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Abstract The peroxisome proliferator-activated receptor

gamma (PPARc) is a ligand-activated transcriptional factor

that belongs to the nuclear hormone receptor superfamily.

PPARc was initially identified through its role in the reg-

ulation of glucose and lipid metabolism and cell differen-

tiation. It also influences the expression or activity of a

number of genes in a variety of signalling networks. These

include regulation of redox balance, fatty acid oxidation,

immune responses and mitochondrial function. Recent

studies suggest that the PPARc agonists may serve as good

candidates for the treatment of several neurodegenerative

disorders including Parkinson’s disease (PD), Alzheimer’s

disease, Huntington’s disease and amyotrophic lateral

sclerosis, even though multiple etiological factors con-

tribute to the development of these disorders. Recent

reports have also signposted a role for PPARc coactivator-

1a (PGC-1a) in several neurodegenerative disorders

including PD. In this review, we explore the current

knowledge of mechanisms underlying the beneficial effects

of PPARc agonists and PGC-1a in models of PD.
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Abbreviations

PD Parkinson’s disease

PPARs Peroxisome proliferator-activated receptors

TZDs Thiazolidinediones

PGC-1a Peroxisome proliferator-activated receptor

gamma coactivator-1 alpha

ROS Reactive oxygen species

SOD Superoxide dismutase

NQO1 NAD(P)H:quinone oxidoreductase 1

Nrf2 Nuclear factor (erythroid-derived 2)-like 2

TFAM Mitochondrial transcription factor A

MPTP 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MPP? 1-Methyl-4-phenylpyridinium ion

CNS Central nervous system

HO-1 Heme oxygenase-1

NRF Nuclear respiratory factor

6-OHDA 6-Hydroxydopamine

LPS Lipopolysaccharide

Introduction

The peroxisome proliferator-activated receptors (PPARs)

are ligand-inducible transcription factors that belong to the

hormone nuclear receptor superfamily. They are involved

in the transcriptional control of genes regulating various

physiological processes such as lipid homeostasis, glucose

metabolism, inflammation, cellular differentiation and

proliferation [1, 2]. PPARs act mainly as lipid sensors,

regulating metabolism in response to dietary lipid intake

and direct the subsequent metabolism and storage of lipids

[3]. Three isoforms have been identified, PPARa, PPARb/

d, and PPARc. These three isoforms differ in terms of their

tissue distribution, ligand specificity and physiological

role. PPARa acts primarily to regulate energy homeostasis

through its ability to stimulate the breakdown of fatty acids

and cholesterol, driving gluconeogenesis and reduced
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triglyceride levels. This receptor in particular acts as a lipid

sensor, binding fatty acids and initiating their subsequent

metabolism. The PPARb/d receptors bind and respond to

VLDL-derived fatty acids, eicosanoids, including prosta-

glandin A1, and are involved in fatty acid oxidation.

PPARc stimulates adipocyte differentiation and lipid

metabolism. PPARc operates in the metabolism of lipid

and carbohydrate metabolism and its activation is related to

reduction of glucose levels [4].

Peroxisome proliferator-activated receptors (PPARs) are

activated by small, lipophilic compounds and regulate gene

expression by forming heterodimers with retinoid-X-

receptors. Once activated the PPAR/retinoid-X-receptors

heterodimer binds to the specific DNA sequence [peroxi-

some proliferator response element (PPRE)] on the pro-

moter region of PPAR target genes [2, 5] to modulate

transcriptional activity. The activity of PPARs is also

regulated by posttranslational modification such as phos-

phorylation and sumoylation [6, 7]. For example, there are

several mechanisms involved in PPARc inactivation. Thus,

phosphorylation can negatively or positively affect PPARc
activity depending on which specific protein residue is

modified [8–11]. The PPARc activity is decreased via the

ubiquitination degradation pathway [12]. Alternatively,

PPARc sumoylation promotes the repression of inflam-

matory or adipocyte differentiation genes [6, 13].

Peroxisome proliferator-activated receptor alpha

(PPARa) ligands include fibrates that are commonly used

for the treatment of hypertriglyceridemia and WY14,643

and GW7647. PPARb/d ligands include the prostacyclin

PGI2, and synthetic compounds GW0742, GW501516, and

GW7842. All PPARs can be activated by polyunsaturated

fatty acids with different affinities [14, 15]. Naturally

occurring PPARc ligands include long chain fatty acids,

other natural lipid ligands, eicosanoids and the prosta-

glandin 15d-PGJ2, but also few nonsteroidal antiinflam-

matory drugs, as ibuprofen, fenoprofen, and indomethacin

A [15–17]. Synthetic thiazolidinediones (TZDs), including

pioglitazone and rosiglitazone were originally designed as

PPARc agonists and are currently in clinical use as insulin-

sensitizing agents for the treatment of type 2 diabetes [15,

18].

Distribution of PPARs

Peroxisome proliferator-activated receptor alpha (PPARa)

is highly expressed in metabolically active tissues, such as

liver, kidney, intestine, heart, skeletal muscle, adrenal

gland and pancreas during foetal development of rodents

[19, 20]. In adult rodent organs, the distribution of PPARa
is similar to its foetal pattern of expression. In the central

nervous system (CNS), PPARa is expressed at very low

levels predominantly in astrocytes and PPARa is most

highly expressed in tissues that catabolise fatty acids, such

as the adult liver, heart, kidney, large intestine and skeletal

muscle [21]. PPARb/d is the most abundant in the CNS,

PPARb/d is expressed ubiquitously in virtually all tissues

and earlier during foetal development. PPARb/d mRNA is

present ubiquitously, with a higher expression in the

digestive tract and placenta [19–21]. In the CNS PPARb/d
is preferentially found in the cerebellum, brain stem and

cortex, was enriched in the dentate gyrus/CA1 region and

was found in immature oligodendrocytes. Its activation

promotes differentiation, myelin maturation and turnover

[22, 23]. PPARc receptors are distributed in several cell

types and tissues. Given the role of PPARc in regulating

glucose and lipid metabolism, in promoting lipid storage

and adipocyte differentiation [24–26], PPARc is expressed

in white and brown adipose tissue and in the CNS during

foetal development of rodents. PPARc is abundantly

expressed in white adipose tissue, and is present at lower

levels in skeletal muscle, heart and liver [19–21]. In the

CNS, PPARc is expressed in several cell types including

neurons, astrocytes, oligodendrocytes and microglia [16,

26–28]. In neurons, PPARc immunoreactivity appears

mainly as a nuclear labeling although sometimes cyto-

plasmic staining is detectable in some cortical neuron [28].

High levels of PPARc have been found in the piriform

cortex and olfactory tubercle, in the basal ganglia, in

rhomboid, centromedial, and parafascicular thalamic

nuclei, in the reticular formation, and in the stellate cells of

cerebellar cortex [28]. PPARc is expressed in the basal

ganglia, and in areas expressing dopamine receptors.

PPARc is expressed in adult cultured cortical astrocytes

[27, 28].

PPARc in Models of Parkinsońs Disease

Parkinson’s disease (PD) is a chronic neurodegenerative

disorder characterized by the progressive loss of dopami-

nergic neurons of the substantia nigra pars compacta,

resulting in deficiency of nigrostriatal dopamine transmis-

sion. One pathological feature of the disease is the presence

of Lewy bodies that are intraneuronal proteinaceous cyto-

plasmic inclusions, which include a-synuclein, ubiquitin,

and neurofilaments, and are found in all affected brain

regions. The basic characteristics of PD include tremor,

rigidity, bradykinesia and impaired balance. PD occurs

most commonly as a sporadic form (95 %), while familial

forms make up the remainder, involving mutations in an

array of proteins that include PINK1, PARKIN, LRRK2,

fbxo-7 and DJ-1 [29], although environmental factors such

as chemicals, pesticides and metals may increase the risk of

developing PD [30–32]. Currently there is no effective
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treatment that slows the progression of the disease, and

management remains symptomatic. Although the specific

pathomechanism of PD is still unclear, there is ever

growing evidence suggesting the involvement of mito-

chondrial dysfunction, oxidative stress, protein dysfunc-

tion, apoptosis, autophagy and chronic neuroinflammation.

In recent years, the neuroprotective effects of PPARc
agonists has been assessed in several in vitro and in vivo

models of several neurodegenerative conditions including

PD [33, 34], Alzheimer’s disease [35, 36], cerebral ische-

mia [37] and amyotrophic lateral sclerosis [38]. The

potential mechanisms of neuroprotection by PPARc ago-

nists in PD are summarised in (Fig. 1).

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP)

administration has been widely used in animals to selec-

tively target dopaminergic neurons and so reproduce PD

symptoms [39]. In the acute MPTP model in the rodent, the

PPARc agonist pioglitazone blocked dopaminergic neuro-

degeneration and reduced astrocytic and microglial acti-

vation. However, pioglitazone treatment did not alleviate

MPTP-induced loss of tyrosine hydroxylase in the striatum

and had only partially protective effects on the MPTP-

induced decline in striatal tissue levels of dopamine [40].

In another study pioglitazone was shown to protect against

chronic MPTP-induced neurotoxicity, with reduced acti-

vation of microglia, reduced induction of iNOS-positive

cells and fewer glial fibrillary acidic protein (GFAP)

positive cells in both striatum and substantia nigra [41].

Recently it has also been shown that pioglitazone protected

against MPTP induced neurotoxicity by the inhibition of

monoamine oxidase-B in the striatum. Therefore, blocking

the conversion of MPTP to its active toxic metabolite

MPP?, via inhibition of monoamine oxidase-B [42].

Treatment with rosiglitazone in the chronic MPTP (plus

probenecid) mouse model, completely prevented motor and

olfactory dysfunction and loss of dopaminergic neurons in

the substantia nigra. Rosiglitazone partially protected

against loss of striatal dopamine, whereas decreases in

DOPAC and dynorphin mRNA in the striatum were com-

pletely abolished. Also astrogliosis and number of acti-

vated microglia were reduced as assessed by GFAP and

CD11b immunostaining, respectively, without affecting

MPTP metabolism [43]. In the same model of MPTP plus

probenecid, treatment with rosiglitazone was also effective

in protecting against partial degeneration of the substantia

nigra and the decline of striatal dopamine [33]. In a recent

study, pioglitazone was also neuroprotective and antiin-

flammatory in an MPTP model in the rhesus monkey, with

a significant improvement in a clinical rating score.

Behavioral recovery was associated with preservation of

nigrostriatal dopaminergic markers and reduced infiltration

by CD68-positive macrophages in the nigrostriatal area

[44]. More recently, the administration of a non-TZD

partial PPARc agonist, was again shown to be neuropro-

tective in MPTP-induced neurodegeneration, associated

with downregulation of neuroinflammation, decreased

oxidative stress, and modulation of PPARc and PPARc
coativator-1a (PGC-1a) expression [45].

Intrastriatal injection of lipopolysaccharide (LPS) in rats

has also served to model degeneration of dopaminergic

neurons in PD. In this model pioglitazone prevented the

loss of dopaminergic neurons and the decline in striatal

dopamine levels. Pioglitazone normalized COX-2 expres-

sion and increased the expression of uncoupling protein 2

(Uncoupling protein 2 is one of five acknowledged

uncoupling proteins and it is located in the inner mito-

chondrial membrane, where it helps reduce the proton

gradient. Also, uncoupling protein 2 may be involved in

PD) and increased the expression of mitoNEET, while

iNOS induction and oxidative stress were reduced [46, 47].

In dopaminergic neuron-glial cultures, pioglitazone pro-

tected neurons from LPS by inhibiting abnormal microglial

activation, interfering with phosphorylation of Jun N-ter-

minal kinase and nuclear factor kappa-B, and by sup-

pressing cyclooxygenase-2 expression and the subsequent

prostaglandin E(2) synthesis [48]. Pioglitazone also pro-

tected dopaminergic neurons against LPS damage by

inhibiting iNOS expression and nitric oxide generation by

differential regulation of p38 mitogen-activated protein

kinase and the phosphoinositide 3-kinase/protein kinase B

pathway [49]. Microglial activation has been implicated in

the pathogenesis of PD and is believed to aggravate neu-

ronal injury [33, 50]. The anti-inflammatory actions of

rosiglitazone against LPS were mediated by its ability to

increase IL-4 expression [51]. Thus, production of pro-

inflammatory cytokines has been described in a 6-hy-

droxydopamine (6-OHDA) model of PD, where microglial

activation was observed [52]. A recent study demonstrated

that pioglitazone did not exert any protection in the

6-OHDA model. The lack of effect of pioglitazone in this

model was attributed to the severity of the damage caused

by 6-OHDA. However, pioglitazone protected against

neuronal loss and motor behaviour in the acute MPTP

model [53]. In the 6-OHDA-lesioned rat, the activation of

PPARc receptors by rosiglitazone significantly attenuated

the production of both COX-2 and TNF-a expression and

increased GFAP expression in the striatum [54].

It has been demonstrated that PPARc has actions on

mitochondrial function. PPARc activation increased mito-

chondrial membrane potential and protected cells from

apoptosis following growth factor withdrawal [55]. Piog-

litazone also increased neuronal glucose uptake and

restored brain ATP levels [56, 57]. Pioglitazone increased

mitochondrial DNA content, oxygen consumption, PGC-

1a and mitochondrial transcription factor A (TFAM) in

human adipose tissue and in the neuronal-NT2 cell line
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Fig. 1 Pathways involved in neuroprotection by PPARc and PGC-1a in

PD. Mitochondrial dysfunction, oxidative stress, proteosomal dysfunc-

tion, neuroinflammation, autophagy and apoptosis are all implicated in the

pathogenesis of PD. Environmental factors and toxins (rotenone, MPTP,

MPP? and 6-OHDA) directly induce both oxidative stress and mitochon-

drial dysfunction. Different toxins increase oxidative stress (ROS) and

cause mitochondrial dysfunction, both increase [Ca2?], decrease ATP,

decrease mitochondrial membrane potential, decrease oxygen consump-

tion and cause failure in autophagy, proteosomal dysfunction and

abnormal protein aggregation which ultimately lead to neuronal death.

Activated microglia release inflammatory cytokines and increase ROS,

driving neuronal degeneration. DJ-1 and PARKIN mutations cause

aggregation of a-synuclein and PARKIN/PINK-1 mutations cause failure

in autophagy. Mutations in the PARKIN gene cause protein misfolding.

Mutations in PARKIN also increase expression of the PARIS, thereby

repressing the expression of PGC-1a. PPARc agonists inhibit microglial

activation and reduce inflammation by decreasing expression of cytokines,

TNF-a, COX2 and iNOS. PPARc agonists reduced apoptosis by

inhibition of BAX, IL2, IL1b and by increasing Bcl-2 expression. PPARc
agonists increase antioxidant defences, mitochondrial biogenesis, oxygen

consumption, mitochondrial membrane potential, autophagy, PGC-1a
and other transcription factors. Moreover, PGC-1a induces the expression

of downstream target genes involved in mitochondrial biogenesis,

transcription factors and antioxidant defences. Thus, PGC-1a and PPARc
agonists regulate the expression of several target genes involved in

neuronal survival and neuroprotection by inhibiting mitochondrial

dysfunction, oxidative stress, proteosomal dysfunction, autophagy, neur-

oinflammation and apoptosis
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[58–61]. Rosiglitazone induced both mitochondrial bio-

genesis and glucose utilization in mouse brain [62]. In

addition, Pioglitazone stabilizes MitoNEET, an iron-sulfur

containing outer mitochondrial membrane protein which

regulates oxidative capacity [63–65].

Rotenone is a complex I inhibitor and has been widely

used to model PD [39, 66]. Consequently, pioglitazone

protected against the reduction of locomotor activity and

decline in striatal dopamine levels induced by rotenone

[67]. In a recent study, it was found that rotenone irre-

versibly decreased mitochondrial mass, membrane poten-

tial and oxygen consumption, while increasing free radical

generation and autophagy in human differentiated SH-

SY5Y cells. Similar changes were seen in PINK1 knock-

down cells, in which the membrane potential, oxygen

consumption and mitochondrial mass were all decreased.

In both models, all these changes were reversed by treat-

ment with rosiglitazone, which increased mitochondrial

biogenesis, increased oxygen consumption and suppressed

free radical generation and autophagy [68]. Rosiglitazone

significantly increased the expression of proteins related

with antioxidant defences and mitochondrial biogenesis

(SOD1, Nuclear factor (erythroid-derived 2)-like 2 (Nrf2),

NAD(P)H:quinone oxidoreductase 1 (NQO1), PGC-1 and

TFAM). Thus, rosiglitazone was neuroprotective in two

different models of mitochondrial dysfunction associated

with PD through a direct impact on mitochondrial function

[68]. Nrf2 is a pivotal upstream transcription factor

responsible for the regulation of redox balance. Nrf2 is

normally sequestered in the cytoplasm by its inhibitor

Keap1. In response to oxidative stress, Nrf2 translocates to

the nucleus and dimerizes with another member of the

Cap’n’Collar/basic leucine zipper family of transcription

factors [69], activating transcription by binding to an

antioxidant response element (ARE) located in the pro-

moter of a number of antioxidant genes, including NQO1,

Heme oxygenase-1 (HO-1) and Glutathione S-transferase

[70, 71]. A number of studies have suggested that Nrf2 and

NQO1 protect against cellular dysfunction in different

models of PD [72–74]. Recently, it was demonstrated that

rosiglitazone increased expression of Nrf2 and the antiox-

idant enzyme HO-1 acting through the PPARc-pathway,

enhancing elimination of ROS in hepatocytes [75]. The

protective effects of TZDs have been attributed also to their

antioxidant and anti-apoptotic properties. For that reason,

rosiglitazone was shown to protect human neuroblastoma

cells against MPP? induced mitochondrial dysfunction by

anti-oxidant properties and anti-apoptotic activity via

inducing expression of SOD and catalase and regulating

the expression of Bcl-2 and Bax and increase the mito-

chondrial membrane potential [76]. In the MPP? model,

rosiglitazone treatment did not alter SOD activity but there

was an increase of glutathione S-transferase activity and

the protective effects of rosiglitazone were not blocked by

the PPARc antagonist GW9662, suggesting that these

effects may be independent of PPARc activation [77].

Acetaldehyde, an inhibitor of mitochondrial function,

causes neuronal death by inducing generation of intracel-

lular reactive oxygen species and cellular apoptosis in

human neuroblastoma cells. Rosiglitazone reversed acet-

aldehyde induced apoptosis by inducing the expression of

anti-oxidant enzymes such as SOD and catalase and by

regulating expression of Bcl-2 and Bax [78].

The PPARc Coativator-1a (PGC-1a)

PPARc coactivator-1a (PGC-1a) was discovered in brown

adipose tissue as a PPARc coactivator during the ther-

mogenic response to cold [79]. Two other coactivators

have been identified, PGC-1b and PGC-1-related coacti-

vator. PGC-1a and PGC-1b display a great degree of

homology but are slightly differently regulated [80]. PGC-

1a can regulate other nuclear receptors such as the thyroid

hormone receptor, the oestrogen receptor, and the oestro-

gen-related receptor a, aside of acting as a coactivator for

PPARs [81]. On the other hand, PGC-1a acts also as a

coactivator for other transcription factors such as the

nuclear respiratory factors 1 and 2 (NRF-1 and 2), TFAM,

myocyte enhancer factor 2, FOXO receptors and hepatic

nuclear factor 4 [81]. PGC-1a is highly expressed in tis-

sues with a high-energy demand, such as brown adipose

tissue, brain, heart, liver, pancreas, skeletal muscle and

kidney [82]. It plays a central role in driving and coordi-

nating mitochondrial biogenesis and respiration, gluco-

neogenesis and glucose transport, glycogenolysis, fatty

acid oxidation, peroxisomal remodeling, muscle fiber-type

switching, oxidative phosphorylation and is preferentially

expressed in muscle enriched for type I myocytes and can

convert the type II myocytes to type I fibers [83]. In

addition, PGC-1a also regulates the expression of several

ROS detoxifying enzymes, such as SOD1 and 2, catalase

and glutathione peroxidase-1 [84]. The activity of PGC-1a
is influenced by post-transcriptional modifications, such as

protein phosphorylation, acetylation, sumoylation, and

methylation [81, 85, 86]. PGC-1a expression can be

induced by cold exposure, fasting, and exercise, which

require energy expenditure [79, 83, 87]. It has been

reported that PGC-1a expression is decreased with aging,

possibly owing to decreased sirtuin1 (SIRT1) levels [85]

or by the action of p53 that is activated by telomere

shortening and suppresses PGC-1a [88]. Drugs such as

resveratrol, can act by decreasing PGC-1a acetylation,

producing a subsequent increase in PGC-1a activity and

its downstream genes [89].
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PGC-1a in PD

The role PGC-1a, which is involved in mitochondrial

biogenesis and respiration, has been implicated in PD. As

mentioned above, PGC-1a induces the expression of

ROS scavenging enzymes (glutathione peroxidase-1,

catalase and SOD) and reduces oxidative stress [84]. An

increased vulnerability to MPTP induced degeneration of

nigral dopaminergic neurons was observed in PGC-1a
knockout mice, suggesting a critical role of PGC-1a in

neuroprotection. Therefore, Increasing PGC-1a levels

dramatically protected neural cells from oxidative stress

and cell death [84]. These studies suggested compelling

evidence for a role of PGC-1a in neurodegenerative

diseases and as a good candidate for the treatment of PD.

The mechanisms of neuroprotection by PGC-1a in PD

are shown in (Fig. 1).

Activation of PGC-1a increased the expression of

nuclear-encoded subunits of the mitochondrial respiratory

chain and prevented the dopaminergic neuron loss

induced by mutant a-synuclein or the pesticide rotenone

in cellular disease models [90]. Also, it has been shown

that PGC-1a knockdown increased a-synuclein accumu-

lation and led to down regulation of the AKT/GSK-3b
signaling pathway in human neuronal cells [91]. A sub-

strate for PARKIN, the PARKIN-interacting substrate

(PARIS), is a zinc-finger protein which is highly

expressed in the substantia nigra. PARIS represses the

expression of PGC-1a and NRF-1 and the site of inter-

action between PARIS and PGC-1a is a sequence that is

involved in the regulation of insulin responsiveness and

energy metabolism. Conditional knockout of PARKIN in

adult animals led to progressive loss of dopamine neu-

rons which was dependent on PARIS expression. More-

over, overexpression of PARIS led to the selective loss

of dopamine neurons in the substantia nigra, and this was

reversed by either PARKIN or PGC-1a coexpression

[92]. A recent study reported that PINK1 mutations

impair PARKIN recruitment to mitochondria in neurons,

increased mitochondrial copy number, and upregulation

of PGC-1a [93]. Other studies, have shown that trans-

genic overexpression of PGC-1a or activation of PGC-1a
by resveratrol protect dopaminergic neurons in the MPTP

mouse model of PD [94]. Recently it was shown that

adenoviral delivery of PGC-1a in the nigrostriatal system

increased dopaminergic death [95]. This effect could be

the result of excessive overexpression of PGC-1a,

resulting in mitochondrial hyperactivity and increased

production of ROS. Apparently, the studies related to the

role of PGC-1a in PD have provided inconsistent data

regarding the effects of PGC-1a activation or overex-

pression in PD [96].

Conclusion

In conclusion, a number of molecular pathways including

oxidative stress, mitochondrial dysfunction, protein dys-

function, apoptosis, autophagy and neuroinflammation are

implicated in the pathophysiology of PD. As currently

available drugs cannot slow down the progression of the

disease, using a combination of several pharmacological

agents may offer better promise for neuroprotection,

modulating several molecular pathways involved in the

pathophysiology simultaneously. PPARc agonists and

PGC-1a exhibit a wide range of activities that positively

influence the pathology of PD in experimental models, and

they have the capacity to be neuroprotective by regulating

the expression of genes involved in neuronal survival

processes. The compelling results from in vitro and in vivo

models of PD underline the beneficial effects of PPARc
agonists and PGC-1a for future therapies. Thus, PPARc
agonists and PGC-1a could be valuable potential thera-

peutic targets for neurodegenerative diseases. Finally,

understanding the molecular mechanisms by which

PPARc and PGC-1a exert their neuroprotective effects

will be helpful in developing an effective treatment for

PD.
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