like TNFα, angiotensin II, PDGF and EGF [23–26] 
have been associated to NOX-mediated ROS production 
in response to cellular stimuli such as pathogen invasion, 
inflammation, growth factors and calcium signaling [27–29]. 
The complexes produce superoxide radicals and hydrogen 
peroxide, the latter being more stable and capable of dif-
fusing through the cell membrane [30]. Another significant 
source of reactive species is the NOS. Present in different 
isoforms, these complexes are found as a constitutive form 
in neurons (nNOS or NOS1), as an inducible isoform in glial 
cells (iNOS or NOS2) and in the endothelial tissue (eNOS 
or NOS3). NOS produce nitric oxide (NO) that shapes the 
metabolic profile of the cell by inhibiting the mitochondrial 
respiration via inhibition of its complex IV (cytochrome c 
oxidase) and promoting glycolytic activity [31]. However, 
as mentioned previously,  NO•− also reacts with  O2

•− to pro-
duce peroxynitrite  (ONOO•−) a reactive specie involved in 
protein nitration, lipid peroxidation, and DNA damage. In 
addition of the mitochondria, NOS and NOX, other endog-
enous, and exogenous, sources have been linked to ROS 
production, such as the xanthine oxidase, cyclooxygenase, 
lipoxygenase and the cytochrome P450 [32–35], summa-
rized in Table 1.

Antioxidant Mechanisms

Reactive species concentration need to be maintained at a 
low level to guarantee a proper cellular environment [36]; 
mechanisms that ensure antioxidant homeostasis are highly 
conserved across different species, from the simplest bac-
teria to humans. The endogenous antioxidant defense is 
composed of enzymatic and non-enzymatic factors. While 
the most reactive and toxic form of ROS is the superoxide 
radical  (O2

•−), its half-life is relatively short, and it does 
not diffuse far from the site of production. However, super-
oxide is quickly converted to hydrogen peroxide  (H2O2), a 
more stable form of ROS that can diffuse through mem-
branes. This conversion is mediated by superoxide dismutase 
(SOD). SODs come in three isoforms, located in different 
compartments. SOD1 (CuSOD) is mainly cytoplasmic, 
SOD2 (MnSOD) is located in the mitochondria and SOD3 
(CuSOD) is an extracellular isoform. Loss of SOD is associ-
ated with an increased level of cellular damage such as lipid 
peroxidation and protein carbonylation. Mutations in SOD1 
are also associated to familial cases of Amyotrophic Lateral 
Sclerosis (ALS), a devastating neurodegenerative disorder 
[37]. Although a high concentration of  H2O2 in the cell can 
trigger cell death, a low concentration has been linked to sev-
eral cellular processes related to cell development, growth 
and survival (see section “ROS Impact on Cell Signaling”). 
Accumulation of hydrogen peroxide is mainly limited by the 
activity of other types of enzymes, such as glutathione per-
oxidase (GPx) and catalases, active in the cytoplasm and the 
peroxisome respectively. The end-products of these enzymes 
are water and oxygen. The third ROS converted from  H2O2, 
is the Hydroxyl radical  (OH•), extremely active and oxidiz-
ing for lipids, proteins, and DNA [38–40].

Non-enzymatic antioxidants are molecules characterized 
by their capacity to inactivate reactive species quickly. The 
most common is glutathione (GSH), involved in both non-
enzymatically reduction of ROS as well as being a cofactor 
in the glutathione peroxidase reduction of peroxides. The 

Table 1  Summary of the primary source of ROS

Source of ROS Response stimuli Pathway complexes Main ROS

Mitochondria Oxidative metabolism Electron transport chain, NADH O2
•−

NADPH oxidase Inflammation NAPDH O2
•−

Xanthine oxidase Purine catabolism O2 O2
•−

Nitric oxide synthase Synaptic activity, inflammation, hypoxia NADPH NO, OONO
Peroxisomes Lipid metabolism (β-oxidation) NADH, NADPH,  FADH2 H2O2,  O2

•−

Cytochrome P450 Clearance of various compounds (hormones, lipids, 
xenobiotics)

NADPH O2
•−

Lipoxygenases Arachidonic Acid (PUFA) metabolism O2 O2
•−

Exogenous stress Direct peroxidation, increased NOS, DNA damage UV, environmental toxins, drugs O2
•−,  ONOO•−,  H2O2
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other primary non-enzymatic antioxidants include metal-
binding proteins (albumin, ferritin, myoglobin, and trans-
ferrin) able to scavenge free radicals and metals [41–43], 
and coenzyme Q, a membrane-associated electron carrier 
involved in electron transfer capable of sustaining significant 
redox changes [44].

In parallel to the endogenous defense system, natural 
compounds like the flavonoids, polyphenols (flavonoids, 
phenolic acids), ascorbic acid (vitamin C) or α-tocopherol 
have antioxidant capacities that are important to ensure ade-
quate protection against reactive species [45, 46].

ROS Impact on Cell Signaling

At physiological concentrations, ROS have a broad spectrum 
of roles in signaling as second messengers, with a significant 
influence on physiological responses (Fig. 1). Several growth 
factors have been associated with an increase of ROS. Multi-
ple external stimuli, including tumor necrosis factor- (TNF-), 
growth factors (PDGF, EGF) and cytokines, stimulate the 
formation of ROS. The main mechanism underlying ROS 
signaling is the oxidation of thiol (-SH) group on cysteine 
residues, an amino acid with a low pKa [47]. This revers-
ible action regulates post-translational modification, altera-
tion of protein activity, and relocation in a different cellular 
compartment.

ROS have been associated with an increased mitogen-
activated protein kinases (MAPK) activity [48–50], either 
through activation of tyrosine kinases or oxidation–reduc-
tion of cysteine residues. MAPK are composed of three 
kinases playing a pivotal role relaying extracellular signals 
with important outcomes on cell growth, differentiation, 
development, cell cycle, survival, and cell death [51–53] The 
main MAPK pathways consist of extracellular signal-related 
kinases (ERK1/2), the c-Jun N-terminal kinases (JNK), the 
p38 kinase (p38). These serine/threonine kinases are acti-
vated by external stimuli (see above) or by environmental 
stress [54–57]. ROS influence other tyrosine phosphatases 
(PTP) and kinases (PK) that are sensitive to redox changes. 
These include PTEN, phosphatidylinositide 3-kinase 
(PI3K), AKT, and mTOR [58]. The PI3K–AKT axis plays 
an important role in cell growth, survival, and protein syn-
thesis. Upon its activation by growth factors (EGF, PDGF) 
[8], PI3K promotes, and is influenced, by ROS production 
through NOX and mitochondrial activity, while ROS inac-
tivate phosphatase PTEN [59, 60], PI3K’s primary inhibi-
tor. Recently, the emergence of proteomic approaches has 
allowed identification of over 500 proteins sensitive to redox 
state, thereby demonstrating ROS capacity to deeply modu-
late cell activity [61].

ROS also impact the activity of important growth and 
metabolism-related transcription factors, sensitive to redox 

changes. The list includes, but is not limited to, Hypoxia 
Inducible Factor 1α (HIF-1α), NF-kB, Heat Shock Factor 
1 (HSF1), p53 and nuclear factor erythroid 2-related factor 
2 (Nrf2) [9, 10, 62]. Nrf2 and Kelch-like ECH-associated 
protein 1 (Keap1) are associated in the cytosol, promoting 
ubiquitination of Nrf2 and its degradation by the protea-
some [63, 64]. However, ROS induce the oxidation of key 
reactive cysteine on Keap1, promoting the dissociation 
of Keap1-Nrf2, allowing translocation of the latter to the 
nucleus. There, Nrf2 engages with antioxidant response ele-
ments (ARE) and on the promoter region of antioxidant fac-
tors such as the Glutathione S-transferase (GST), leading to 
increased resistance to oxidative stress [65]. Overall, at low 
or moderate concentrations ROS play a role in signal trans-
duction. They influence a variety of cellular pathways with a 
crucial impact on cell physiology, metabolism, and survival.

Impact of Reactive Species on the Brain

The brain and, more specifically, neurons are susceptible to 
oxidative damage because of the high content of lipids and 
the heavy oxidative metabolism on which they rely [66]. 
Oxidative damages, through an accumulation of misfolded 
proteins and loss of antioxidant defenses, have been associ-
ated with the aging-mediated loss of functions [67] and neu-
rodegenerative disorders such as Alzheimer’s disease (AD) 
and Parkinson’s disease (PD) [68].

In the brain, the different cell types are not equal regard-
ing their resistance to oxidative stress. Thus glial cells, like 
astrocytes, are more resilient to oxidative insults, compared 
to neurons [18]. Similarly, neurons in different anatomical 
regions also display variability in their capacity to scavenge 
reactive species. Neurons in the amygdala, the hippocam-
pus, and cerebellar granules cells appear to be the most 
sensitive [69, 70]. This sensitivity, compared to astrocytes 
for example, is also due to a low expression of antioxidant 
mechanisms [71]. Astrocytes synthetize most of the GSH 
content in the brain, express transcription factors such as 
Nrf2, at higher levels than neurons [72, 73] and clear ROS 
more efficiently [71]. Astrocytes release GSH that is either 
hydrolyzed to cysteine and used as a source for new GSH 
molecules in neurons via the γ-glutamate-cysteine ligase 
catalytic (Gclc) and modifier (Gclm) subunits and build 
antioxidant defense of their own [74–76]. There are several 
evidences supporting the role of astrocytes in organizing 
the antioxidant response through the release of cofactors or 
energy substrates to support neurons metabolism and syn-
aptic activity [77–79]. Recently, some disputed work has 
shown that mild oxidative stress was able to stimulate astro-
cytes’ antioxidant defense through translocation of Nrf2, and 
promote neuronal survival [80, 81] but also that astrocytic 
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ROS influence neuronal metabolism and improve survival 
[80, 82].

At synapses ROS are associated to long-term potentiation 
(LTP), to modulate plasticity and memory [83–85]. LTP is 
produced through high-frequency signals (HSF) resulting 
in activation of glutamate-activated N-methyl-d-aspartate 
(NMDA) receptors (NMDAR) permeable to calcium  (Ca2+). 
 Ca2+ entry triggers ROS production by the mitochondria 
[86] but also promotes nNOS activity [87, 88] through its 
binding to calmodulin leading to the formation of nitric 
oxide  (NO•−). NO acts as a neurotransmitter, associated with 
synaptic plasticity and synaptic activity regulation through 
protein S-nitrosylation [89–95]. In astrocytes, induction of 
NOS2 is  Ca2+ independent and can be triggered by exter-
nal stimuli such as inflammation (LPS, TNFα, cytokines, 
Interferon-γ). Interestingly, NOS activity differs between 
neurons and astrocytes. NO synthetized in glial cells stimu-
lates glycolytic function, while it does not induce a similar 
effect in neurons, despite similar capacity to inhibit mito-
chondrial respiration [96]. Besides direct synaptic regu-
lation, ROS modulate the activity of a variety of protein 
kinases such as ERK, CAMKII, PKA, PKC involved LTP 
through transcriptional changes and increased number of 
glutamate (AMPA) transporters [97]. Manipulations aiming 
to reduce ROS production limit or abrogate LTP, strength-
ening the view that ROS have a signaling role in the brain 
[98–100].

The Role of Reactive Species in the Periphery

Immune cells like macrophages and neutrophils release oxy-
gen radicals upon phagocytic activity, potentially leading to 
tissue damage, yet these immune cells also are endowed with 
a high antioxidant capacity ROS are required for both innate 
and adaptive immune mechanisms [101, 102]. Reactive spe-
cies are necessary for Lipopolysaccharide (LPS)-mediated 
activation of Toll-like receptor, leading to the production 
of pro-inflammatory cytokines [103]. Similarly, ROS can 
activate and maintain activation of lymphocytes (B and T) 
involved in the adaptive immune system, participating in its 
fine regulation. Furthermore, recent work has shown that 
the use of antioxidant can reverse these effects, leading to a 
deactivation of the immune system [104, 105].

In muscle cells, ROS play an essential role in contraction 
and adaptation to repetitive efforts [106]. As in other cell 
types, mitochondria are central for ROS formation; how-
ever in muscle cells, also NOX contributes significantly to 
reactive species formation both at rest and during exercise 
[107–110], resulting in particular in cell biogenesis through 
activation of peroxisome proliferator-activated receptor-
g coactivator-1α (PGC-1α) [111]. However, excess levels 
of ROS induce a loss of contractile power that translates 

into muscle weakness and fatigue [112, 113]. The primary 
cellular mechanism involves the sustained activation of 
NF-kB and FoxO, leading to transcription of a degradation-
related protein such as C/EBP homology protein (CHOP) 
[114–116]. Regular activity, however, can promote adapta-
tion and increase muscle capacities (section “Beyond ROS 
Reactive Behavior”).

Reactive Species in Aging and Disease

The principal harmful effect of ROS is observed during 
aging where a disequilibrium of the redox state is observed. 
With aging, neuronal metabolism is impaired, mainly 
through mitochondrial decay, resulting in decreased ATP 
and  NAD+ production [117, 118]. This decrease, together 
with a failure in antioxidant defense mechanisms [119] leads 
to a rise in intracellular ROS-mediated dysfunction [120, 
121]. Considerable evidence has demonstrated increased 
ROS levels in the nervous system of animal models of Alz-
heimer and Parkinson diseases or Amyotrophic Lateral Scle-
rosis [122–124]. Upon disruption of the redox homeostasis, 
ROS cause protein degradation [125–127], DNA damage 
[128, 129] and lipid peroxidation [130] (Fig. 1).

Accumulation of damage on macromolecules leads to 
cellular dysfunction, including in muscles and neurons. In 
tumoral cells, ROS promote stabilization of hypoxia-induc-
ible factor 1α (HIF-1α), which in turn results in tumor sur-
vival by promoting angiogenesis and support of glycolytic 
metabolism [131–134]. Lipid peroxidation promotes inflam-
mation and tissue damage in the heart and cardiovascular 
dysfunction [135].

Cancer cells are characterized by their “hyper-metabo-
lism” linked to increased production of ROS [136], which 
is however neutralized by an equivalent increase in antioxi-
dant defenses [137]. However, the role of oxidative stress-
sensitive transcription factors such as Nrf2 is complex and 
depends greatly on the nature of tumors [138–140]. Alto-
gether, it appears that cancer cells need to maintain a tight 
redox balance to maintain resistance to ROS. Among pro-
tumorigenic factors, DNA mutations are associated to sig-
nificant metabolic changes, that include reduced oxidative 
phosphorylation (OXPHOS) and increased glycolysis activ-
ity. Because ROS are mainly produced through OXPHOS, 
the diminution of ROS has been shown to promote tumo-
rigenesis. Therefore, it appears that a minimal concentra-
tion of ROS is required for tumors to persist, and this con-
centration needs to be tightly regulated to prevent oxidative 
damage in cancer cells [141–144]. The high concentration 
of ROS has been at the center of attempts to develop thera-
peutic strategies against cancer, but the successes have been 
very limited or detrimental [145], suggesting that ROS are 
not a suitable target for therapies.
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Beyond ROS Reactive Behavior

Although ROS can have a deleterious effect on cell sur-
vival and in disease, their role in cellular physiology is 
more complex than initially subsumed. As mentioned 
above, ROS have a substantial impact on cellular signal-
ing via regulation of over 500 redox-sensitive proteins, 
mainly kinases, and phosphatases that have a crucial effect 
on cell growth, differentiation and survival (see section 
“ROS Impact on Cell Signaling”). For example, it has 
been shown in multiple models that reduction of mito-
chondrial respiration can has a positive effect on longevity, 
in part due to a mild increase in ROS production. Caloric 
restriction is known to promote longevity and delay neu-
rodegeneration: several observations suggest that ROS 
such as  H2O2 could be linked to the positive outcome on 
longevity by activating anti-aging pathways such as the 
AMPK [146–148], while we and others have revealed a 
link between the protective effect of l-lactate against oxi-
dative stress and ROS production [149, 150].

During moderate and repeated exercise, the production 
of ROS by muscle cells has a profound positive effect. 
Indeed it has been shown that a low concentration of  H2O2 
can increase muscle contractibility [151, 152]. A mild 
ROS increase can stimulate the expression of antioxidant 
enzymes, including GSH, but also SOD, CAT, and GPX. 
Endurance exercise, through a ROS-dependent mecha-
nism, also reduces DNA damage [153] and increases insu-
lin sensitivity [154]. This dose-dependent effect also trans-
lates into a long-term growth of the muscle fibers through 
activation of several signaling pathways such as AMPK, 
p38MAPK, and PGC-1α [155–157]. Interestingly, the use 
of exogenous antioxidant, through diet reduces the impact 
of ROS on muscle adaptation to exercise [158–160].

The latter observation is consistent with the role of 
preconditioning to ischemia as a protective strategy. 
Although, re-perfusion of tissue after hypoxia results in a 
dramatic ROS elevation and tissues damage, a small and 
short period of ischemia followed by reperfusion can pro-
duce protective effects, through ROS dependent mecha-
nisms [161, 162].

Conclusion

Reactive species are more complex than was initially 
thought. As of today, it appears that the equilibrium 
between pro-oxidant and antioxidant factors drives cel-
lular physiology in multiple organs and organisms. While 
an excessive production of ROS has a dramatic negative 
effects on survival, a mild oxidative environment can 

produce a variety of positive outcomes crucial for bio-
logical organisms to survive and adapt. Therefore a bet-
ter understanding of reactive species targets and effects, 
is necessary to target interventional strategies to improve 
major health-related issues.
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