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Abstract
Astrocytes are well known to play critical roles in the development and maintenance of the central nervous system (CNS). 
Moreover, recent reports indicate that these cells are heterogeneous with respect to the molecules they express and the func-
tions they exhibit in the quiescent or activated state. Because astrocytes also contribute to pathology, promising new results 
raise the possibility of manipulating specific astroglial populations for therapeutic roles. In this mini-review, we highlight 
the function of metabotropic glutamate receptors (mGluRs), in particular mGluR3 and mGluR5, in reactive astrocytes and 
relate these to three degenerative CNS diseases: multiple sclerosis, Alzheimer’s disease and Amyotrophic Lateral Sclerosis. 
Previous studies demonstrate that effects of these receptors may be beneficial, but this varies depending on the subtype of 
receptor, the state of the astrocytes, and the specific disease to which they are exposed. Elucidating the role of mGluRs on 
astrocytes at specific times during development and disease will provide novel insights in understanding how to best use 
these to serve as therapeutic targets.

Keywords Astrocyte heterogeneity · Group I/II metabotropic glutamate receptors · Multiple sclerosis · Alzheimer’s 
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Introduction

It is well recognized that astrocytes play a number of criti-
cal roles that support the developing and mature brain. In 
response to injury, however, astrocytes exhibit profound 
changes in these roles that can result in both negative and 
positive influences on surrounding cells. We suggest that 
these roles can be harnessed to aid in the recovery from 
injury. In particular, we focus this mini-review on roles 
played by metabotropic glutamate receptors (mGluRs) that 
are expressed on astrocytes during disease. Recent studies 
suggest that stimulation of these receptors in some cases 

may elicit protective effects on neighboring cells and may 
represent a new therapeutic approach to brain dysfunction. 
In other cases, however, antagonism may be preferable. 
Therefore, caution is warranted when evaluating effective-
ness of mGluR stimulation (see Fig. 1). As indicated in 
this mini-review, astrocytes whether quiescent or reactive 
are highly heterogeneous populations with respect to their 
response to the local central nervous system (CNS) region 
in which they reside, and the specific diseases or injuries to 
which they are exposed. Therefore, the utility of application 
of specific agonists or antagonists may vary depending on 
the specific astrocytic populations under investigation and 
how they are impacted by their environment.

Before beginning it should be noted that we limit this 
review to astrocytes, their response to injury and effects of 
mGluR agonists. We recognize that other glial cells react to 
mGluR stimulation as well as other activating influences. 
For a more comprehensive analysis of responses of these 
cells we refer the reader to excellent additional reviews of 
this subject [1–5].
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Astrocytic Function in the Unlesioned brain

Astrocytes are the most abundant glial cell in the CNS and 
are specialized to perform many functions to support neu-
ronal activity in the developing and adult nervous system. 
These include ion homeostasis, uptake of neurotransmit-
ters, release of growth factors, participation in synaptic 
transmission, regulation of the blood-brain barrier and 
contribution to the CNS immune system [6]. Astrocytes 
also present a dynamic environment for axon guidance 
during development by providing appropriate cell surface 
receptors and adherent molecules [7].

Interestingly, many of the functions of astrocytes are 
regulated by neuron-to-astrocyte crosstalk. Astrocytes 
are able to respond to several neurotransmitters, includ-
ing glutamate [8, 9], adenine triphosphate (ATP) [10, 11], 
gamma-aminobutyric acid (GABA) [12, 13], acetylcho-
line [14] and endocannabinoids [15]. In response to these 
transmitters, astrocytes elevate intracellular calcium lev-
els, release a number of gliotransmitters as well as a host 
of growth factors that impact neuronal function [16, 17]. 
As a result of such signaling, astrocytes then modulate 
synaptic function, maintenance, pruning and remodeling 
and express ion channels and neurotransmitter receptors 
and transporters [15, 18, 19]. These physiological roles, 
manipulated by gliotransmitters and growth factors in nor-
mal astrocytes, are also observed during pathophysiologi-
cal states of the nervous system, as discussed below.

Astrocytes are heterogeneous cells that not only differ 
in morphology and expression of intermediate filament 
levels, but also in the roles they play [20]. For example, 
morphological differences are reported when a subtype of 
astrocytes from the human cortex and hippocampus are 
compared. High levels of glutamine synthetase (GS) and 
excitatory amino-acid transporters − 1 and − 2 (EAAT1, 
EAAT2) are observed in the hippocampus with long-
process astrocytes, while cortical astrocytes are more 

heterogeneous with cells that are protoplasmic but exhibit 
reduced numbers of small processes and a low expression 
of GS, EAAT1, and EAAT2 [21]. As suggested here, the 
heterogeneity in morphology may extend to heterogeneity 
in function. This is indicated for example in the observa-
tion that astrocytes of different regions release different 
substances that may influence neighboring neurons dis-
tinctly. For example, cultured astrocytes of the substantia 
nigra are better at supporting dopamine neuron survival 
than are astrocytes of the hippocampus [22]. Such differ-
ences are also noted when substantia nigra astrocytes are 
compared to those of the ventral tegmental area. In this 
case, recent studies of effects of astrocytes on local dopa-
minergic neurons suggest that growth and differentiation 
factor 15 (GDF15), a member of the transforming growth 
factor beta (TGF-β) superfamily, may be responsible for 
differences in survival and protection when dopaminergic 
neurons from the two brain regions are compared [23].

Heterogeneity also is observed in the markers of astro-
cyte function within brain regions. For example, astrocytic 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
(AMPA) receptors, glutamate transporter 1, and potas-
sium channel Kir4.1 expression are differentially expressed 
within regions as well as between specific regions in the 
brain [24–27]. With respect to expression of mGluR5, exam-
ined in this mini-review, heterogeneity is also evident. Thus, 
few astrocytes of the spinal cord exhibit this receptor [28], 
while the majority of cortical astrocytes do [29]. It is impor-
tant to consider what roles these differences may play when 
thinking of how regional astrocytes may differ in response 
to mGluR agonists in distinct disease states.

Astrocytic Response to Injury

In the case of brain injury or disease, astrocytes become 
reactive. In this process, many of the actions of quiescent 
cells become enhanced or reduced to influence proximate 

Fig. 1  Response of astrocytes to disease can be manipulated by mGluRs in a positive or negative direction depending on the state of astrocyte 
activation, the local astrocyte environment and the disease that is responsible for reactivity. Created with BioRender
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cells. Traditionally, it was thought that these changes are 
negative. For example, astrocytes can form a physical barrier 
to axon growth and produce a variety of molecules that serve 
as an impediment to nerve cell survival [30, 31]. Moreover, 
reactive astrocytes express a wide variety of inflammation-
associated molecules and are capable of antigen presenta-
tion. These changes have profound pro-inflammatory effects 
that present an inhibitory environment for glial differentia-
tion and endogenous remyelination [32, 33]. In a more spe-
cific example, studies by the Gallo laboratory demonstrated 
that when effects of endothelin-1, a secreted intercellular 
signaling molecule were characterized after focal demyelina-
tion of the corpus callosum, it acted as a negative regulator 
of NG2 glial differentiation and functional remyelination 
[32]. Moreover, ablation or inhibition of endothelin recep-
tor-B accelerates oligodendrocyte progenitor differentiation 
and remyelination [33]. Similarly, other proteins, such as 
bone morphogenetic proteins, have negative effects on oli-
godendrocytes following spinal cord injury (SCI) [34] and 
in the case of the mouse model of ALS, mutated astrocytes 
can release toxic factors that kill up to 90% of co-cultured 
motor neurons [35, 36]. This has relevance to the response 
to disease states.

On the other hand, recently, it has become more widely 
recognized that astrocytes can also have neuroprotective 
effects and enhance axonal and neuronal regeneration [37, 
38]. Reactive astrocytes in some cases suppress immune 
responses following CNS injury, maintain extracellu-
lar homeostasis and produce growth factors [39]. Thus, 
newly proliferated astrocytes may interact and organize 
into scars that surround and isolate tissue lesions and pro-
tect or enhance regeneration. For example, after SCI [40], 
signal transducer and activator of transcription 3 (STAT3), 
expressed by reactive astrocytes, has a key role in regenera-
tion that includes control of inflammation [41, 42]. Selective 
deletion of the Stat3 driver after a wound leads to a signifi-
cant increase of immune cell infiltration and neurodegen-
eration [38, 43]. These observations suggest that astrocytes 
may be critical for the recovery of function and survival 
after injury.

To evaluate the effects of injury on astrocyte function 
and their production of specific molecules, gene transcrip-
tome approaches have been used to characterize subtypes 
of astroglial cells in response to brain damage. GeneChip 
analysis of reactive astrocytic populations was evaluated in 
two brain injury mice models: neuroinflammation induced 
by a single intraperitoneal injection of lipopolysaccharide 
and focal ischemic stroke produced by transient middle cer-
ebral artery occlusion [44]. In both models, glial fibrillary 
acidic protein immunoreactivity is observed after 1 day and 
persists at least 1 week in combination with increased acti-
vated microglia. A core set of genes is upregulated in reac-
tive astrocytes of both injury models, however, at least 50% 

of the altered gene expression is specific to a given injury 
type. These data suggest that there are distinct subtypes of 
reactive astrocytes, reminiscent of distinct types of quiescent 
astrocytes. In the case of reactive astrocytes, these have been 
termed as A1 and A2 based on their detrimental or beneficial 
effects, respectively, during injury and repair [44–46].

A1 reactive astrocytes may have negative effects on sur-
rounding cells in response to inflammation. For example, 
they may secrete molecules that are inhibitory to neurite 
outgrowth. In addition, swelling of these astrocytes after 
injury may result in the release of excessive amounts of glu-
tamate. Liddelow et al. [46] suggests that this A1 activation 
may be induced by activated microglia through the secre-
tion of cytokines. After induction, A1 astrocytes secrete a 
neurotoxin of uncertain identity that induces rapid death of 
neurons and oligodendrocytes. A2 astrocytes, in contrast, 
are commonly induced by ischemia and their responses to 
the ischemia are beneficial. This population is geared toward 
restoring trophic support and synapse repair and to promote 
the survival and growth of neurons [47]. A2 astrocytes 
express high levels of neurotrophic factors and cytokines, 
including brain-derived neurotrophic factor (BDNF), cardi-
otrophin-like cytokine factor 1 (CLCF1), interlukin-6 (IL-6), 
and GDF15, as well as thrombospondins that promote syn-
apse repair [44, 48]. Determining the cellular and molecular 
basis underlying A2 induction remains an issue to address 
and is important with respect to degenerative disease.

Use of mGluRs to Regulate Astrocytes After 
Injury

A number of studies have focused on astrocytic mGluRs 
as targets that can be manipulated to enhance repair after 
injury [5, 31, 45, 49, 50]. mGluRs, particularly mGluR3 
and mGluR5, are the two most abundant mGluRs found on 
astrocytes [29, 51]. In response to injury, these receptors are 
upregulated at the lesion site, suggesting that astrocyte func-
tion can be influenced in the specific location where effects 
may be important. However, as noted previously, discretion 
is merited with respect to the function of these receptors. 
While some studies have described positive effects of astro-
cytic mGluR activation after injury through the actions of 
neurotrophins and growth factors [50, 52–55], others have 
reported that they may elicit harmful effects through the 
production of cytokines and inflammatory mediators [56]. 
These differences in effect may be due to the state of activa-
tion of astrocytes, the region being assessed and the type of 
lesion being examined [29, 45, 46, 57, 58]. Consequently, 
environmental distinctions must be taken into consideration 
when assessing astrocytic mGluRs as potential pharmaco-
logical targets and included in determining whether stimu-
lation of these receptors should be enhanced or inhibited.
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Signaling by and Regional Expression 
of Astrocytic mGluR3 and mGluR5

mGluRs are G protein-coupled receptors consisting of 
seven transmembrane domains that are subdivided into 
Group I, II, and III based on their signaling transduction 
pathways, amino acid sequence homology, and selectiv-
ity of agonists and antagonists [1, 2, 5, 59, 60]. mGluR5, 
in addition to mGluR1, is classified as a Group I mGluR, 
while mGluR3 is part of the Group II mGluRs along with 
mGluR2. Group I mGluRs function through  Gq-proteins, 
resulting in activation of phospholipase C (PLC), hydroly-
sis of phosphoinositides, release of calcium, and activation 
of protein kinase C (PKC). Further downstream signal-
ing pathways include casein kinase 1, cyclin-dependent 
protein kinase 5, Jun kinase, mitogen-activated protein 
kinase/extracellular receptor kinase, and mammalian target 
of rapamycin/p70 S6 kinase [61–66]. On the other hand, 
Group II mGluRs are associated with  Gi- and  G0-proteins, 
and are negatively coupled to adenylate cyclase. Activa-
tion of Group II mGluRs inhibits voltage-gated calcium 
entry into the cell. In addition, these receptors can activate 
MAPK and phosphatidyl inositol 3-kinase pathways [1, 2, 
5, 59, 67, 68].

Gene expression analysis has been done to study the 
presence of mGluR3 and mGluR5 specifically on astro-
cytes isolated from mouse hippocampus or cortex. These 
studies reveal that while all mGluRs are found at least 
at low levels in adult tissue in mice, the most abundant 
receptor is mGluR3 followed by mGluR5 [51]. These two 
mGluRs are also present in humans under normal con-
ditions, while others are undetectable [51, 69–71]. It is 
of interest that in some cases expression of the receptors 
changes with development, but not in others, suggesting 
that the role of specific receptors may be altered as the 
brain matures. Astrocytic mGluR3 expression remains 
relatively stable at 1-, 2-, 3-, and 12-weeks of age [51], 
while mGluR5 expression is highest at postnatal day 7 [51, 
72] before rapidly declining through adulthood [51, 72].

To examine the presence of these receptors in astro-
cytes in vitro, cells are removed from developing animals 
and grown in culture. This approach has the advantage of 
evaluating the isolated cells, examining their receptors and 
defining their function. In general, as was the case in vivo, 
mGluR3 and mGluR5 show strong expression when com-
pared to all the other mGluRs [29]. Interestingly, culture 
studies also reveal that regional differences are apparent. 
While mGluR3 and mGluR5 are found in astrocytes iso-
lated from thalamus, tegmentum, cortex, hippocampus, 
and striatum [29], there are almost undetectable levels of 
these receptors within the cerebellum [29] and spinal cord 

[28]. It is interesting to consider what these regional dif-
ferences may signify. Transcriptome analysis has indicated 
that cultured astrocytes exhibit a phenotype akin to A2 
reactive astrocytes of the ischemic brain [44]. These stud-
ies suggest that regional differences in astrocyte expres-
sion of mGluRs in culture may foretell regional differences 
that while not evident in vivo, will be evident after specific 
injuries.

Rodent brain slices have been studied to bridge the gap 
between in vitro and in vivo studies. In particular, specific 
agonists of Group I and/or Group II mGluRs induce tran-
sient increases in intracellular calcium levels within astro-
cytes of hippocampal slices as they do in vivo [73–77]. In 
concordance with in vivo studies also is the fact that astro-
cytic mGluR5 is developmentally regulated in slices with 
the highest expression occurring in slices isolated from 
P1-10 rodents before declining into adulthood [78, 79].

In models of disease and in human disease tissue, levels 
of astrocytic mGluRs are upregulated in or near lesions. 
Therefore, we propose that the roles of these receptors 
may be most apparent during development, become down-
regulated during adulthood, but emerge to play critical 
roles during CNS disease. The models in which mGluR5 is 
elevated include multiple sclerosis (MS) [50], Alzheimer’s 
disease (AD) [80], amyotrophic lateral sclerosis (ALS) 
[81], epilepsy [82–85] and SCI [86–88]. Similarly, astro-
cytic mGluR5 is upregulated in human tissue from patients 
with MS [69, 71], AD [89, 90], ALS [91, 92] and epilepsy 
[93–95]. In regards to mGluR3, its expression is enhanced 
on astrocytes in animal models of epilepsy [82, 83] and in 
human tissue taken from patients with MS [69, 71], ALS 
[91, 92] and epilepsy [94].

Roles of mGluRs on Reactive Astrocytes

In general, stimulation of Group I and/or Group II mGluRs 
on reactive astrocytes leads to the release of neurotrans-
mitters, including glutamate [29, 73, 96, 97], as well 
as other factors such as BDNF [55, 98], glial-derived 
neurotrophic factor (GDNF) [54], and TGF-β [52, 53]. 
Astrocytic mGluR activation can also lead to enhanced 
glutamate uptake through Group I or II receptors [99, 
100]. These data suggest that astrocytic mGluRs have the 
potential to play positive roles in the diseased brain. Nev-
ertheless, these effects may vary based on the different 
environments of the different diseases. For example, as 
will be discussed in the next section, mGluR stimulation 
may elicit positive astrocytic effects in diseases such as 
MS and AD, while eliciting mixed effects in other diseases 
like ALS.



545Neurochemical Research (2020) 45:541–550 

1 3

Roles of mGluR3 and mGluR5 in Response 
to Disease

Multiple Sclerosis

mGluR5 is increased in reactive astrocytes specifically 
within the lesion sites of the cuprizone model of MS [50]. 
This increase is not found on microglia or CC1 + mature 
oligodendrocytes. In the experimental autoimmune encepha-
lomyelitis (EAE) model of MS, studies of tissue samples 
taken from EAE rodents indicate an increase in mGluR5 in 
the whole brain and forebrain. However, the cells expressing 
these receptors were not identified [101, 102]. In an attempt 
to determine roles of mGluR agonists and antagonists in 
rodent models of MS, these drugs have been injected either 
locally within the lesion site or systemically. The Group I/
Group II mGluR agonist trans-(1S,3R)-1-amino-1,3-cyclo-
pentanedicarboxylic acid (ACPD) injected directly into the 
cuprizone-induced lesion increases synthesis and release of 
BDNF, an effect that is blocked when BDNF was selectively 
deleted from astrocytes, suggesting that the mGluRs mediate 
the increase in this trophic factor in astrocytes [50].

In the case of the EAE models, effects of the mGluR 
agonists and antagonists were injected into the whole ani-
mal making the relative contribution of these receptors 
on astrocytes compared to other cell types unknown. In 
this model, mGluR5 antagonists have no effect on motor 
function [103], nor do they affect myelin ultrastructure 
compared to EAE animals receiving vehicle [102, 104, 
105], suggesting that actions of mGluRs in EAE may be 
different from those in the cuprizone model. It should 
be noted however, that application of the agonists to the 
EAE CNS as a whole may miss a subtle difference elicited 
through the actions of astrocytes that can be enhanced. 
Clearly, additional studies are needed to identify which 
cells express mGluRs. This makes it possible to elucidate 
roles of agonists and determine their potential to signal 
though mGluRs on astrocytes or other cell types.

Alzheimer’s Disease

In vivo studies of mGluRs and astrocytes in AD are quite 
limited, however it is interesting to note that amyloid-beta 
(Aβ) increases expression of mGluR5 in an AD transgenic 
model [80]. This effect also occurs when Aβ is added to 
astrocytes in culture [80, 89, 90, 106], indicating that when 
this agent is elevated, roles of astrocytic mGluR5 may be 
enhanced. However, information is lacking as to what the 
consequence is of this upregulation.

Culture models of AD are most informative in defin-
ing effects of mGluRs on astrocytes. These indicate that 

mGluRs are present on astrocytes in these models. In 
general, stimulation of the receptors has had beneficial 
results. This is most well known with respect to Group 
II receptors. For example, astrocytic Group II activation 
reduces Aβ production [107], and increases Aβ uptake 
in astrocytes, as well as releases BDNF from these cells 
[55]. BDNF in this study enhances neuron survival when 
neurons are challenged by treatment with Aβ. In comple-
mentary work, stimulation with ACPD that stimulates 
both Group I and Group II receptors also increases BDNF 
synthesis and release [98]. Other studies indicate that 
stimulation of mGluR3 reduces Aβ-induced neurodegen-
eration in mixed neuronal-glia cultures [53]. This effect is 
blocked when the receptor function is inhibited or when 
astrocytes are derived from mGluR3 deleted mice. In this 
case, mGluR3 rescues the neurons from Aβ-elicited death 
through the action of astrocyte-derived TGF-β. Overall, 
these studies in culture models of AD indicate that both 
astrocyte-derived BDNF and TGF-β may play positive pro-
tective roles in this disease and that this may be regulated 
by mGluRs.

Amyotrophic Lateral Sclerosis

In ALS, studies of the role of astrocytic mGluR5 have 
focused on astrocytes cultured from animal models of the 
disease, particularly the  hSOD1G93A mouse or rat models. 
These studies find that mGluR5 is expressed at three-fold 
greater levels in  hSOD1G93A astrocytes than in wild-type 
cells [81]. In this disease however, upregulation of astrocytic 
mGluR5 appears to have negative consequences. Stimula-
tion of Group I mGluRs on  hSOD1G93A astrocytes results 
in the death of these cells and this effect is blocked with 
an mGluR5 antagonist [108]. Moreover, while wild-type 
astrocytes treated with a Group I agonist enhances aspar-
tate uptake, astrocytes derived from  hSOD1G93A rats fail to 
increase aspartate uptake, indicating that the mutant gene 
blocks protective roles of the Group I agonist [81, 109]. 
Proper removal of excitatory transmitters such as aspartate 
and glutamate can be important in preventing excitotoxicity 
in diseases such as ALS, where increased glutamate levels 
and reduced glutamate transporter expression is evident in 
tissue from ALS patients [110, 111]. Inhibiting mGluR5 
activity on  hSOD1G93A astrocytes is then a strategy that may 
be pursued to enhance protective astrocytic functions.

In contrast to activation of Group I receptors, poten-
tial actions of Group II mGluRs on  hSOD1G93A astrocytes 
have not yet been studied in culture. However, effects of a 
Group II agonist injected subcutaneously have been stud-
ied in  hSOD1G93A mice [54]. Injection results in reduced 
neuronal death and elevated GDNF levels in the spinal cord 
with corresponding improvements in motor performance 
and neurologic signs. The same study shows that the Group 
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II agonist enhances GDNF release from cultured wild-type 
astrocytes through mGluR3. It is not yet known if astrocytes 
are responsible for the effects observed in  hSOD1G93A mice.

Conclusions

This mini-review has documented a number of studies that 
suggest the possible importance of astrocytes as therapeutic 
targets in treatment of CNS disease. In particular, we sum-
marize roles of quiescent astrocytes and how they alter their 
functions in response to injury. In discussing these events it 
becomes obvious that astrocytes are not simple homogene-
ous populations. Their critical impact on the maintenance of 
CNS function has been increasingly recognized. However, 
what is still generally unappreciated is their heterogeneity in 
function and in response to disease. We focus this review on 
the roles played by mGluR3 and mGluR5, recognizing that 
these receptors are only representative of multiple receptors 
that influence function. What has been obvious, however, is 
that these receptors are upregulated on astrocytes at or near 
lesion sites, putting them in optimal position to have impor-
tant influences under these conditions. Moreover, manipu-
lation of signaling through these receptors is beginning to 
emerge as a strategy worth pursuing in at least some disease 
conditions.

One note about the studies that have been discussed: 
Although descriptive work assesses how astrocytes respond 
to injury and where mGluRs are expressed on astrocytes, 
it has been difficult to attribute the results of manipulation 
of these cells and these receptors to function in vivo. Criti-
cal work is clearly necessary to extend studies of function 
by using new animal models where astrocytes specifically 
can be manipulated by the deletion of a particular protein 
at distinct time points as is now being done in a number of 
studies [50, 100].
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