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efficacious in object recognition models of normal memory 
and memory deficits via an mGluR3 mediated process, 
actions that could have widespread clinical applications.
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Abbreviations
NAAG  N-Acetylaspartylglutamate
mGluR  Metabotropic glutamate receptor
mGluR2  Metabotropic glutamate receptor type 2
mGluR3  Metabotropic glutamate receptor type 3
ko  Knockout
GCPII  Glutamate carboxypeptidase II

Introduction

N-Acetylaspartylglutamate (NAAG), a prevalent and 
widely distributed peptide co-transmitter, is inactivated 
by glutamate carboxypeptidase II (GCPII) following syn-
aptic release [1]. Inhibitors of GCPII [2, 3] are effective 
in animal models of several clinical conditions [reviewed 
in 4–6]. These inhibitors enhance long-term memory in 
the 24  h delay novel object recognition test [7], improve 
memory in an animal model of multiple sclerosis [8], res-
cue behaviors and short-term memory impairment in ani-
mal models of schizophrenia [9–11]. Consistent with these 
results, mice that are null mutant for GCPII demonstrate 
full memory in the 24 h delay novel object recognition test, 
while their heterozygous littermates and wild type C57Bl 
mice exhibit no significant recall in this test of long-term 
memory [7]. GCPII inhibitors also are analgesic in models 

Abstract Glutamate carboxypeptidase II (GCPII) inac-
tivates the peptide neurotransmitter N-acetylaspartylglu-
tamate (NAAG) following synaptic release. Inhibitors of 
GCPII increase extracellular NAAG levels and are effica-
cious in animal models of clinical disorders via NAAG 
activation of a group II metabotropic glutamate receptor. 
mGluR2 and mGluR3 knock-out (ko) mice were used to 
test the hypothesis that mGluR3 mediates the activity of 
GCPII inhibitors ZJ43 and 2-PMPA in animal models of 
memory and memory loss. Short- (1.5 h) and long- (24 h) 
term novel object recognition tests were used to assess 
memory. Treatment with ZJ43 or 2-PMPA prior to acqui-
sition trials increased long-term memory in mGluR2, but 
not mGluR3, ko mice. Nine month-old triple transgenic 
Alzheimer’s disease model mice exhibited impaired short-
term novel object recognition memory that was rescued by 
treatment with a NAAG peptidase inhibitor. NAAG pepti-
dase inhibitors and the group II mGluR agonist, LY354740, 
reversed the short-term memory deficit induced by acute 
ethanol administration in wild type mice. 2-PMPA also 
moderated the effect of ethanol on short-term memory in 
mGluR2 ko mice but failed to do so in mGluR3 ko mice. 
LY354740 and ZJ43 blocked ethanol-induced motor acti-
vation. Both GCPII inhibitors and LY354740 also signifi-
cantly moderated the loss of motor coordination induced by 
2.1 g/kg ethanol treatment. These data support the conclu-
sion that inhibitors of glutamate carboxypeptidase II are 
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of inflammatory and neuropathic pain [12–14] and reduce 
the effects of traumatic brain injury [15] while GCPII 
knockout (ko) mice are protected from peripheral neuropa-
thy and ischemic and traumatic brain injury [16–18].

NAAG reduces transmitter release from neurons and 
synaptosomes via a group II mGluR receptor [19, 20]. 
Inhibitors of GCPII elevate extracellular levels of NAAG 
and also reduce the release of glutamate and other transmit-
ters [13, 21, 22]. These neurochemical actions of the pepti-
dase inhibitors and their positive effects in animal models 
are blocked by the group II mGluR antagonist LY341495. 
While a substantial body of data supports the conclusion 
that the peptide activates a group II metabotropic receptor 
[4, 20], highly purified NAAG fails to activate mGluR2 or 
mGluR3 receptors expressed in transfected cells [23, 24], 
results suggesting that some reports of NAAG activation of 
a group II mGluR were due to the presence of low levels 
of residual glutamate (≤0.5% [25]) in commercially avail-
able NAAG. In contrast, data from other studies preclude 
the conclusion that the NAAG activity is due to this level 
of contaminating glutamate [20]. Consistent with an action 
of NAAG at mGluR3, NAAG peptidase inhibition blocks 
the motor activation effects of phencyclidine in mGluR2, 
but not mGluR3, ko mice [10]. In those studies where the 
effects of NAAG or NAAG peptidase inhibition have not 
been shown to be blocked by a group II mGluR antagonist, 
it is possible that NAAG is acting as an antagonist at a sub-
class of NMDA receptors [26].

In order to further test the hypothesis that a group II 
mGluR, specifically mGluR3, mediates the procognitive 
efficacy of GCPII inhibitors, these compounds were tested 
across a series of animal models that included short- and 
long-term novel object memory, Alzheimer’s disease, and 
acute alcohol intoxication, using a group II antagonist in 
wild type mice and testing mice that are null mutant for 
mGluR2 and mGluR3.

Methods

Animals

The experimental protocols used in this research were 
approved by the Georgetown University Animal Care and 
Use Committee and are consistent with guidelines of the 
US National Institutes of Health. Efforts were made to 
reduce animal suffering and to minimize the number of 
animals used. Adult male C57BL/6NCr mice from the 
National Cancer Institute, Frederick Research Center were 
tested once at 2–4 months of age and used for all studies 
except those involving the knock out or transgenic mice. 
The mGluR2 and mGluR3 ko mice (knock out R1 cell lines 
into C58Bl/6 mice and backcrossed into ICR[CD1] mice) 

[27] were provided by Eli Lilly Pharmaceuticals and tested 
twice at 3–5 months of age in a novel object recognition 
study. Wildtype littermates for these ko mouse colonies 
were not available. There are no published studies that com-
pare the performances of these ko mice with their wild type 
littermates in the novel object recognition test. The triple-
transgenic mouse model (3xTg line) that expresses three 
genes associated with familial Alzheimer’s disease, namely 
 APPSwe,  PS1M146V, and  tauP301L [28] were from Jackson 
Labs (Strain: B6;129-Psen1 Tg(APPSwe,tauP301L)1Lfa/
Mmjax; genetic background: (129 × 1/SvJ x 129S1/Sv)
F1-Kitl<+>; JAX MMRRC Stock# 034830) and tested at 
2–9 months of age in the short-term novel object recogni-
tion test. Mice were housed 5 to a cage and maintained on 
a 12:12  h light–dark cycle with food and water available 
ad  libitum. Behavioral testing was performed during the 
light cycle between 10 am and 4 pm.

Drugs

The GCPII/NAAG peptidase inhibitor ZJ43 (ZJ43 
(N-[[[(1S)-1-carboxy-3-methylbutyl]amino]carbonyl]-
l-glutamic acid) was synthesized as previously described 
[9] and provided by Alan Kozikowski. The GCPII inhibi-
tor 2- ((2-(phosphonomethyl)pentane-1, 5-dioic acid) [3, 
29]) was from Reagents4Research, LLC (Hangzhou, CN). 
LY341495, a selective group II mGluR antagonist [30], and 
LY354740, a heterotropic group II mGluR agonist [31], 
were from Tocris Cookson Ltd. (Bristol, UK). All com-
pounds were dissolved in saline and pH was adjusted to 
7.4 prior to i.p. injection. Ethanol (2.1  g/l, ip) was given 
as a concentration of 20% v/v in saline. Doses of ZJ43, 
2-PMPA, LY341495, LY354740 and ethanol were based on 
data from published and preliminary studies.

Novel Object Recognition Test

Novel object recognition is a validated and widely used 
test for assessing recognition memory [32–35], including 
in studies of aging [36, 37] and Alzheimer’s disease mouse 
models [38, 39]. Individual mice (3–4 month old) were 
placed in a 22 × 32 × 30  cm testing chamber with beige 
walls for a 5 min habituation interval followed by i.p. injec-
tion with saline, 2-PMPA (50  mg/kg) or ZJ43 (150  mg/
kg), with or without LY341495, and returned to home 
cage. Thirty minutes later, mice were placed in the testing 
chamber for 10  min with two identical objects (acquisi-
tion session). Mice were returned to home cages and 1.5 h 
(short-term memory) or 24  h (long-term memory) later 
were returned to testing chamber in the presence of one of 
the original objects and one novel object (recognition ses-
sion) for 10 min. Wild type mice exhibit short-term but not 
long-term memory in this test [7, 10]. The original objects 
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consisted of two smooth surfaced weighted red cylinders 
7 cm high × 4 cm diameter at base. The novel object con-
sisted of a blue, 7 cm high × 5 cm diameter (base) round 
pyramid. The acquisition and recognition sessions were 
video recorded and the time mice spent exploring each 
object was assessed by an observer who was blinded to 
drug treatment and genotype. The chambers and objects 
were cleaned with ethanol between trials. Exploratory 
behavior was defined as sniffing, touching and directing 
attention to the object. In preliminary studies, naïve mice 
exhibited no significant preference for the red cylinder or 
the blue pyramid. Exploration time (Table 1) is expressed 
as the mean ± the standard error of the mean (SEM). For 
the acquisition session, the recognition index was calcu-
lated as (time exploring one of the objects/the time explor-
ing both objects) × 100. For the recognition session, the RI 
was calculated as (time exploring the novel object/the time 
exploring both the familiar and novel object) × 100.

To study the effects of ethanol on short-term memory, 
mice were placed the testing chamber for a 5 min habitu-
ation interval followed by injection with saline, ZJ43 
(150  mg/kg), 2-PMPA (100  mg/kg) or LY354740 (2, 5, 
10 mg/kg) and returned to home cage. Thirty minutes later 
mice were injected with ethanol (2.1 g/kg, i.p.) and returned 
to their home cage for 10 min after which they were placed 
in a testing chamber for 10 min with two identical objects 
(acquisition session). Mice were returned to home cages 
and 1.5 h later were placed back into the testing chamber 
for 10 min in the presence of one of the original objects and 
one novel object (recognition session).

Open Field Motor Activation Test

High doses of ethanol induces increases in motor activity 
(40) and loss of coordination (41) in mice. In the present 
study, mice were habituated to an open field chamber (Med 

Table 1  Exploration time data 
from short-term (Figs. 2, 3, and 
4) and long-term novel object 
recognition (Fig. 1)

FO time spend exploring familiar object, NO time spent exploring novel object, LY40 LY354740 (group II 
agonist). Exploration time for each group expressed as the mean ± the standard error of the mean (SEM). 
mGluR ko were tested for long-term memory 24 h after acquisition session (Fig. 1). mGluR ko, control 
mice and treated mice were tested for short-term memory 1.5 h after acquisition session (Figs. 2, 3, and4)

Group N Acquisition session (s) Recognition session (s)

FO (1) FO (2) NO FO (2)

m2ko and m3ko mice—long-term memory—Fig. 1
 m2ko—saline 11 13.7 (0.8) 13.6 (0.9) 8.2 (1.2) 8.2 (1.1)
 m2ko—PMPA 12 15.3 (0.9) 15.0 (0.9) 16.5 (1.1) 6.2 (0.9)
 m2ko—ZJ43 11 14.6 (1.2) 15.1 (1.2) 10.5 (1.3) 5.2 (0.7)
 m3ko—saline 11 18.3 (0.9) 18.7 (0.5) 12.3 (1.2) 12.0 (1.2)
 m3ko—PMPA 11 17.8 (1.1) 17.6 (0.9) 13.6 (2.2) 13.0 (2.3)
 m3ko—ZJ43 12 17.7 (0.9) 18.1 (0.8) 13.7 (1.3) 12.6 (1.0)

AD mice—Fig. 2—short -term memory—Fig. 2
 8 Weeks saline 15 11.4 (1.0) 12.5 (1.1) 22 (3.5) 12.6 (2.7)
 5 Months saline 12 4.5 (0.7) 5.1 (0.8) 6.6 (0.9) 6.8 (0.7)
 9 Months saline 10 22.3 (3.3) 21.3 (3.9) 26.6 (4.4) 25.9 (3.5)
 9 Months PMPA 10 19.9 (2.5) 20.8 (3.5) 45.2 (5.4) 27.4 (6.0)

Ethanol treated mice—short-term memory—Figs. 3 and 4
 S-S 10 20.4 (1.9) 21.4 (2.5) 25.2 (2.0) 11.9 (1.6)
 S-EtOH 11 25.2 (1.9) 27.0 (2.1) 21.8 (2.0) 18.5 (1.8)
 ZJ43-EtOH 6 14.2 (2.0) 16.0 (2.4) 10.7 (2.6) 5.33 (1.2)
 2-PMPA-EtOH 6 11.5 (0.7) 11.0 (0.8) 8.3 (1.3) 2.8 (0.9)
 LY40 (2)-EtOH 12 3.1 (0.4) 2.8 (0.4) 4 (1.0) 4.2 (1.4)
 LY40 (5)-EtOH 12 2.9 (0.4) 3.2 (0.5) 6.6 (1.0) 2.6 (0.3)
 LY40 (10)-EtOH 7 4.14 (1.0) 4.2 (1.0) 8.0 (2.6) 2.9 (0.6)
 mGluR2ko-S 11 45.5 (4.9) 45.7 (7.4) 60.7 (9.4) 31.0 (5.5)
 mGluR2ko-EtOH 12 12.7 (2.7) 13.3 (2.5) 23.6 (4.6) 20.2 (3.5)
 mGluR2ko-PMPA + EtOH 10 7.0 (1.5) 7.3 (1.4) 14.5 (2.3) 9.7 (1.5)
 mGluR3ko-S 9 20.8 (2.5) 17.7 (3.2) 21.3 (3.5) 12.7 (2.9)
 mGluR3ko-EtOH 9 8.0 (2.4) 7.1 (2.6) 14.3 (3.3) 15.1 (3.0)
 mGluR3ko-PMPA + EtOH 10 5.4 (1.0) 6.3 (1.4) 12.8 (3.4) 12.9 (3.6)
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Associates, St., Albans, Vermont, ENV-515 43 × 43  cm, 
with infrared beams and detectors) for 30 min prior to i.p. 
injection with saline, ZJ43 (150  mg/kg)with or without 
LY341495 (3  mg/kg), or with LY354740, returned to the 
chamber for 15  min, and injected (i.p.) with 2.1  g/kg of 
ethanol. Locomotor activity was then recorded as distance 
travelled during 10 min in the open field chamber.

Rotorod Test

The rotorod was used to assess motor coordination and bal-
ance. Mice were injected (i.p.) with saline, ZJ43 (150 g/kg), 
2-PMPA (10, 50, 100 mg/kg) with or without LY341495, 
or with LY354740 (10 mg/kg), returned to their home cage 
in the testing room and 15  min later were injected (i.p.) 
with 2.1  g/kg ethanol. Forty-five minutes later mice were 
placed on the drum (70  mm dia) facing away from the 
direction of the rotation so they can walk forward at con-
stant speed (4 rpm) for 10 s of habituation. The drum was 
then accelerated over 3  min, from 0 to 40  rpm (with cut 
off time = 3 min) and the latency to fall from the drum was 
recorded. Each animal was tested three times with 15 min 
between trials.

Statistical Analysis

For the novel object recognition test, the time spent explor-
ing each object was analyzed by two-way repeated meas-
ures ANOVA, with session as within-subject factor and 
treatment as a between-subject factor. Discrimination ratio 
data were analyzed by one-way ANOVA followed by Stu-
dent–Newman–Keuls post-hoc test. Motor activation data 
and rotorod data were analyzed with GLM ANOVA fol-
lowed by post-hoc Tukey test.

Results

Total Exploration Times

The time exploring individual objects during acquisition 
trials and recognition trials for each treatment group are 
presented in Table 1. Within treatment groups, there was 
a wide range of total exploration times in the acquisition 
and retention sessions. Drug treatments combined with 
ethanol tended to result in less attention to the objects 
during the acquisition trials. This was particularly evi-
dent in the LY354740 with ethanol (2.1  g/kg) treatment 
groups but also observed in the ko mice treated with 
ethanol. An additional anomaly is the substantial differ-
ence in the total exploration times of mGluR2 ko/saline 
treated mice versus the mGluR2ko/ethanol treated mice. 
Despite these differences between groups, there are 

clear and significant drug effects in the recognition ses-
sions. The reliability of the novel object recognition data 
is supported by the fact that, despite differences in the 
total exploration times among the treatment groups, both 
objects are nearly equally attended during the acquisition 
session across all groups and that the recognition data fall 
clearly into two categories: nearly equal attention to both 
objects (failed memory) or significantly greater attention 
to the novel object than familiar object (memory). There 
were no apparent effects of 2-PMPA or ZJ43 on mean 
exploration times during the acquisition trials relative to 
saline treated mice.

NAAG Peptidase Inhibitors ZJ43 and 2‑PMPA are 
Procognitive for Long‑term Memory in mGluR2 
and but not mGluR3 Knockout Mice

Mice lacking functional mGluR2, like wild type C57BL 
mice [7], explored the two similar objects to the same 
extent during the acquisition trial and failed to discrimi-
nate the between the novel and familiar objects when 
tested one day later (Fig.  1). Also as in wild type mice 
[7], both NAAG peptidase inhibitors, ZJ43 (150  mg/kg, 
i.p.) and 2-PMPA (50  mg/kg, i.p.) increased (p < 0.001) 
exploration of the novel object when the drugs were 
given prior to the acquisition trial on day 1.

mGluR3 knockout mice also spent similar amounts of 
time exploring the two identical objects during the acqui-
sition trial and the novel and familiar object during the 
retention trial. However, neither ZJ43 nor 2-PMPA was 
procognitive in these mice based on their failure to elicit 
greater exploration of the novel object in the retention 
trial.

NAAG Peptidase Inhibitor 2‑PMPA is Procognitive 
for Short‑Term Memory in Triple Transgenic 
Alzheimer’s Mice

The triple-transgenic (3xTg line) mice express three genes 
associated with familial Alzheimer’s disease,  APPSwe, 
 PS1M146V, and  tauP301L. The same mice were tested at 2, 5 
and 9 months of age in the novel object test of short-term 
memory. At 2 months of age, these mice demonstrated 
short-term memory while they failed in this test at 5 and 
9 months of age (Fig. 2). The 9-month old mice had a high 
level of exploratory behavior in both the acquisition and 
retention trials (Table  1). Treatment with 100  mg/kg of 
2-PMPA prior to the acquisition phase reversed this mem-
ory deficit (p = 0.05) in the 9-month old mice as demon-
strated by their level of exploration of the novel object rela-
tive to the familiar object.
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Acute Ethanol Intoxication and Short‑Term Memory

C576BL/6 mice (3–4 month old) treated with saline prior 
to the acquisition trial explored the two identical objects 
about the same amount of time (Fig.  3) and when pre-
sented with one novel object and one familiar object 
1.5  h later, they explore the novel object about twice as 
frequently as the familiar object [11]. In this study, there 
was a main effect of treatment and session  (F(6,59) = 4.51, 
p < 0.01,  F(1,59) = 199.32, p < 0.001) and a treatment x ses-
sion interaction  (F(6,59) = 3.73, p < 0.01). Mice treated with 
ethanol (2.1  g/kg, i.p.) prior to the acquisition trial also 
explored the two objects about the same amount of time. 
However, in contrast to the saline treated control mice, 
the ethanol treated mice explored the novel and famil-
ial objects equally in the retention trial suggesting a fail-
ure to recall or recognize the familiar object relative to the 
novel one. The NAAG peptidase inhibitors ZJ43 (150 mg/
kg), 2-PMPA (100  mg/kg) and the type 2/3 metabotropic 
glutamate receptor agonist LY354740 (10  mg/kg) reverse 

Fig. 1  Long-term novel object recognition memory test in mGluR2 
and mGluR3 KO mice. In this and the following novel object recog-
nition figures: for the acquisition session, the recognition index (RI) 
was calculated as (time exploring one of the objects/the time explor-
ing both objects) × 100. For the recognition session, the RI was cal-
culated as (time exploring the novel object/the time exploring both 
the familiar and novel object) × 100. During the acquisition phase, 
each group of mice explored each of the two identical objects about 
the same amount of time (recognition index ~50). During the recog-
nition phase 24  h later, the mGluR2 KO mice (m2ko) treated with 
saline explored the novel and familiar object similar amounts of time 
while those treated with 2-PMPA (100 mg/kg) or ZJ43 (150 mg/kg) 
explored the novel object twice as often as the original object (rec-
ognition index ~70), while the NAAG peptidase inhibitors had no 
procognitive effect in the mGluR3 ko mice (m3ko). m2ko/saline, 
n = 11; m2ko/PMPA, n = 12; m2ko/ZJ43, n = 11; m3ko/saline, n = 11; 
m3ko/PMPA, n = 11; m3ko/ZJ43, n = 12. *p < 0.05, **p < 0.01, 
***p < 0.001 for comparison between acquisition session and recog-
nition session within treatment group in Figs. 1, 2 and 3

Fig. 2  Short-term novel object recognition memory test in tri-
ple transgenic Amice. Eight week old AD mice explored the novel 
object significantly more than the familiar object while the 9 month 
old AD mice failed to discriminate between the novel and familiar 
object. 2-PMPA (100 mg/kg) restored the ability of the older mice to 
discriminate between the novel and familiar object. 8 week, n = 15; 9 
mos/saline, n = 10; 9 mos/PMPA, n = 10

Fig. 3  Ethanol impairment of short-term novel object recognition 
is reversed by NAAG peptidase inhibitors and the group II mGluR 
agonist LY354740. Mice treated with two injections of saline before 
the acquisition phase of the test, explored the novel object signifi-
cantly more than the familiar object 1.5  h later (recognition index 
~70). Ethanol (2.1  g/kg) blocked discrimination of the novel object 
in the retention session. Pretreatment with ZJ43 (150  mg/kg) and 
2-PMPA (100 mg/kg) reversed the cognitive deficits induced by etha-
nol. Pretreatment with LY354740(LY40) dose dependently reversed 
the effects of ethanol. S-S, n = 10; S-EtOH, n = 11; ZJ43-EtOH, n = 6; 
2-PMPA-EtOH, n = 6; LY40(2)-EtOH, n = 12; LY40(5)-EtOH, n = 12; 
LY40(10)-EtOH, n = 7
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the effects of ethanol on novel object recognition (p < 0.01, 
p < 0.001 and p < 0.01 respectively). A low dose of the type 
2/3 metabotropic glutamate receptor antagonist LY341495 
(2 mg/kg) failed to block the effects of 2-PMPA on ethanol 
treatment in this assay. When given alone to control mice 
prior to acquisition, 2 and 3 mg/kg of LY341495 reduced 
memory on the retention trial and could not be used to con-
firm the role of NAAG at the group II metabotropic gluta-
mate receptors in this study. Mice given 1.7 g/kg (i.p.) etha-
nol did not exhibit a significant loss of short-term memory 
in this assay (data not shown).

In the absence of confirmation that the mGluR mediated 
the efficacy of NAAG peptidase inhibition in the ethanol 
intoxication model, the study was repeated using mGluR2 
and mGluR3 ko mice treated with saline or 2.1  mg/kg 
(i.p.) ethanol (Fig.  4). Saline treated mice of both strains 
showed a significant level of recognition of the novel object 
and this short-term memory was blocked by pretreatment 
with ethanol. mGluR2 ko mice pretreated with 2-PMPA 
(100  mg/kg) prior to ethanol administration demonstrated 
significant memory (p < 0.05) in the recognition trials 
while 2-PMPA was without a significant effect in the etha-
nol treated mGluR3 ko mice.

NAAG Peptidase Inhibitors Block Ethanol‑Induced 
Motor Activation

Ethanol (2.1  g/kg, i.p.) induced a prompt increase 
(p < 0.001) in motor activation in mice placed in an open 
field chamber to which they previously had been habit-
uated (Fig.  5). There was a main effect of drug (saline, 
ZJ43 or LY doses,  F(6,80) = 4.679, p < 0.001) and treat-
ment (saline or ethanol,  F(1,80) = 15.503, p < 0.001). Pre-
treatment with ZJ43 (50, 100 and 150  mg/kg, i.p.) dose 
dependently reduced motor activation during the 10 min 
interval immediately following ethanol administration 
(50 mg/kg, p < 0.01 and 150 mg/kg, p < 0.001). The group 
II metabotropic glutamate receptor agonist LY354740 
(10 mg/kg) reversed the effects of ethanol (p < 0.001). To 
confirm the role of NAAG and a type 2 or 3 metabotropic 
glutamate receptor in mediating the effects of NAAG 
peptidase inhibition, ZJ43 (150  mg/kg) was co-admin-
istered with the group II antagonist LY341495 (3  mg/
kg). The antagonist reversed the effect of 150  mg/kg 
ZJ43 (p < 0.05). The group II mGluR agonist LY354740 
(10 mg/kg, i.p.) also blocked the ethanol effect.

Fig. 4  mGluR3 mediates the procognitive effects of NAAG pepti-
dase inhibition in the ethanol treatment model. mGluR2 (m2KO) 
and mGluR3 KO (m3KO) mice exhibited short-term (1.5 h) memory 
in the novel object memory test. Mice of both strains failed to dis-
criminate between the novel and familiar object when treated with 
2.1 g/kg ethanol prior to the acquisition trial. 2-PMPA (100 mg/kg) 
partially reversed the effect of ethanol in mGluR2 but not mGluR3 
mice. mGluR2ko-S, n = 11; mGluR2ko-EtOH, n = 12; mGluR2ko-
PMPA + EtOH, n = 10; mGluR3ko-S, n = 9; mGluR3ko-EtOH, n = 9; 
mGluR3ko-PMPA + EtOH, n = 10

Fig. 5  Ethanol-induced motor activation reversed by ZJ43 and group 
II agonist LY354740. Ethanol (2.1 g/kg, i.p.) increases motor activa-
tion in open field test. Pretreatment with ZJ43 (50, 100 and 150 mg/
kg, i.p.) dose dependently reduced motor activation during the 10 min 
interval immediately following ethanol administration. The group II 
metabotropic glutamate receptor agonist LY354740 (10  mg/kg) was 
similarly effective in moderating the effects of ethanol. The group 
II metabotropic glutamate receptor antagonist LY341495 reversed 
the effect of ZJ43 (150 mg/kg) on ethanol-induced motor activation. 
S-saline. ZJ = ZJ43, LY95 = LY341495, LY40 = LY354740. N: s/s 
(11), ZJ150/s, ZJ100/Et-OH, LY95 + ZJ150/Et-OH (9), s/Et-OH (20), 
ZJ50/Et-OH, ZJ150/Et-OH, LY40/Et-OH (10). *p < 0.05, **p < 0.01, 
***p < 0.001
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Rotorod Test of Ethanol‑Induced Loss of Motor 
Coordination or Balance

In the rotorod test, mice given with ethanol (2.5 g/kg, i.p.). 
There was a significant effect of drug  (F(8,100) = 3.458, 
p < 0.01) and treatment  (F(1,100) = 22.409, p < 0.001). Etha-
nol treatment produced a 55% reduction in latency to fall 
from the rotorod relative to saline treated mice (p < 0.001) 
(Fig. 6). ZJ43 (150 mg/kg, i.p.) blocked this effect of etha-
nol. 2-PMPA (10, 50 and 100 mg/kg) blocked the effect of 
2.1 g/kg ethanol in a dose-dependent manner (p < 0.01 for 
100 mg/kg and p < 0.05 for 50 mg/kg comparing with etha-
nol group). The effects of ZJ43 and 2-PMPA were reversed 
by the group II mGluR antagonist LY341495 (3  mg/kg, 
p < 0.05) while this antagonist alone had no significant 
effect on the ethanol-induced loss of motor coordination. 
The group II mGluR agonist LY354740 (LY40, 10 mg/kg) 
also reduced the effects of 2.1 g/kg ethanol on latency to 
fall (both p < 0.05).

Discussion

mGluR3 Mediates Procognitive Efficacy of NAAG 
Peptidase Inhibition

The purpose of this study was to further test the procog-
nitive effects of NAAG peptidase inhibition across mod-
els of normal memory and in clinically relevant models 
of cognitive deficits. In parallel, the goal was to test the 
hypothesis that these procognitive effects are mediated 
by NAAG activation of the group II metabotropic glu-
tamate receptor, mGluR3. While many strains of mice 
are reported to demonstrate short-term (1.5  h) memory 
in the novel object recognition test, there are no reports 
of mice exhibiting long-term (24 h) memory in this test. 
Similarly, the mGluR2 and mGluR3 ko mice in this study 
showed significant memory in the short-term test (Fig. 4) 
and the absence of memory of the familiar object in the 
long-term memory test (Fig.  1). In previous studies, 
NAAG peptidase inhibition reversed short-term memory 
deficits elicited by a low dose of the NMDA antagonist 
MK801 [11] and had procognitive activity in the 24  h 
delay test [7]. Both of these actions were blocked by the 
group II mGluR antagonist LY341495, consistent with a 
series of studies that support the conclusion that the pep-
tide mediates group II mGluR activation [20, 42, 43]. 
The finding that the procognitive effects of 2-PMPA and 
ZJ43 in the 24 h delay novel object recognition test were 
observed in mGluR2 but not mGluR3 ko mice (Fig.  1), 
supports the conclusion that mGluR3 is the group II 
receptor mediating these procognitive actions. This con-
clusion is further strengthened by the efficacy of 2-PMPA 
in partially reversing ethanol-induced cognitive impair-
ment of short-term memory in mGluR2 but not mGluR3 
ko mice (Fig. 4). A similar result in support of a role for 
mGluR3 in the efficacy of NAAG peptidase inhibition 
was observed in a mouse model of schizophrenia [10]. 
Central to the conclusion that these effects of the pepti-
dase inhibitors are mediated by the activation of mGluR3 
by elevated levels of synaptically released NAAG, rather 
than by the drugs directly, are the reports that high levels 
(100 UM) of ZJ43 and 2-PMPA do not activate group II 
receptors in vitro [12, 44].

These data on the mGluR3 mediated procognitive 
actions of NAAG peptidase inhibition also are consist-
ent with the broader hypothesis that this receptor plays 
a more general role in memory formation or retrieval. 
Supporting this view, mGluR3 ko mice showed deficits 
in working memory when tested in T- and Y mazes and 
polymorphisms in mGlur3 are associated with cognitive 
deficits in schizophrenia patients [45, 46].

Fig. 6  ZJ43 and 2-PMPA moderate ethanol-induced loss of bal-
ance on Rotarod Test. a Ethanol (2.1 g/kg, i.p.) significantly reduced 
latency to fall relative to saline treated mice (p < 0.001). 2-PMPA 
reversed the effect in dose dependent manner (p < 0.01 for 100  mg/
kg and p < 0.05 for 50  mg/kg comparing with ethanol group). ZJ43 
(150  mg/kg) and LY354740 (10  mg/kg) also reduced the effects of 
2.1 g/kg ethanol on latency to fall (both p < 0.05). The group II antag-
onist LY341495 (3  mg/kg) blocked the effect of 2-PMPA (100  mg/
kg) and ZJ43 (150 mg/kg), both at p < 0.05 versus 2-PMPA and ZJ43. 
S-saline, LY95 = LY341495, LY40 = LY354740. All groups are com-
pared individually for statistical significance versus the saline-eth-
anol group. N: s/s(10), s/EtOH(12), ZJ43-EtOH(12), ZJ43 + LY95/
EtOH(17), 2-PMPA100-EtOH(8), 2-PMPA50-EtOH(8), 2-PMPA10-
EtOH(8), 2-PMPA100 + LY95(3)EtOH(8), LY95/s(10), LY40/
EtOH(8), LY95/EtOH(10)
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NAAG as mGluR3 Agonist

A rigorous study of the effect of purified NAAG on hip-
pocampal slices and cells transfected with mGluR2 or 
mGluR3 [24] found no evidence of the peptide activating 
a group II receptor and suggested that some prior reports 
of NAAG activation of these receptors could have been 
due to a previous report that commercial NAAG was con-
taminated with 0.3–0.4% glutamate [25]. While this gluta-
mate effect cannot be discounted for some studies, it does 
not seem consistent with other results [42]. For exam-
ple, NAAG and glutamate dose responses for group II 
mGluR activation differed by no more than threefold when 
tested against cerebellar astrocytes, cells that expressed 
mGluR3 message but little if any mGluR2 [43]. The fail-
ure of NAAG to activate group II receptors in transfected 
cells [23, 24] further contrasts the report that NAAG is 
several orders of magnitude more potent than glutamate 
in reducing transmitter release from spinal cord synap-
tosomes [20], an action that was blocked by the group II 
antagonist LY341495 and the mGluR3 selective antagonist 
beta-NAAG [47]. Very high levels of NAAG and NAAG 
peptidase activity are expressed in spinal cord and spinal 
sensory neurons [48, 49] and peptidase inhibition moder-
ated the effect of spinal cord trauma [50].

At the moment, there are not sufficient data to resolve 
the apparent conflict among the data on the failure of 
NAAG to activate mGluR3 in transfected cells and the 
studies presented here and elsewhere [4, 7, 10, 11, 13, 20, 
42] in which the effects of NAAG and NAAG peptidase 
inhibition are blocked by group II mGluR antagonists and 
are absent in mGluR3 ko mice. One possibility is that the 
mechanism of expression or dimerization of mGluR3 fol-
lowing its transfection into non-neuronal or -glial cell lines 
differs from that in vivo, in spinal cord synaptosomes or in 
cultured astrocytes.

NAAG Peptidase Inhibition in Alzheimer’s Disease 
Model Mice

The  APPSwe,  PS1M146V, and  tauP301L transgenic mouse line 
[28] captures both the beta-amyloid and Tau neuropathol-
ogy found in Alzheimer’s disease [51] and thus represents 
one of the most widely studied animal models of this disor-
der. Age-dependent behavioral changes have been charac-
terized in this mouse line including deficits in novel object 
recognition and attention [52–55]. The novel object recog-
nition test also has been used to characterize other trans-
genic animal models of Alzheimer’s disease [35, 56] and 
recognition memory for novel objects serves as a marker for 
clinical diagnosis of this disorder [57]. This test is particu-
larly useful in distinguishing cognitive loss in normal aging 
versus loss in Alzheimer’s disease model mice inasmuch as 

different strains of mice retain short-term memory in the 
novel object recognition test well beyond 9 months of age 
even while other cognitive functions are declining [37] In 
the present study, short-term novel object recognition was 
observed in the transgenic mice at 2 months but not at 5 
and 9 months of age. Consistent with prior reports of pro-
cognitive effects of NAAG peptidase inhibition [7, 8, 11], 
2-PMPA significantly improved performance on this task 
in the 9-month old triple mutant Alzheimer’s disease mice. 
While normal 9- month old wild type mice were not tested 
in this study, a substantial literature demonstrates mice of 
different strains, including non-transgenic colony mates of 
triple transgenic Alzheimer’s mice do not exhibit a decline 
in short-term novel object recognition as late as 22 months 
of age [36, 38, 39, 58–60]. Thus, while the behavioral test 
presented here does not speak to cognitive deficits asso-
ciated with normal aging in mice, it will be interesting to 
determine if NAAG peptidase inhibitors are procognitive 
in other behavioral tests in which normal mice demonstrate 
aging-related cognitive deficits. In a similar study, we found 
that ZJ43 also reversed the cognitive deficit of aged triple 
transgenic mice in the novel object recognition test and 
the efficacy of ZJ43 was reversed by the group II mGluR 
antagonist (Olszewski and Neale, work in progress).

Broader Impact of NAAG Peptidase Inhibition 
in Cognition

The observations that NAAG peptidase inhibition and dele-
tion of GCPII are procognitive in control conditions, where 
the mice have not been cognitively challenged via a drug 
treatment ([7] and Fig.  1), suggest that the procognitive 
actions of these peptidase inhibitors in animal models of 
clinical conditions, such as Alzheimer’s disease (Fig.  2), 
schizophrenia [8, 11] and ethanol intoxication (Fig.  3), 
might not be specifically reversing the neurochemical pro-
cesses that underlie these clinical models but rather be 
generally procognitive. However, while the conditions that 
induce these models are clearly different, they can be linked 
by the common element of increases in glutamate release 
and NAAG peptidase inhibitors have been consistently 
shown to reduce synaptic release of glutamate [13, 14, 21, 
22, 61–63]. In any case, the procognitive efficacy of NAAG 
peptidase inhibition in long-term novel object recognition, 
demonstrate that NAAG’s role on cognition is not limited 
to deficits induce by excess glutamate release.

In human studies, treatment with growth hormone-
releasing hormone increased NAAG levels in the prefron-
tal cortex and improved performance of subjects exhibiting 
mild cognitive impairment [64]. Similarly, NAAG levels in 
the hippocampus positively correlated with cognitive func-
tioning in multiple sclerosis patients [8].
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Other Group II mGluR Ligands in Cognition Studies

The mGluR2/3 agonist LY379268 had a procognitive 
effect in the novel object recognition test [65] while het-
erotropic group II mGluR agonists and an mGluR2 posi-
tive allosteric modulator have procognitive effects in other 
behavioral tests [66, 67]. Yet in other studies, agonists 
including the LY354740 impair rather than enhance atten-
tion and working memory [68–70]. Interpretation of these 
reports is complicated by the use of agonists and antago-
nists that interact with both mGluR2 and mGluR3 in vitro 
and in vivo [27, 30, 31, 71]. In studies using ko mice, some 
heterotrophic group II agonists have been shown to work 
via mGluR2 rather than mGluR3 [69, 72, 73]. This leads to 
the possibility that the contrasting effects of heterotrophic 
group II agonists on cognition may reflect differences in the 
behavioral tests that were used or their differential actions 
on mGluR2 and mGluR3 receptors. Evidence that the pro-
cognitive effects of NAAG peptidase inhibition could be 
specific to the type of memory being tested comes from the 
report that 100 mg/kg of 2-PMPA in mice does not affect 
long-term memory in the step through passive avoidance 
test or spatial working memory in the Y maze [74].

NAAG Peptidase Inhibition and Ethanol Induced 
Cognitive Deficits in Short‑Term Novel Object 
Recognition

NAAG peptidase inhibition consistently reversed the cog-
nitive impairment induced by ethanol in short-term novel 
object recognition (Fig.  3 and4). We previously reported 
that NAAG peptidase inhibition alone had no effects on 
cognition in this test [11]. The data in Fig. 4 clearly demon-
strate that the efficacy of these inhibitors in this short-term 
memory test require mGluR3. While the effect of 2-PMPA 
in the mGluR2 ko mice does not reflect a complete rever-
sal of the action of ethanol, the recognition index for this 
group if mice is significantly different from the acquisition 
session.

Ethanol, Glutamate and Group II mGluR

Glutamate appears to have a central role in drug addiction 
and alcoholism [75]. The efficacy of NAAG peptidase inhi-
bition in reversing the effects of ethanol treatment (Figs. 3, 
4, 5, 6) is consistent with the view that group II receptors, 
particularly mGluR3, are among the more promising tar-
gets for the development of drugs to treat alcohol addiction 
[76–78] Heterotropic group II glutamate receptor agonists 
reduce drug seeking, conditioned place preference and 
stress-induced reinstatement in animal models of alcohol 
addiction [76, 79, 80]. The agonist LY379268 also blocks 
the effects of alcohol on discriminative stimulus testing 

[81], alcohol self-administration and reinstatement [82]. 
Additionally, epistatic effects of genetic variants of the 
mGluR3 and COMT genes have been associated with hip-
pocampal volume in alcohol-dependent patients but not in 
controls [83]. The activity of NAAG peptidase inhibition 
in the present study might again be related to the efficacy 
of the peptide in reducing release of glutamate inasmuch 
as ethanol induces glutamate release in the nucleus accum-
bens, hippocampus and posterior ventral tegmental area, 
brain regions known to mediate some of the clinical effects 
of alcohol consumption [84–86].

The stimulant effects of alcohol in adolescents [40] are 
modeled in mice by open field motor activation induced 
immediately after administration [41]. In the present study 
using mice that previously had been habituated to the open 
field chamber, ethanol (2.1  g/kg) induced an increase in 
open field activity relative to control mice over the first 
10  min minutes after injection (Fig.  5). Pretreatment of 
mice with NAAG peptidase inhibitors reduced this initial 
motor activation. Such a result might be taken to indicate 
that NAAG peptidase inhibitors have a sedative effect as 
they similarly block motor activation induced by PCP and 
d-amphetamine [9–11, 87]. However, these inhibitors, 
given alone, do not affect motor activity in control mice 
habituated or unhabituated to open field conditions [11].

Data from animal models suggest that mGluR3 agonists 
might be useful in treatment of ethanol addiction [76–78]. 
The data presented here demonstrate that drugs that elevate 
NAAG levels also moderate motor activation, cognitive and 
balance effects of ethanol intoxication and support the con-
clusion that mGluR3 mediates these effects. The breadth of 
actions of NAAG peptidase inhibitors in these studies sug-
gests that they may be affecting a central mechanism under-
lying ethanol-induced intoxication.

Conclusion

NAAG peptidase inhibition improves cognition in the 
novel object recognition tests and reduces the cognitive and 
motor deficits induced by ethanol via a cellular mechanism 
that involves activation of mGluR3. The GCPII inhibitor 
2-PMPA also reverses the cognitive deficit observed in an 
animal model of Alzheimer’s disease. These and other data 
support the conclusion that GCPII is a significant target for 
the development of procognitive drugs.
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