Skip to main content
Log in

Neurolysin: From Initial Detection to Latest Advances

  • Review Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The mechanisms by which peptidergic signals are terminated have been the center of multiple studies leading to the discoveries of novel proteolytic activities. When studying the catabolic fate of neurotensin (NT) in brain and gastrointestinal tract, we detected a novel activity belonging to the metallopeptidases class and apparently distinct from previously known enzymes. Purification and cloning confirmed that this NT-degrading neutral metalloendopeptidase activity was indeed original. It was named endopeptidase 3.4.24.16 according to the IUBMB nomenclature and later, referred to as neurolysin. This review tells the history of neurolysin from its initial detection to its purification, cloning, design of specific inhibitors as well as in vitro and in vivo pharmacological studies aimed at delineating its role in the control of NT function. Finally, we discuss very recent advances suggesting a potential role of neurolysin in pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carraway R, Leeman SE (1973) The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J Biol Chem 248:6854–6861

    CAS  PubMed  Google Scholar 

  2. Kitabgi P, Carraway R, Leeman SE (1976) Isolation of a tridecapeptide from bovine intestinal tissue and its partial characterization as neurotensin. J Biol Chem 251:7053–7058

    CAS  PubMed  Google Scholar 

  3. Carraway R, Kitabgi P, Leeman SE (1978) The amino acid sequence of radioimmunoassayable neurotensin from bovine intestine. J Biol Chem 253:7996–7998

    CAS  PubMed  Google Scholar 

  4. Hammer RA, Leeman SE, Carraway R, Williams RH (1980) Isolation of human intestinal neurotensin. J Biol Chem 255:2476–2480

    CAS  PubMed  Google Scholar 

  5. Checler F, Vincent JP, Kitabgi P (1983) Degradation of neurotensin by rat brain synaptic membranes: involvement of a thermolysin-like metalloendopeptidase (enkephalinase), angiotensin-converting enzyme, and other unidentified peptidases. J Neurochem 41:375–384

    Article  CAS  Google Scholar 

  6. Kitabgi P, Checler F, Mazella J, Vincent JP (1985) Pharmacology and biochemistry of neurotensin receptors. Rev Clin Basic Pharmacol 5:397–486

    CAS  Google Scholar 

  7. Vincent JP, Mazella J, Kitabgi P (1999) Neurotensin and neurotensin receptors. Trends Pharmacol Sci 20:302–309

    Article  CAS  Google Scholar 

  8. Roques BP, Fournie-Zaluski MC, Soroca E, Lecomte JM, Malfroy B, Llorens C, Schwartz JC (1980) The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice. Nature 288:286–288

    Article  CAS  Google Scholar 

  9. Marr RA, Spencer BJ (2010) NEP-like endopeptidases and Alzheimer’s disease [corrected]. Curr Alzheimer Res 7:223–229

    Article  CAS  Google Scholar 

  10. Turner AJ (2003) Exploring the structure and function of zinc metallopeptidases: old enzymes and new discoveries. Biochem Soc Trans 31:723–727

    Article  CAS  Google Scholar 

  11. Checler F, Vincent JP, Kitabgi P (1985) Inactivation of neurotensin by rat brain synaptic membranes partly occurs through cleavage at the Arg8-Arg9 peptide bond by a metalloendopeptidase. J Neurochem 45:1509–1513

    Article  CAS  Google Scholar 

  12. Checler F, Emson PC, Vincent JP, Kitabgi P (1984) Inactivation of neurotensin by rat brain synaptic membranes. Cleavage at the Pro10-Tyr11 bond by endopeptidase 24.11 (enkephalinase) and a peptidase different from proline-endopeptidase. J Neurochem 43:1295–1301

    Article  CAS  Google Scholar 

  13. Checler F, Vincent JP, Kitabgi P (1983) Neurotensin analogs [D-TYR11] and [D-PHE11] neurotensin resist degradation by brain peptidases in vitro and in vivo. J Pharmacol Exp Ther 227:743–748

    CAS  PubMed  Google Scholar 

  14. Checler F, Mazella J, Kitabgi P, Vincent JP (1986) High-affinity receptor sites and rapid proteolytic inactivation of neurotensin in primary cultured neurons. J Neurochem 47:1742–1748

    Article  CAS  Google Scholar 

  15. Checler F, Amar S, Kitabgi P, Vincent JP (1986) Catabolism of neurotensin by neural (neuroblastoma clone N1E115) and extraneural (HT29) cell lines. Peptides 7:1071–1077

    Article  CAS  Google Scholar 

  16. Checler F, Ahmad S, Kostka P, Barelli H, Kitabgi P, Fox JA, Kwan CY, Daniel EE, Vincent JP (1987) Peptidases in dog-ileum circular and longitudinal smooth-muscle plasma membranes. Their relative contribution to the metabolism of neurotensin. Eur J Biochem 166:461–468

    Article  CAS  Google Scholar 

  17. Checler F, Barelli H, Kwan CY, Kitabgi P, Vincent JP (1987) Neurotensin-metabolizing peptidases in rat fundus plasma membranes. J Neurochem 49:507–512

    Article  CAS  Google Scholar 

  18. Checler F, Barelli H, Kitabgi P, Vincent JP (1988) Neurotensin metabolism in various tissues of central and peripheral origins: ubiquitous involvement of a novel neurotensin degrading metalloendopeptidase. Biochimie 70:75–82

    Article  CAS  Google Scholar 

  19. Checler F, Vincent JP, Kitabgi P (1986) Purification and characterization of a novel neurotensin-degrading peptidase from rat brain synaptic membranes. J Biol Chem 261:11274–11281

    CAS  PubMed  Google Scholar 

  20. Barelli H, Vincent JP, Checler F (1988) Peripheral inactivation of neurotensin. Isolation and characterization of a metallopeptidase from rat ileum. Eur J Biochem 175:481–489

    Article  CAS  Google Scholar 

  21. Barelli H, Vincent JP, Checler F (1993) Rat kidney endopeptidase 24.16. Purification, physico-chemical characteristics and differential specificity towards opiates, tachykinins and neurotensin-related peptides. Eur J Biochem 211:79–90

    Article  CAS  Google Scholar 

  22. Vincent B, Vincent JP, Checler F (1996) Purification and characterization of human endopeptidase 3.4.24.16. Comparison with the porcine counterpart indicates a unique cleavage site on neurotensin. Brain Res 709:51–58

    Article  CAS  Google Scholar 

  23. Barrett AJ, Woessner JF, Rawlings ND (2004) Aspartic and metallopeptidases. Handb Proteolytic Enzym 1:1–1048

    Google Scholar 

  24. Checler F, Barelli H, Vincent JP (1989) Tissue distribution of a novel neurotensin-degrading metallopeptidase. An immunological approach using monospecific polyclonal antibodies. Biochem J 257:549–554

    Article  CAS  Google Scholar 

  25. Dauch P, Vincent JP, Checler F (1995) Molecular cloning and expression of rat brain endopeptidase 3.4.24.16. J Biol Chem 270:27266–27271

    Article  CAS  Google Scholar 

  26. Dauch P, Barelli H, Vincent JP, Checler F (1991) Fluorimetric assay of the neurotensin-degrading metalloendopeptidase, endopeptidase 24.16. Biochem J 280(Pt 2):421–426

    Article  CAS  Google Scholar 

  27. Dauch P, Vincent JP, Checler F (1991) Specific inhibition of endopeptidase 24.16 by dipeptides. Eur J Biochem 202:269–276

    Article  CAS  Google Scholar 

  28. Rioli V, Kato A, Portaro FC, Cury GK, te Kaat K, Vincent B, Checler F, Camargo AC, Glucksman MJ, Roberts JL, Hirose S, Ferro ES (1998) Neuropeptide specificity and inhibition of recombinant isoforms of the endopeptidase 3.4.24.16 family: comparison with the related recombinant endopeptidase 3.4.24.15. Biochem Biophys Res Commun 250:5–11

    Article  CAS  Google Scholar 

  29. Vincent B, Dauch P, Vincent JP, Checler F (1997) Stably transfected human cells overexpressing rat brain endopeptidase 3.4.24.16: biochemical characterization of the activity and expression of soluble and membrane-associated counterparts. J Neurochem 68:837–845

    Article  CAS  Google Scholar 

  30. Brown CK, Madauss K, Lian W, Beck MR, Tolbert WD, Rodgers DW (2001) Structure of neurolysin reveals a deep channel that limits substrate access. Proc Natl Acad Sci USA 98:3127–3132

    Article  CAS  Google Scholar 

  31. Teixeira PF, Masuyer G, Pinho CM, Branca RMM, Kmiec B, Wallin C, Warmlander S, Berntsson RP, Ankarcrona M, Graslund A, Lehtio J, Stenmark P, Glaser E (2018) Mechanism of peptide binding and cleavage by the human mitochondrial peptidase neurolysin. J Mol Biol 430:348–362

    Article  CAS  Google Scholar 

  32. Chabry J, Checler F, Vincent JP, Mazella J (1990) Colocalization of neurotensin receptors and of the neurotensin-degrading enzyme endopeptidase 24-16 in primary cultures of neurons. J Neurosci 10:3916–3921

    Article  CAS  Google Scholar 

  33. Woulfe J, Checler F, Beaudet A (1992) Light and electron microscopic localization of the neutral metalloendopeptidase EC 3.4.24.16 in the mesencephalon of the rat. Eur J Neurosci 4:1309–1319

    Article  Google Scholar 

  34. Vincent B, Beaudet A, Dauch P, Vincent JP, Checler F (1996) Distinct properties of neuronal and astrocytic endopeptidase 3.4.24.16: a study on differentiation, subcellular distribution, and secretion processes. J Neurosci 16:5049–5059

    Article  CAS  Google Scholar 

  35. Tisljar U, Knight CG, Barrett AJ (1990) An alternative quenched fluorescence substrate for Pz-peptidase. Anal Biochem 186:112–115

    Article  CAS  Google Scholar 

  36. Barrett AJ, Tisljar U (1989) The activities of ‘Pz-peptidase’ and ‘endopeptidase 24.15’ are due to a single enzyme. Biochem J 261:1047–1050

    Article  CAS  Google Scholar 

  37. Dauch P, Masuo Y, Vincent JP, Checler F (1992) Endopeptidase 24-16 in murines: tissue distribution, cerebral regionalization, and ontogeny. J Neurochem 59:1862–1867

    Article  CAS  Google Scholar 

  38. Ichai C, Chevallier N, Delaere P, Dournaud P, Epelbaum J, Hauw JJ, Vincent JP, Checler F (1994) Influence of region-specific alterations of neuropeptidase content on the catabolic fates of neuropeptides in Alzheimer’s disease. J Neurochem 62:645–655

    Article  CAS  Google Scholar 

  39. Barelli H, Fox-Threlkeld JE, Dive V, Daniel EE, Vincent JP, Checler F (1994) Role of endopeptidase 3.4.24.16 in the catabolism of neurotensin, in vivo, in the vascularly perfused dog ileum. Br J Pharmacol 112:127–132

    Article  CAS  Google Scholar 

  40. Oliveira V, Campos M, Hemerly JP, Ferro ES, Camargo AC, Juliano MA, Juliano L (2001) Selective neurotensin-derived internally quenched fluorogenic substrates for neurolysin (EC 3.4.24.16): comparison with thimet oligopeptidase (EC 3.4.24.15) and neprilysin (EC 3.4.24.11). Anal Biochem 292:257–265

    Article  CAS  Google Scholar 

  41. Oliveira V, Campos M, Melo RL, Ferro ES, Camargo AC, Juliano MA, Juliano L (2001) Substrate specificity characterization of recombinant metallo oligo-peptidases thimet oligopeptidase and neurolysin. Biochemistry 40:4417–4425

    Article  CAS  Google Scholar 

  42. Lew RA, Boulos E, Stewart KM, Perlmutter P, Harte MF, Bond S, Aguilar MI, Smith AI (2000) Bradykinin analogues with beta-amino acid substitutions reveal subtle differences in substrate specificity between the endopeptidases EC 3.4.24.15 and EC 3.4.24.16. J Pept Sci 6:440–445

    Article  CAS  Google Scholar 

  43. Kato A, Sugiura N, Hagiwara H, Hirose S (1994) Cloning, amino acid sequence and tissue distribution of porcine thimet oligopeptidase. A comparison with soluble angiotensin-binding protein. Eur J Biochem 221:159–165

    Article  CAS  Google Scholar 

  44. Habgood N, Eastham H, Turner AJ (1994) Molecular cloning of endopeptidase-24.15 from pig brain. Biochem Soc Trans 22:415S

    Article  CAS  Google Scholar 

  45. Pierotti A, Dong KW, Glucksman MJ, Orlowski M, Roberts JL (1990) Molecular cloning and primary structure of rat testes metalloendopeptidase EC 3.4.24.15. Biochemistry 29:10323–10329

    Article  CAS  Google Scholar 

  46. Ray K, Hines CS, Rodgers DW (2002) Mapping sequence differences between thimet oligopeptidase and neurolysin implicates key residues in substrate recognition. Protein Sci 11:2237–2246

    Article  CAS  Google Scholar 

  47. Barelli H, Dive V, Yiotakis A, Vincent JP, Checler F (1992) Potent inhibition of endopeptidase 24.16 and endopeptidase 24.15 by the phosphonamide peptide N-(phenylethylphosphonyl)-Gly-L-Pro-L-aminohexanoic acid. Biochem J 287(Pt 2):621–625

    Article  CAS  Google Scholar 

  48. Vincent B, Dive V, Yiotakis A, Smadja C, Maldonado R, Vincent JP, Checler F (1995) Phosphorus-containing peptides as mixed inhibitors of endopeptidase 3.4.24.15 and 3.4.24.16: effect on neurotensin degradation in vitro and in vivo. Br J Pharmacol 115:1053–1063

    Article  CAS  Google Scholar 

  49. Jiracek J, Yiotakis A, Vincent B, Checler F, Dive V (1996) Development of the first potent and selective inhibitor of the zinc endopeptidase neurolysin using a systematic approach based on combinatorial chemistry of phosphinic peptides. J Biol Chem 271:19606–19611

    Article  CAS  Google Scholar 

  50. Vincent B, Jiracek J, Noble F, Loog M, Roques B, Dive V, Vincent JP, Checler F (1997) Effect of a novel selective and potent phosphinic peptide inhibitor of endopeptidase 3.4.24.16 on neurotensin-induced analgesia and neuronal inactivation. Br J Pharmacol 121:705–710

    Article  CAS  Google Scholar 

  51. Hines CS, Ray K, Schmidt JJ, Xiong F, Feenstra RW, Pras-Raves M, de Moes JP, Lange JH, Melikishvili M, Fried MG, Mortenson P, Charlton M, Patel Y, Courtney SM, Kruse CG, Rodgers DW (2014) Allosteric inhibition of the neuropeptidase neurolysin. J Biol Chem 289:35605–35619

    Article  CAS  Google Scholar 

  52. Oliveira V, Gatti R, Rioli V, Ferro ES, Spisni A, Camargo AC, Juliano MA, Juliano L (2002) Temperature and salts effects on the peptidase activities of the recombinant metallooligopeptidases neurolysin and thimet oligopeptidase. Eur J Biochem 269:4326–4334

    Article  CAS  Google Scholar 

  53. Lian W, Chen G, Wu D, Brown CK, Madauss K, Hersh LB, Rodgers DW (2000) Crystallization and preliminary analysis of neurolysin. Acta Crystallogr D 56:1644–1646

    Article  CAS  Google Scholar 

  54. Wangler NJ, Jayaraman S, Zhu R, Mechref Y, Abbruscato TJ, Bickel U, Karamyan VT (2016) Preparation and preliminary characterization of recombinant neurolysin for in vivo studies. J Biotechnol 234:105–115

    Article  CAS  Google Scholar 

  55. Millican PE, Kenny AJ, Turner AJ (1991) Purification and properties of a neurotensin-degrading endopeptidase from pig brain. Biochem J 276(Pt 3):583–591

    Article  CAS  Google Scholar 

  56. Kawabata S, Davie EW (1992) A microsomal endopeptidase from liver with substrate specificity for processing proproteins such as the vitamin K-dependent proteins of plasma. J Biol Chem 267:10331–10336

    CAS  PubMed  Google Scholar 

  57. Kawabata S, Nakagawa K, Muta T, Iwanaga S, Davie EW (1993) Rabbit liver microsomal endopeptidase with substrate specificity for processing proproteins is structurally related to rat testes metalloendopeptidase 24.15. J Biol Chem 268:12498–12503

    CAS  PubMed  Google Scholar 

  58. Nakagawa K, Kawabata S, Nakashima Y, Iwanaga S, Sueishi K (1997) Tissue distribution and subcellular localization of rabbit liver metalloendopeptidase. J Histochem Cytochem 45:41–47

    Article  CAS  Google Scholar 

  59. Tisljar U, Barrett AJ (1990) A distinct thimet peptidase from rat liver mitochondria. FEBS Lett 264:84–86

    Article  CAS  Google Scholar 

  60. Serizawa A, Dando PM, Barrett AJ (1995) Characterization of a mitochondrial metallopeptidase reveals neurolysin as a homologue of thimet oligopeptidase. J Biol Chem 270:2092–2098

    Article  CAS  Google Scholar 

  61. Kato A, Sugiura N, Saruta Y, Hosoiri T, Yasue H, Hirose S (1997) Targeting of endopeptidase 24.16 to different subcellular compartments by alternative promoter usage. J Biol Chem 272:15313–15322

    Article  CAS  Google Scholar 

  62. Serizawa A, Dando PM, Barrett AJ (1997) Oligopeptidase M (neurolysin). Targeting to mitochondria and cytosol in rat tissues. In: Hopsu-Havu VK, Järvinen M, Kirschke H (eds) Proteolysis in cell functions. IOS Press, Amsterdam, pp 248–255

    Google Scholar 

  63. Soffer RL, Kiron MAR, Mitra A, Fluharty SJ (1991) Soluble angiotensin II binding protein. Methods Neurosci 5:192–203

    Article  CAS  Google Scholar 

  64. McKie N, Dando PM, Rawlings ND, Barrett AJ (1993) Thimet oligopeptidase: similarity to ‘soluble angiotensin II-binding protein’ and some corrections to the published amino acid sequence of the rat testis enzyme. Biochem J 295(Pt 1):57–60

    Article  CAS  Google Scholar 

  65. Karamyan VT, Speth RC (2007) Identification of a novel non-AT1, non-AT2 angiotensin binding site in the rat brain. Brain Res 1143:83–91

    Article  CAS  Google Scholar 

  66. Wangler NJ, Santos KL, Schadock I, Hagen FK, Escher E, Bader M, Speth RC, Karamyan VT (2012) Identification of membrane-bound variant of metalloendopeptidase neurolysin (EC 3.4.24.16) as the non-angiotensin type 1 (non-AT1), non-AT2 angiotensin binding site. J Biol Chem 287:114–122

    Article  CAS  Google Scholar 

  67. Abu Ahmed AM, Sharmen F, Mannan A, Rahman MA (2015) Phytochemical, analgesic, antibacterial, and cytotoxic effects of Alpinia nigra (Gaertn.) Burtt leaf extract. J Tradit Complement Med 5:248–252

    Article  CAS  Google Scholar 

  68. Paschoalin T, Carmona AK, Rodrigues EG, Oliveira V, Monteiro HP, Juliano MA, Juliano L, Travassos LR (2007) Characterization of thimet oligopeptidase and neurolysin activities in B16F10-Nex2 tumor cells and their involvement in angiogenesis and tumor growth. Mol Cancer 6:44

    Article  Google Scholar 

  69. Piliponsky AM, Chen CC, Nishimura T, Metz M, Rios EJ, Dobner PR, Wada E, Wada K, Zacharias S, Mohanasundaram UM, Faix JD, Abrink M, Pejler G, Pearl RG, Tsai M, Galli SJ (2008) Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis. Nat Med 14:392–398

    Article  CAS  Google Scholar 

  70. Rashid M, Wangler NJ, Yang L, Shah K, Arumugam TV, Abbruscato TJ, Karamyan VT (2014) Functional up-regulation of endopeptidase neurolysin during post-acute and early recovery phases of experimental stroke in mouse brain. J Neurochem 129:179–189

    Article  CAS  Google Scholar 

  71. Cavalcanti DM, Castro LM, Rosa Neto JC, Seelaender M, Neves RX, Oliveira V, Forti FL, Iwai LK, Gozzo FC, Todiras M, Schadock I, Barros CC, Bader M, Ferro ES (2014) Neurolysin knockout mice generation and initial phenotype characterization. J Biol Chem 289:15426–15440

    Article  CAS  Google Scholar 

  72. Castro LM, Cavalcanti DM, Araujo CB, Rioli V, Icimoto MY, Gozzo FC, Juliano M, Juliano L, Oliveira V, Ferro ES (2014) Peptidomic analysis of the neurolysin-knockout mouse brain. J Proteomics 111:238–248

    Article  CAS  Google Scholar 

  73. Rashid M, Arumugam TV, Karamyan VT (2010) Association of the novel non-AT1, non-AT2 angiotensin binding site with neuronal cell death. J Pharmacol Exp Ther 335:754–761

    Article  CAS  Google Scholar 

  74. Haba K, Ogawa N, Asanuma M, Hirata H, Sora YH, Mori A (1992) Changes of neuropeptides and their receptors in experimental stroke gerbil brains. J Neurol Sci 108:88–92

    Article  CAS  Google Scholar 

  75. Albert-Weissenberger C, Siren AL, Kleinschnitz C (2013) Ischemic stroke and traumatic brain injury: the role of the kallikrein-kinin system. Prog Neurobiol 101–102:65–82

    Article  Google Scholar 

  76. Faden AI (1983) Neuropeptides and stroke: current status and potential application. Stroke 14:169–172

    Article  CAS  Google Scholar 

  77. Checler F (2014) Experimental stroke: neurolysin back on stage. J Neurochem 129:1–3

    Article  CAS  Google Scholar 

  78. Rashid M, Karamyan VT (2018) Peptidase neurolysin: its function related to the brain renin-angiotensin system and pathophysiology of stroke. Letter to the Editor. J Clin Neurosci 48:245

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Checler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Checler, F., Ferro, E.S. Neurolysin: From Initial Detection to Latest Advances. Neurochem Res 43, 2017–2024 (2018). https://doi.org/10.1007/s11064-018-2624-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2624-6

Keywords

Navigation