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Abstract The identification of mutations in the leucine-

rich repeat kinase 2 (LRRK2) gene as a cause of autosomal

dominant Parkinson’s disease (PD) was a major step for-

ward in the genetic dissection of this disorder. However,

what makes LRRK2 unique among the known PD-causing

genes is that a low-penetrance mutation, Gly2019Ser, is a

frequent determinant not only of familial, but also of spo-

radic PD in several populations from South Europe, North

Africa and Middle East. Moreover, a different polymorphic

variant, Gly2385Arg, is a frequent risk factor for PD among

Chinese and Japanese populations. Currently, the

Gly2019Ser and Gly2385Arg variants represent the most

relevant PD-causing mutation and risk allele, respectively,

linking the etiology of the familial and the sporadic forms of

this disease. Understanding how the dysfunction of LRRK2

protein leads to neurodegeneration might provide crucial

insights for unraveling the molecular mechanisms of PD

and for developing disease-modifying therapies.
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Introduction

Parkinson’s disease (PD) is the most common neurode-

generative movement disorder, and the second most com-

mon neurodegenerative disease after Alzheimer’s disease

(AD), with a prevalence of more than 1% after the age of

65 years [1]. The incidence of PD increases with age, and

the number of patients is expected to double by the year

2030, due to aging of the population, improved diagnosis

and prolonged survival, particularly in the developing

countries [2].

PD is clinically defined by adult-onset, progressive

parkinsonism (the combination of akinesia, resting tremor,

and muscular rigidity), which displays a beneficial re-

sponse to dopamine-replacement therapy [3]. In most pa-

tients, this clinical syndrome correlates with neuronal loss

and gliosis in the substantia nigra pars compacta and other

brain areas, and with formation of cytoplasmic inclusions

called Lewy bodies (LB) and Lewy neurites in the sur-

viving neurons.

The molecular mechanisms of PD remain mostly un-

known. Several lines of evidence, including biochemical

analysis, genomic and proteomic profiling of brain tissue,

cell and animal models, implicated mitochondrial defects,

oxidative stress, protein misfolding, proteasomal and

lysosomal abnormalities in the pathogenesis [4–12].

However, there are many reciprocal interactions between

these pathways, making it difficult to disentangle the pri-

mary and the secondary events. Moreover, the determi-

nants of the preferential vulnerability of the dopaminergic

system observed in PD remain unknown.

In most patients PD appears as a sporadic disorder. In

10–15% of cases the disease runs in families, but a Men-

delian inheritance is rarely evident from the pedigree

analysis. Yet, the ongoing identification of primary genetic

defects in patients with inherited forms of PD is rapidly

expanding the possible approaches to unravel the disease

pathogenesis [13].

Five genes are today considered as definitely implicated

in the etiology of PD. Mutations in the a-synuclein [14, 15]

and leucine-rich repeat kinase 2 (LRRK2) [16, 17] gene
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cause autosomal dominant forms whereas mutations in the

parkin [18], DJ-1 [19] and PINK1 (20) gene cause auto-

somal recessive forms of PD. LBs are found in the brain of

patients with a-synuclein mutations and in most of the

cases with LRRK2 mutations. On the other hand, LBs are

not present in most of the patients with parkin mutations,

while their occurrence in cases with DJ-1 or PINK1

mutations remains unknown.

The discovery that duplication and triplication of the

whole a-synuclein gene is also a cause of autosomal

dominant PD and of the related condition, dementia with

LBs, links directly the over-expression of wild-type a-

synuclein protein to the disease pathogenesis [15, 21, 22].

Moreover, common allelic variation in the a-synuclein

gene might increase the risk for the sporadic form of PD

[23]. A central role of a-synuclein in the pathogenesis of

PD is further supported by the fact that wild type a-syn-

uclein protein is the major component of the LBs and of

other neuronal and glial inclusions found in PD, dementia

with LBs, and multiple system atrophy, now collectively

termed ‘‘synucleinopathies’’ [24, 25].

LRRK2 mutations as a cause of PD

A genome-wide search for linkage in a large Japanese

pedigree with autosomal dominant, late-onset parkinson-

ism yielded the identification of a novel locus (PARK8) to

the peri-centromeric region of chromosome 12 [26].

Interestingly, autopsy study of four affected members of

this family revealed no LBs in the brain, a finding con-

sidered incompatible with a formal pathological diagnosis

of PD. However, linkage to the same chromosomal region

was later confirmed in two large families of European

ancestry, segregating parkinsonism associated with differ-

ent brain pathologies with or without LBs in different pa-

tients. This suggested PARK8 to be an important locus

with a pleomorphic pathology [27].

Using positional cloning strategies, in the year 2004,

LRRK2 was identified as the gene defective at the PARK8

locus [16, 17]. Soon thereafter, different groups identified a

single LRRK2 mutation (c.G6055A) leading to a

Gly2019Ser substitution in the encoded protein, which was

present in familial and sporadic PD with unprecedented

high frequency. A different mutation affecting the sub-

sequent amino acid, Ile2020Thr, was detected as the cause

of disease in the original Japanese PARK8 family [28]. The

following two years have seen an explosion of research

into the LRRK2 gene in PD and related disorders. Due to

the large size of its open reading frame (more than 7.5 kb

across 51 exons), a comprehensive screening of the entire

LRRK2 coding region has been rarely performed so far,

while in most studies large series of patients were screened

only for one or few known mutations.

The screening of the complete coding region of LRRK2

revealed mutations in ~10% of the PD cases with a family

history compatible with autosomal dominant inheritance

[29–32]; this figure by itself nominates LRRK2 as the most

common known genetic cause of the disease. However, a

note of caution is due here. For several mutations, co-

segregation studies have been very limited or lacking; large

series of ethnically matched controls have not always been

tested; and assays are not available yet to study the effects

of a given mutation on the function of the LRRK2 protein.

Due to all these reasons, the pathogenic nature remains

unclear for several of the LRRK2 mutations detected in PD

cases, and at least some of these (for example:

Arg1514Gln) might represent rare, benign variants [33,

34]. The uncertainties regarding the pathogenic nature of

the mutations found in the LRRK2 (as well as in any other

genes) are an important issue, which complicates the

transfer of the results of the genetic screening into the

clinics for diagnostic and genetic counseling purposes. To

date, only five LRRK2 mutations (Arg1441Cys, Arg1441-

Gly, Tyr1699Cys, Gly2019Ser, and Ile2020Thr) can be

considered as definitely disease causing, on the basis of a

clear co-segregation with PD in large pedigrees and

absence in large series of controls (Fig. 1).

Another very important aspect is the wide pathological

spectrum associated with LRRK2 mutations (~30 cases came

to autopsy so far) [35]. Dopaminergic neuronal cell loss and

gliosis in the substantia nigra are the common features in the

patients carrying LRRK2 mutations [17]. In addition, clas-

sical LBs were found in the majority of cases, but in few,

there was absence of inclusions, or only tau-positive or

ubiquitin-positive inclusions were detected [31, 36–42].

These observations are based on a limited number of brains,

and further studies are warranted. However, the pathologic

pleomorphism seems a common theme for the different

LRRK2 mutations, at least for Arg1441Cys, Tyr1699Cys,

and Gly2019Ser, suggesting that our pathological defini-

tion of PD and related diseases has to be revised.

The Gly2019Ser story

Gly2019Ser is particularly important among the PD-caus-

ing mutations in LRRK2. This mutation was identified by

several groups as a common cause of the disease, being

detected initially in ~5–6% of large cohorts of familial PD

in Europe and US, and in ~1–2% of sporadic PD from UK

[43–47]. It is now clear that the frequency of Gly2019Ser

in PD varies greatly across populations [48]. The results of

the different studies are not easily comparable because of
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the different sample size, different methods for patient

ascertainment, different definitions of ‘‘familial’’ versus

‘‘sporadic’’ disease, and different genotyping techniques,

and much more work remains therefore ahead. The

Gly2019Ser mutation has not been identified in three large

series of Chinese patients [49–51], though it was rarely

found in Indian [52] and Japanese patients [53, 54]. Studies

in large referral series from the US population estimated a

mutation frequency of up to ~3% in familial and ~0.7% in

sporadic cases, respectively [55, 56]. This mutation seems

present at lower frequency in patients from Northern Eur-

ope [57–61], than in those from Southern Europe such as

Italy (~5% of familial and ~1% of sporadic cases) [62, 63],

Spain and Portugal (up to ~6–18% of familial and ~3–6%

of sporadic cases) [64–67](Ferreira et al. unpublished data).

However, an extremely high prevalence is found among

Arab patients from North Africa (~37% of familial and

~41% of sporadic cases) and among Ashkenazi Jewish

patients (~29% of familial and ~13% of sporadic cases)

[68, 69]. The prevalence of this mutation remains to be

investigated in other large populations, such as those from

Brazil, and other countries of Latin America.

Gly2019Ser represents clearly the first common patho-

genic mutation identified in PD, establishing for the first

time the proof-of-principle for a genetic determinant fre-

quently involved in the classical, late-onset, sporadic forms

of this disease.

Most of the patients carrying this mutation and living in

disparate countries in Europe and America, share a com-

mon, very old founder haplotype [46, 62, 70], which likely

originated from North Africa or Middle East ~2,000 years

ago or earlier [71]. A second haplotype has been detected

in a few patients of European ancestry [71], while a third

haplotype was found in Japanese patients [54]. The

occurrence of Gly2019Ser in at least three different hapl-

otypes suggests either an extremely old founder, or a

mutational hot spot. Another hot spot might be represented

by LRRK2 codon 1441, where three different mutations are

known to occur (Arg1441Cys, Arg1441Gly, Arg1441His)

[17, 29, 32, 72–74].

Mapping and cloning of genes for dominantly inherited

diseases often relies on families with an exceptionally high

number of affected individuals. This leads to an inherent

ascertainment bias, and an overestimation of the mutation

penetrance. However, after a causative mutation is identi-

fied, more accurate values of penetrance can be estimated

in unselected, consecutive series of patients, ideally from

population-based studies. This approach might yield con-

siderably lower figures of penetrance. In the case of

PARK8, a reduced penetrance of the underlying mutation

was already suggested in the initial linkage study [26], and

confirmed after the identification of the LRRK2 gene. Re-

cent estimates of the lifetime penetrance of the Gly2019Ser

mutation in large, hospital-based but otherwise unselected

series of PD patients (US Jewish, US non-Jewish, and

Italians) yielded values of ~24–33% [56, 69, 75]. Yet, the

penetrance might be different in other populations and

additional studies are therefore warranted before

Gly2019Ser testing is used for genetic counseling. Such a

low penetrance explains the high Gly2019Ser prevalence

among patients with sporadic PD, and its rare occurrence in

controls (~1%), particularly among the populations with

the highest mutation frequencies such as Arabs and Ash-

kenazi Jews [68, 69].

Due to a lower frequency, the penetrance of other

LRRK2 mutations is more difficult to estimate accurately,

but reduced values are also suggested by analysis of ped-

igrees segregating the second most recurrent LRRK2

mutation, Arg1441Cys [62, 76].

The clinical phenotype of Gly2019Ser-positive patients

appears very similar, or indistinguishable from that of the

classical form of PD, but a wide range of onset age is

evident [45, 55, 56, 62, 63, 77]. Several patients, mostly

from Tunisia and Algeria, were identified who carry the

Gly2019Ser mutation in homozygous state [78–80]. This is

likely due to the high prevalence of the mutation, and the

high frequency of consanguineous marriages in those

populations. Homozygous carriers of this mutation seem

not to develop PD at an earlier age, nor to have a more

severe disease, or a more aggressive course, compared to

Fig. 1 Schematic

representation of the human

LRRK2 protein. The known

functional domains are shown,

the catalytic domains in black

and the protein-protein

interaction domains in grey.

Five definitely PD-causing

mutations and one PD-

associated polymorphism are

also displayed
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the heterozygous carriers [80]. However, it is difficult to

draw firm conclusions, as the clinical spectrum associated

in heterozygous mutation carriers is also very broad.

Interestingly, the penetrance might be higher in homozy-

gous carriers [79], arguing for the presence of a mutation

dosage effect. The low penetrance and variable phenotypic

expressivity of the mutation suggest the existence of fur-

ther important modifiers, which might include other genetic

as well as non-genetic factors. Their identification is an

important area of the current research.

Gly2385Arg: a common risk allele for PD in Asia

At the beginning of the year 2006, we found that a different

LRRK2 variant, Gly2385Arg, is a polymorphism in the Han

Chinese population from Taiwan (frequency of heterozy-

gous carriers ~5% among controls), and it is significantly

more frequent (~10%) among PD cases [81]. We therefore

proposed that Gly2385Arg is a common risk factor for PD

in the Han population. Interestingly, this variant was ini-

tially detected in a single, small PD family from Taiwan

[29], but it has not been observed so far among whites [30–

32], and it appears therefore specific for the Asian popu-

lation. The association between Gly2385Arg and PD has

now been confirmed in at least four independent replication

studies, involving more than 2000 individuals (three tar-

geting the Chinese, and one the Japanese population) [82–

85] (Table 1).

Using the observed frequency of the Gly2385Arg

genotype among controls and the observed value of odds

ratio as estimates of the risk genotype frequency in the

general population, and of the relative risk, respectively,

one can calculate a population attributable risk of ~4% for

the Gly2385Arg heterozygous genotype in the Han Chinese

population [82]. Cross-sectional case control studies are

prone to several biases, including survival bias. It is

therefore crucial to replicate this finding also in large

prospective studies. However, the replication of the asso-

ciation in the same direction-of-effect and with similar

effect size (odds ratio ~2.5 in most studies) in four inde-

pendent, large samples of different geographic and ethnic

origin (Table 1), and the potential functional effects of this

missense, non-conservative variant, all strongly support the

contention that this represents a real, causal association.

Gly2385Arg might be the first identified genetic risk factor

for the common PD form in the Asian population, and the

most frequent genetic determinant of PD worldwide, also

considering the large and expanding size of the Chinese

population (projected number of ~5 millions patients by the

year 2030) [2].

As observed for the Gly2019Ser carriers, the clinical

spectrum in PD patients who carry the Gly2385Arg variant

is very broad and indistinguishable from that of the cases

who do not carry it.

The Gly2385Arg variant is located at the surface of the

C-terminal WD40 domain of the LRRK2 protein, where it

introduces an additional, net positive electric charge.

WD40 domains are involved in protein–protein interac-

tions, and they might be important for the formation of

complexes between LRRK2 and other proteins, or for the

LRRK2 dimerization. It is possible that the Gly2385Arg

variant increases the risk of PD by affecting these bio-

chemical properties of the LRRK2 protein.

The LRRK2 protein

LRRK2 mutation causes a disease that most closely

resembles the common forms of PD. The LRRK2 protein is

likely to be a very important player in the pathogenesis of

PD in general, and the pharmacological manipulation of

the LRRK2 activity might become a future important

therapeutic strategy. It is therefore urgent to unravel the

biology of the LRRK2 protein, and how its mutation leads

to neurodegeneration, but very little is known about these

crucial aspects.

LRRK2 encodes a 2,527 amino acids protein of unknown

function, belonging to the ‘‘ROCO’’ group within the Ras/

GTPase superfamily [86], and characterized by the pres-

ence of several conserved domains: a Roc (Ras in complex

proteins) and a COR (C-terminal of Roc) domain, together

with a leucine-rich repeat region, a WD40 domain, two

ankyrin-like motifs, and a protein kinase catalytic domain

(Fig. 1). Review of the ROCO family members reveals

involvement in diverse cellular processes (regulation of

Table 1 Allelic association studies of the Gly2385Arg variant as risk factor for PD

Study Target population Cases Controls OR P Ref

Di Fonzo et al. Chinese (Han), Taiwan 608 373 2.24 0.012 [81]

Tan et al. Chinese, Singapore 494 495 2.67 0.002 [82]

Fung et al. Chinese (Han), Taiwan 305 176 16.99 0.0002 [83]

Farrer et al. Chinese, Taiwan 410 335 2.24 0.014 [84]

Funayama et al. Japanese 463 457 2.51 0.0002 [85]
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cell polarity, chemotaxis, cytokinesis, cytoskeletal rear-

rangements, and programmed cell death), making impos-

sible to predict the function of human LRRK2 on the basis

of homology (reviewed in [86, 87]).

Initial studies suggest that the LRRK2 mRNA [88–91]

and the LRRK2 protein [39, 88, 92, 93] are broadly ex-

pressed throughout the brain, including nigral neurons, and

that the LRRK2 protein shows a cytosolic localization,

perhaps in association with membranous structures [93].

There is also evidence that the LRRK2 protein regulates

the length and branching of neurites and this function

might be impaired by PD-causing mutations [94].

LRRK2 immunoreactivity has been reported in some

LBs from PD brains [92, 95]. However, most of the cur-

rently available LRRK2 antibodies lack optimal sensitivity

and specificity, and further investigations are definitely

warranted.

One of the two predicted catalytic domains (GTPase and

kinase) represents likely the output activity of LRRK2.

Small GTPases (Rho, Rac, Cdc42) usually act upstream of

protein kinases. By analogy, the GTPase domain might

regulate the LRRK2 kinase domain via intramolecular

signaling. Whether the LRRK2 kinase activity is required

for the phosphorylation of target proteins, or whether it

plays an auto-regulatory role, is currently unclear. The PD-

causing mutations replace highly conserved residues, but,

in addition, the Glycine2019 residue is remarkable because

it is conserved in all human kinase domains. These muta-

tions could destabilize the kinase domain, resulting in loss-

of-function of the kinase activity, and suggesting haploin-

sufficiency as disease mechanism. Another possibility is

that Gly2019Ser and other mutations enhance the kinase

activity. Of note, the three known PD-causing mutations in

the kinase domain (Ile2012Thr, Gly2019Ser, and

Ile2020Thr) all introduce novel potential auto-phosphory-

lation sites, and similar mutations in the activation segment

of other kinases induce hyper-activity [96]. This mecha-

nism would confer a gain of function to the mutant protein,

fitting with the dominant pattern of inheritance seen in

families with LRRK2 mutations.

Over-expressing the human wild-type LRRK2 protein in

different cell systems is associated with formation of cyto-

plasmic inclusions [92, 97]. Moreover, LRRK2 shows pro-

tein kinase activity in vitro toward generic substrates and is

capable of auto-phosphorylation [92, 98, 99]. Importantly,

some of the PD-causing mutations (particularly those located

in the kinase domain) appear to enhance the LRRK2 kinase

activity in vitro, as well as the inclusion formation, and they

induce cell toxicity and ultimately, cell death [92, 97–99].

LRRK2 also displays GTP-binding properties in vitro, and

GTP binding seems required for the kinase domain of

LRRK2 to be in an active state [100–102]. However, LRRK2

seems devoid of intrinsic GTPase activity, suggesting the

involvement of other interacting proteins, such as GTPase

activating proteins (GAPs), and guanine nucleotide ex-

change factors (GEFs) [100–102]. Here, the caveat is that all

these findings need validation using in vivo models, and after

the (currently unknown) physiological interactors and sub-

strates of the LRRK2 protein are identified. A study focusing

on the homologue LRRK1 protein came to the opposite

conclusion that the LRRK1 kinase activity might be de-

creased by amino acid substitutions corresponding to the PD-

causing mutations in LRRK2 [103]. Much more work re-

mains ahead in order to understand the biology and pathol-

ogy of this complex, fascinating protein.

Conclusions

The discovery of LRRK2 mutations in PD led to a turning

point in the field. For the first time, gene mutations, and

particularly the low-penetrance Gly2019Ser mutation

prove to be a frequent genetic determinant of familial and

sporadic forms of this disease in several populations; the

Gly2385Arg polymorphic variant is a common risk factor

for PD in Asia. In both cases, the associated clinical phe-

notype is indistinguishable from the classical, late-onset

PD, and brain study reveals a broad pathological spectrum,

which includes in most cases the typical LB pathology.

Importantly, this frequent low-penetrance mutation and the

frequent risk allele provide etiological links between the

familial and the sporadic forms of PD.

Elucidating the function of the LRRK2 protein and how

LRRK2 dysfunction leads to neurodegeneration might

provide crucial insights for understanding the molecular

mechanisms of PD and yield novel avenues to the devel-

opment of a cure. The pharmacological modulation of one

or both catalytic LRRK2 activities could become innova-

tive, important therapeutic strategy for all patients with PD

and related neurodegenerative diseases.
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