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Abstract
Long-tailed recognition performs poorly on minority classes. The extremely imbalanced
distribution of classifier weight norms leads to a decision boundary biased toward major-
ity classes. To address this issue, we propose Class-Balanced Regularization to balance the
distribution of classifier weight norms so that the model can make more balanced and rea-
sonable classification decisions. In detail, CBR separately adjusts the regularization factors
based on L2 regularization to be correlated with the class sample frequency positively, rather
than using a fixed regularization factor. CBR trains balanced classifiers by increasing the
L2 norm penalty for majority classes and reducing the penalty for minority classes. Since
CBR is mainly used for classification adjustment instead of feature extraction, we adopt a
two-stage training algorithm. In the first stage, the network with the traditional empirical risk
minimization is trained, and in the second stage, CBR for classifier adjustment is applied.
To validate the effectiveness of CBR, we perform extensive experiments on CIFAR10-LT,
CIFAR100-LT, and ImageNet-LT datasets. The results demonstrate that CBR significantly
improves performance by effectively balancing the distribution of classifier weight norms.

Keywords Imbalanced data · Long-tailed recognition · L2 Regularization · Decision
boundary

1 Introduction

In recent years, deep learning has made incredible progress in computer vision [1–3]. It
has been successfully applied to various visual discrimination tasks, including image clas-
sification [4], object detection [5], and semantic segmentation [6]. The widespread use of
balanced datasets, such as Coco [7] and ImageNet [8], has largely contributed to the rapid
development of deep learning. However, unlike these datasets, most real-world datasets often
follow a long-tailed distribution, wheremajority classes occupymost of the data andminority
classes have only a few samples [9, 10]. It is very challenging to train deep neural networks
with imbalanced datasets. As shown in Fig. 1, with long-tailed datasets, deep neural networks
generally perform well on majority classes and poorly on minority classes.
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Fig. 1 The Top-1 accuracy (blue bars) of the model trained on CIFAR100-LT with an imbalance factor of 100.
The black line shows the imbalanced class distribution of CIFAR100-LT. As observed, the model is biased
toward the majority classes with many training samples

In order to address the long-tailed problem, some methods [11, 12] have been pre-
sented based on experimental observation. The traditional empirical riskminimization(ERM)
approach yields the classifier with highly imbalanced weight norms. These norms are posi-
tively correlatedwith class sample frequencies as shown in Fig. 2.During the training process,
the majority classes receive more positive gradients than minority classes due to the larger
number of training samples [5]. As a result, the norms of classifier weights for the major-
ity classes tend to increase, leading to an extreme imbalance in classifier weight norms. The
imbalance compresses the decision space of the minority classes, which generally have small
classifier weight norms. Consequently, networks tend to make decisions biased towards the
majority classes while ignoring the samples fromminority classes. Furthermore, according to
the Decoupling study [11], training neural networks with a balanced dataset leads to classifier
weights with similar norms. Therefore, balancing the distribution of classifier weight norms
can help achieve a more balanced decision boundary and improve recognition performance.

To balance the distribution of the classifier weight norms, Decoupling [11] has proposed
several methods, such as a post-processing scaling technique known as τ -normalization(τ -
norm), and a training method called Classifier Re-training (cRT) which retrains the classifier
with a balanced dataset by resampling. However, τ -norm merely scales the classifier weight
norms.Due to the lack of corresponding adjustment to the classifierweight directions, τ -norm
cannot balance the distribution of the classifier weight norms very well. cRT requires high
extra training costs to train a relatively balanced classifier. Thus, both τ -norm and cRT have
limitations in terms of effectively balancing the classifier. In this paper, our goal is to obtain a
more balanced distribution of the classifier weight norms by adjusting the classifier with low
extra training costs during the training process. A straightforward approach is to penalize the
large classifier weight norms in training based on parameter regularization. Parameter regu-
larization typically helps achieve a more balanced distribution of network weights to prevent
over-fitting. Therefore, Weight Balancing [12] has investigated one parameter regularization
method to balance networkweights which is calledWeight Decay.Weight balancing achieves
higher performance by fine-tuning the weight decay factor, but it also fails to balance the
classifier. For this issue, we argue that relying solely on a single identical regularization factor
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Fig. 2 The distribution of the norms of the classifier weights obtained by the traditional empirical risk mini-
mization approach

cannot effectively balance the distribution of the classifier weight norms. The reason is that
the positive gradients from the majority class samples are almost constant, while the regular-
ization penalties decrease as the classifier weight norms decrease. Eventually, the majority
classes with more samples will still have larger classifier weight norms.

In this paper, a novel technique called Class-Balanced Regularization (CBR) is proposed
to improve long-tailed recognition performance by adjusting the classifiers. The method
regulates the regularization factors separately for different classes to balance the distribution
of the classifier weight norms. Specifically, CBR adjusts the L2 regularization factors for the
classifier weights to ensure they are positively correlated with the class frequencies. Larger
regularization factors are assigned to the majority classes while smaller ones are assigned to
theminority classes. This results in stronger L2 norm penalties being imposed on themajority
classes, which usually have larger classifier weight norms. As a result, CBR could achieve a
more balanced distribution of the classifier weight norms. Moreover, the extra training cost
for CBR is very low because it is applied after the well-trained imbalanced classifier.

The main contributions of our work can be summarized as follows:

1. We propose a novel technique called Class-Balanced Regularization (CBR) to adjust the
imbalanced distribution of the classifier weight norms, aiming to achieve more balanced
classification decisions of the recognition network.

2. We extend L2 regularization to balance the norms of the classifier weights, achieving
significant performance improvement without high extra training costs.

3. We perform extensive experiments on various long-tailed datasets, including CIFAR10-
LT, CIFAR100-LT, and ImageNet-LT. CBR consistently shows effective improvements
and outperforms previous methods for balancing classifiers.

2 RelatedWork

2.1 Long-Tailed Recognition

In a long-tailed dataset, most minority classes have a small number of samples. The clas-
sification performance on these classes is poor, especially when the deep learning models
are trained based on empirical risk minimization. Resampling techniques try to rebalance
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the class distribution in the training data, including undersampling the majority classes [13,
14] and oversampling the minority classes [15, 16]. Reweighting techniques [4, 9, 17–19]
assign different weights to the classes to emphasize the learning of the minority classes or
to make the decision boundary of minority classes broader. In addition, reweighting meth-
ods [5, 20, 21] also include approaches that modify the gradients of training samples to
achieve more balanced gradients for each class. In long-tailed learning, transfer learning
[22–24] transfers the rich information from the majority classes to the minority classes,
compensating for the limited information in the minority classes. Metric learning [25–27]
seeks to explore distance-based losses to learn a more discriminative feature space. Invari-
ant Feature Learning [28, 29] tries to focus on invariant features across different samples
of the class. Ensemble learning [30–32] aims to improve overall performance by learning
from more diverse distributions through multiple network branches, without sacrificing the
performance of the majority classes. As a new paradigm in long-tailed learning, decoupled
training [11] creatively decouples representation learning from classifier training and intro-
duces various classifier adjustment methods, such as τ -norm and cRT. TheWeight Balancing
research [12] has explored one parameter regularization method called Weight Decay to
enhance representation learning and balance classifiers.

2.2 Regularization

Regularization is indeed an important component in deep learning. It plays a crucial role
in preventing over-fitting and improving generalization ability. One well-known regulariza-
tion method is L2 regularization, which utilizes L2-norm penalties on the model parameters.
There are other common regularization methods, such asWeight Decay [33], data augmenta-
tion [34], dropout [35], and early-stop strategy [36]. In this paper, we present Class-Balanced
Regularization to alleviate the imbalance of the classifier weight norms based on L2 regular-
ization.

3 Methods

3.1 Preliminaries

Assuming a long-tailed training set D = {(xi , yi )}Ni , where each sample xi is labeled as

yi ∈ [1, ...,C]. Letnk denote the number of training samples for class k, and let N = ∑C
k=1 nk

be the total number of training samples. The imbalance factor, I F = nmax
nmin

is usually utilized
to measure the degree of imbalance in a long-tailed dataset.

In long-tailed recognition, the most commonly used classifier is the linear classifier, which
calculates the output probabilities as follows:

pk = φ (wk fb(xi ) + bk) , (1)

where φ denotes the softmax or sigmoid function, pk is the predicted probability of the
sample belonging to the k-th class. fb(xi ) is the feature representation of sample xi output
by the backbone network, wk and bk represent the classifier weight and bias corresponding
to the k-th class, respectively. For simplicity, we ignore the bias term of the classifier which
brings nearly no difference to the model performance. To train the network, a loss function
usually is used to evaluate the error between the predicted probability pk and the true label

123



Class-Balanced Regularization for Long-Tailed Recognition Page 5 of 18   158 

Fig. 3 Comparison of the decision boundary before and after using the classifier adjustment methods. a shows
the imbalanced decision boundary obtained through training with long-tailed data. b illustrates the balanced
decision boundary after adjusting the classifier weight norms

p̂k . The classification loss could be expressed as

LCE =
C∑

k=1

l
(
pk, p̂k

)
, (2)

where l denotes a cross-entropy loss. In general, minimizing this classification loss is the
training goal of recognition models. As shown in Fig. 1, the model trained on long-tailed data
exhibits poor performance on minority classes. For the reasons behind this issue, Decoupling
[11] claims that minimizing this loss guarantees high-quality representations in the learning
model, but the long-tailed data mainly hurt the model’s classification ability. In this study,
we address the long-tailed problem by restoring the model’s classification ability. In the
following section, we analyze how imbalanced classifier weights weaken the classification
performance.

3.2 The Problem in Long-Tailed Classification

To make correct classification decisions, the network should output the highest posterior
probability corresponding to the ground truth class, which means wk fb(xi ) > w j fb(xi )
for all classes j �= k. However, in long-tailed recognition, the posterior probability of the
ground truth class is often not the highest when the ground truth class is a minority class.
The extremely imbalanced distribution of classifier weight norms leads to low classification
accuracy. To explore how the distribution of classifier weight norms affects the decisions of
the classifier, we consider the simplest binary classification problemwith a decision boundary
defined by

w1 fb(xi ) = w2 fb(xi ), (3)

As shown in Fig. 3a, assuming there is a classifier with weights w1 for class 1 and w2 for
class 2, and ‖w1‖ > ‖w2‖, where ‖ • ‖ represents the L2 norm. The solid lines represent the
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classifier weight vector, and the dashed lines indicate the classification boundary between the
two classes. It can be observed that the decision boundary is close to class 2. Consequently,
the decision space for class 2 is shrunk, while class 1 occupies a broader decision space.
If the distribution of classifier weight norms is highly imbalanced i.e., ‖w1‖ � ‖w2‖, the
decision space of class 2 will be excessively compressed. The classifier will likely make
biased classification decisions towards class 1. For the samples of class 2, they can only
be classified correctly when the feature vector fb(xi ) and the weight vector w2 are almost
aligned. This leads to a serious challenge in classifying samples of class 2 correctly.

Multi-class classification can be considered as multiple binary classification problems.
The analysis we discussed above can be generalized to the multi-class case. The majority
classes of long-tailed datasets have a lot of samples. During the training process, the classi-
fier weights corresponding to the majority classes tend to increase because of the numerous
positive gradients. The distribution of the classifier weight norms will be highly imbalanced.
The imbalanced classifier results in the decision boundary being biased towards the majority
classes. From this perspective, a natural idea is to adjust the imbalanced classifier to balance
the classification boundaries. After classifier adjustment, as Fig. 3b illustrates, the new deci-
sion boundary is equitable, allowing the network to make balanced classification decisions
that are not biased to any specific class.

To adjust the imbalanced classifier, τ -norm is introduced in Decoupling [11]. The τ -norm
method scales the classifier weights of a pre-trained model as follows:

w̃k = wk

‖wk‖τ , (4)

where ‖•‖ represents the L2 norm, andwk donates the classifier weight corresponding to the
k-th class. w̃k is the new classifier weight vector corresponding to class k after using the τ -
normmethod. τ is a hyper-parameter controlling the "temperature" of the normalization. The
norm of wk doesn’t change if τ = 0. As τ increases from 0 to 1, the differences between the
classifier weight norms become progressively smaller. When τ = 1, the Eq. 4 reduces to the
standard post-hoc L2-normalization(L2-norm), which means all the norms of the classifier
weights are equal to 1. Although the post-hoc L2-norm eliminates the imbalance in classifier
weight norms, we believe that it is detrimental to the overall performance since it reduces the
model’s sensitivity to different classes. At the same time, we notice the other method, cRT,
which can achieve excellent overall performance by retraining the classifier. Unfortunately, it
requires much extra training cost with a restructuring dataset and couldn’t effectively balance
the distribution of the classifier weight norms. However, it inspires how to solve the classifier
imbalance problem in training.

3.3 Class-Balanced Regularization

3.3.1 The Loss function

We expect to balance the classifier during training with less training cost, allowing the net-
work to make more equitable classification decisions. A straight approach is to penalize large
classifier weights, which is similar to commonly used parameter regularization. Parameter
regularization is often employed during the training of deep neural networks, with L2 reg-
ularization being one of the most widely used techniques. L2 regularization applies the L2
norm penalty on network weights to prevent over-fitting and improve generalization. When
L2 regularization is applied to the classifier weights, the classification loss function becomes
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LR =
C∑

k=1

l
(
pk, p̂k

) + λ
∑

k

‖wk‖2 , (5)

where λ is the regularization factor, a hyper-parameter to control the strength of L2 regu-
larization. The distribution of neural network weights could be influenced by modifying λ.
A smaller regularization factor allows weights to adjust more freely, whereas a larger fac-
tor compels weights to shift toward smaller values. Equation5 indicates that larger classifier
weights are penalizedmore. Therefore, L2 regularization canmitigate the imbalanced weight
norms to some extent, facilitating the learning of balanced network weights.

With the same thought, Weight Balancing [12] has investigated one parameter regular-
ization method called Weight Decay. Weight Decay has the same effect as L2 regularization
when the optimizer is SGD. Tuned Weight Decay(Tuned WD) based on Weight Decay
searches for the optimal weight decay factor to solve the long-tailed problem. Tuned WD
can achieve higher model performance by extracting high-quality feature representations but
cannot balance the classifier. Same as Tuned WD, L2 regularization adopts a single identi-
cal regularization factor for each classifier weight vector. The single identical regularization
factor may diminish the L2 regularization’s ability to mitigate imbalance. The positive gra-
dients from the samples of the majority classes are almost constant, but the regularization
penalties decrease as the weight norms decrease. As a result, an equilibrium will be estab-
lished between the positive gradients and the regularization penalties. Therefore, the majority
classes with more samples will still have larger classifier weight norms. Hence, we propose
a novel technique called Class-Balanced Regularization(CBR) to adjust the regularization
factors separately for different classifier weight vectors. The classification loss is written as:

LCBR =
C∑

k=1

l
(
pk, p̂k

) +
∑

k

λk ‖wk‖2 , (6)

where λk is the regularization factor for the classifier weight vector corresponding to the k-th
class. Compared to Eq. 5, the Eq. 6 has a more general form. When all the regularization
factors have the same value, the Eq. 6 simplifies to the Eq. 5.

3.3.2 The Definition Strategies of the Regularization Factor

In long-tailed recognition, CBR should assign larger regularization factors to the majority
classes. Therefore, the regularization factor to be positively correlated with the class sample
frequency is defined as:

λk = α

(
nk

nmax

)β

, (7)

where nk is the number of training samples for class k, and nmax is the maximum number of
class samples. α represents the maximum strength of the L2 norm penalty, and β determines
the distribution of the regularization factor λk . CBR aims to put larger L2 norm penalties on
the classifier weights corresponding to the majority classes, encouraging the distribution of
classifier weight norms to be more balanced. Therefore, the values of α and β should align
with the imbalance degree of classifier weight norms, and together, they determine the actual
balancing effect of CBR.

For the definition strategy of regularization factor λk , we also explored various forms. For
example, we attempted to divide the classes into two or three splits based on the number of
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class samples. The regularization factors are the same in a split and different among different
splits. The specific forms are as follows:

λk =
{

α, nk ≥ N1

0.01α, nk < N1
(8)

λk =

⎧
⎪⎨

⎪⎩

α, nk ≥ N2

0.01α, nk ≤ N3

0.1α, else

, (9)

where N1 is a threshold that divides the classes into majority and minority classes. A larger
value indicates fewer classes are classified asmajority classes. N2, and N3 are thresholds used
to divide the classes into majority, medium, and minority classes. The accurate selection of
these thresholds significantly influences the effectiveness of the method. Indeed, N1 usually
is set to the value that divides the classes into two splits equally. N2 and N3 are similarly used
to divide the classes into three splits equivalently. Besides the forms mentioned above, we
also utilize the dynamically adaptive regularization factors to balance the classifier, defined
as Adaptive-Balanced Regularization (ABR):

λk = α

(‖wk‖ − mean (‖wk‖)
std (‖wk‖)

)

, (10)

where mean() and std() represent the mean and variance of the weight norms respectively.
Same with the Eq. 7, α represents the maximum strength of the L2 norm penalty to the
majority classes. ABR adjusts these factors at each iteration adaptively to achieve a more
balanced distribution of the classifier weight norms. Compared to the above strategies, ABR
has the least hyper-parameters. In the next section, ablation experiments were conducted to
compare the performance of these different strategies.

3.4 Training Algorithm

The Decoupling study has found that long-tailed data allows the network to learn general-
izable representations [11]. Additionally, the backbone network is shared among different
classes and not directly related to the network’s bias towards the majority classes. Thus,
we focus on the imbalanced classifier in the study. To address the long-tailed problem, we
primarily apply CBR to balance the distribution of the classifier weight norms. The proposed
training algorithm consists of two stages: feature learning and classifier adjustment, as pre-
sented in Algorithm 1. The network is trained firstly by using ERM with the loss in Eq. 5 to
learn a high-quality feature representation, and then the CBR loss in Eq. 6 is applied to adjust
the imbalanced classifier. In the second stage of our training algorithm, there is no need for
a balanced sampling of the training set or much additional training cost.

4 Experiments

In this section, we performed extensive experiments to evaluate the effectiveness of our
proposed CBR technique. We first introduced the datasets, evaluation metrics, and imple-
mentation details, and then compared our method with previous long-tailed methods. We
also conducted ablation experiments to analyze our CBR technique.
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Algorithm 1 Class-Balanced Regularization Training Algorithm

Require: Long-tailed Dataset D = {(xi , yi )}Ni , yi ∈ [1, ...,C].
1: Stage 1: Feature learning
2: Randomly initialize the model parameters θb and θc of backbone and classifier.
3: for t = 1 to T0 do
4: sample mini-batch Dm from D
5:
6: L ← 1

m
∑

(x,y)∈Dm
LR(y, f (x, θb, θc))

7:
8: update model parameters θb and θc by minimizing L
9: end for

10: Stage 2: Classifier adjustment
11: for t = T0 + 1 to T1 do
12: sample mini-batch Dm from D
13:
14: L ← 1

m
∑

(x,y)∈Dm
LCBR(y, f (x, θb, θc))

15:
16: update model parameters θc by minimizing L

17: end for

4.1 Datasets and EvaluationMetric

To validate the effectiveness of our proposed CBR, extensive experiments were conducted on
three widely used long-tailed datasets, i.e., CIFAR10-LT, CIFAR100-LT, and ImageNet-LT.
These datasets are the long-tailed versions of CIFAR10 [37], CIFAR100 [37], and Ima-
geNet2012 [8]. The CIFAR10 dataset includes 10 classes, each with 5000 training samples
and 1000 test samples. The CIFAR100 dataset is similar to the CIFAR10, except it consists
of 100 classes and each has 500 training samples and 100 test samples. The size of the
image in CIFAR10 and CIFAR100 is 32×32. The ImageNet2012 dataset is a very frequently
used dataset that consists of nearly 1.3 million images, with about 1300 training images and
50 validation images per class. We modified the balanced CIFAR10, CIFAR100, and Ima-
geNet2012 datasets to generate the long-tailed versions by utilizing the exponential decay
function n = nkμk , where nk is the original number of training samples and μ ∈ (0, 1). We
created three versions of train datasets for CIFAR10-LT and CIFAR100-LT respectively, and
each with a different imbalance factor [10, 50, 100]. The imbalance factor of ImageNet-LT
is 256. The most frequent class contains 1280 images, while the least has only 5 images. The
validation sets of all datasets are balanced.

For each dataset, we trained models on the imbalanced training set and evaluated them on
the balanced validation set. Top-1 classification accuracy is the main evaluation metric. To
analyze the performance of these methods on the minority classes, the accuracy was further
reported on three splits: Many-shot(≥ 100), Medium-shot(20 ∼ 100), and Few-shot (≤ 100)
in addition to the overall accuracy.

4.2 Implementation Details

Our models were trained using the PyTorch toolbox [38]. For CIFAR10-LT and CIFAR100-
LT, ResNet32 [1] was the baseline model and each model was trained for 200 epochs with
a batch size of 128 at the first training stage. The SGD optimizer with a momentum of 0.9
was applied, and the initial learning rate was set to 0.1. The learning rate followed a linear
warmup schedule in the first 5 epochs and decayed at the 160th and 180th epochs by 0.1.
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Table 1 Top-1 accuracy on CIFAR10-LT and CIFAR100-LT with different imbalance factors [100, 50, 10]

Method CIFAR100-LT CIFAR10-LT
100 50 10 100 50 10

CE 38.32 43.85 55.71 70.36 74.81 86.39

CB-Focal [4] 39.60 45.17 57.99 74.57 79.27 87.10

LDAM-DRW [9] 42.04 46.62 58.71 77.03 81.03 88.16

BBN [30] 42.56 47.02 59.12 79.82 82.18 88.32

Remix [22] 41.94 – 59.36 75.36 – 88.15

CMO [24] 43.9 48.3 59.5 – – –

TSC [26] 43.8 47.4 59.0 79.7 82.9 88.7

De-confound [41] 44.1 50.3 59.6 80.6 83.6 88.5

IBLoss [18] 42.14 46.22 57.13 78.26 81.70 88.25

cRT [11]‡ 45.54 50.20 60.61 77.28 82.36 87.79

τ -norm [11]‡ 45.83 49.79 60.45 79.48 82.01 88.27

CBR 47.13 50.63 61.01 80.36 82.53 89.02

‡ denotes our reproduced results. The best results are marked in bold

For ImageNet-LT, ResNeXt50 [39] was the baseline model. Each model was trained for 90
epochs with a batch size of 128 at the first training stage. The optimizer was also SGDwith an
initial learning rate of 0.05. The learning rate followed a cosine annealing scheduler. For the
second stage, models were trained using CBR for 5 epochs and other classifier adjustment
methods for 10 epochs. Random horizontal flipping and cropping were implemented as
simple augmentation. We utilized grid search to optimize hyper-parameters.

4.3 Results and Discussion

To validate the effectiveness of the proposed method, we conducted extensive experiments
and compared it with different types of long-tailed methods, such as Focal [17], CB [4], and
IBLoss [18] for loss reweighting; Remix [22] and CMO [24]for data mixing augmentation;
LDAM [9], Logit adjustment [19], and ALALoss [40] for logit modification; TSC [26] for
targeted supervised contrastive learning. De-confound [41] uses a causal classifier. BBN [30]
applies two network branches to learn representation and train the classifier respectively. τ -
norm [11], cRT [11], and Tuned WD [12] are typical classifier adjustment methods. CE
means the network trained with ERM. If not otherwise specified, the data of other methods
in the tables are from the reported results in the original paper.

4.3.1 Results on CIFAR10-LT and CIFAR100-LT.

Weperformed extensive experiments onCIFAR10-LTandCIFAR100-LTdatasets to compare
CBRwith previous long-tailedmethods. Table 1 reports the classification accuracy of various
methods on CIFAR10-LT and CIFAR100-LT datasets. It can be seen that CBR outperforms
most of the shown methods. In detail, CBR achieves the best classification results on the
CIFAR100-LT datasets with imbalance factors of 10, 50, and 100, and the results are 47.13%,
50.63%, and 61.01%. CBR surpasses the advanced benchmark CMO [24] by 3.23%, 1.33%,
and 1.51% respectively. According to Table 1, CBR attains the best performance on the
CIFAR10-LT dataset with an imbalance factor of 10. The classification accuracies of CBR
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Fig. 4 Comparison of the Top-1 accuracy on CIFAR100-LT(IF=100) of the networks before and after using
CBR. Orange bars: the baseline network. Blue bars: the network which has a more significant performance
by applying CBR

are slightly lower than De-confound by 0.24% and 1.07% on CIFAR10-LT datasets with
imbalance factors of 100 and 50 respectively. We believe that the more the number of classes
in the long-tailed datasets, themore serious the impact of the imbalance of the classifierweight
norms. Compared to the other two classifier adjustment methods, cRT [11] and τ -norm [11],
CBR has superior performance on both CIFAR10-LT and CIFAR100-LT datasets.

Figure 4 presents a comparison of class-wise classification accuracy between the model
using CBR and the baseline model trained on the CIFAR100-LT dataset with an imbalance
factor of 100. CBR significantly improves the classification accuracy of the minority classes.
In some cases, the performance increases from less than 10% to over 60%. It is worth noting
that CBR slightly reduces the performance of a few majority classes. The excellent perfor-
mance of majority classes is not only due to their abundant samples but also because of the
compression of the decision space for minority classes. Overall, CBR greatly improves the
model’s performance on long-tailed data. The distributions of classifier weight norms before
and after applying the CBRmethod are shown in Fig. 5. After applying the CBRmethod, the
distribution of classifier weight norms is more balanced compared to the originally imbal-
anced classifier.

4.3.2 Results on ImageNet-LT

To present CBR’s performance on large-scale datasets, we evaluated CBR on ImageNet-LT.
In addition to the overall accuracy, the results on Many-shot, Medium-shot, and Few-shot
groups are reported in Table 2. As can be seen, CBR achieves the best performance in overall
accuracy i.e., 53.87%.More specifically, CBRoutperformsDisAlign [42], De-confound [41],
andALALoss [40] in terms of overall performance by 1.27%, 2.07%, and 0.57%, respectively.
Similarly, CBR also exhibits better performance than the other classifier adjustment methods
such as cRT, τ -norm, and Tuned WD. Besides, CBR gains significant improvements in
the performance of Medium-shot and Few-shot classes without excessively sacrificing the

123



  158 Page 12 of 18 Y. Xu, C. Lyu

Fig. 5 Comparison of the distributions of the classifier weight norms before and after using CBR. a The highly
imbalanced weight norm distribution of the original classifier. b The classifier becomes more balanced after
applying our CBR method

Table 2 Top-1 accuracy on
ImageNet-LT dataset

Method Many Medium Few All

CE 65.9 37.5 7.7 44.4

OLTR [10] – – – 46.3

Logit adjustment [19] – – – 51.11

DisAlign [42] 61.5 50.7 33.1 52.6

De-confound [41] 62.7 48.8 31.6 51.8

ALALoss [40] 64.1 49.9 34.7 53.3

cRT [11] 61.8 46.2 27.4 49.6

τ -norm [11] 59.1 46.9 30.3 49.4

Tuned WD [12] 62.0 49.7 41.0 53.3

CBR 62.60 52.08 35.44 53.87

The best results are marked in bold

performance of majority classes. This demonstrates that CBR can effectively balance the
classifier and obtain superior overall performance on the ImageNet-LT dataset.

4.4 Ablation Study

To further analyze our proposedCBR,we performed several ablation studies. All experiments
were conducted on the CIFAR100-LT dataset with an imbalance factor of 100.
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Table 3 Ablation studies of
different classifier adjustment
methods on
CIFAR100-LT(IF=100)

Method Many Medium Few All

Baseline network 71.40 41.71 8.07 42.01

+L2-norm 56.00 41.40 33.47 44.13

+τ -norm 64.71 45.49 24.20 45.83

+cRT 65.91 43.74 23.87 45.54

+CB&Tuned WD 66.23 45.09 24.00 46.16

+CBR 60.54 51.03 26.93 47.13

We used the methods after “+” to adjust the classifier in the second stage.
The best results are marked in bold

4.4.1 Different Classifier Adjustment Methods

The training process is divided into two stages. The first stage is feature learning, where the
network is trained by using ERM with L2 regularization. The second stage is the classifier
adjustment, where methods are utilized to adjust the classifier. We chose several commonly
used classifier adjustment methods for comparison, including L2-norm, τ -norm, cRT, and
Tuned WD. As shown in Table 3, CBR achieves the best result with an overall accuracy
of 47.13% among these methods. Although the L2-norm performs the best in the Few-shot
split, its significant drop in the Many-shot split leads to no notable overall improvement.
This suggests that simply post-processing the classifier weight norms to make them entirely
identical is not an effective approach for tackling the long-tailed problem. Furthermore, CBR
outperforms the τ -norm method, indicating that the imbalance issue in the classifier may not
be just the imbalance in weight norms, which τ -norm fails to address. Compared to cRT and
Tuned WD, CBR achieves higher performance and only requires 5 epochs to mitigate the
imbalance in the classifier, which demonstrates that CBR only needs less additional training
cost to balance the classifier more significantly.

4.4.2 Different Strategies of Regularization Factor

To further analyze our proposed CBR, we also explored several different strategies for the
definition of the regularization factor λk , including fixed and adaptive strategies which can be
seen in Table 4. The fixed strategies include Two-Part, Three-Part, and Exponential strategies.
The adaptive strategy is the ABR method that we discuss in Sect. 3.3.2. The Exponential
strategy attains the best results not only in overall accuracy but also in accuracy on themedium
and few splits in Table 4. The Two-part and Three-part strategies only exhibit marginal
improvements because of their limited ability to resolve internal imbalances within the splits.
ABR shows comparable performance to τ -norm and cRT, without adding any extra hyper-
parameters. Therefore, we believe that ABR is also a considerable approach.

4.4.3 The Difference Between CBR and TunedWeight Decay

Tuned WD [12] and CBR both address the long-tailed problem from the perspective of
regularization.However,WeightDecay trimsnetwork parameters by a certain proportion after
each iteration, while L2 regularization alters the optimization objective to impose constraints
on the norms of network parameters. Weight Decay and L2 regularization have a similar
effect only when the optimizer is SGD. Tuned WD aims to search for the optimal weight
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Table 4 Ablation studies of different strategies for the regularization factor on CIFAR100-LT(IF=100)

Strategy λk Many Medium Few All

Two-Part

{
α nk ≥ N1

0.01α nk < N1
64.23 50.31 15.13 44.63

Three-Part

⎧
⎪⎨

⎪⎩

α nk ≥ N2

0.01α nk ≤ N3

0.1α else

63.06 50.11 17.4 44.83

ABR α
( ‖wk‖−mean(‖wk‖)

std(‖wk‖)
)

64.74 44.83 24.97 45.84

Exponential α
(

nk
nmax

)β
60.54 51.03 26.93 47.13

The best results are marked in bold

Fig. 6 The distributions of the regularization factor varying with different β when α = 0.1 on CIFAR100-
LT(IF=100). As β increases progressively, the distribution becomes steeper

decay factor to facilitate representation learning.However, when used independently, it shows
limited ability in balancing classifiers. In contrast, our CBR adjusts the regularization factor
individually to balance the distribution of the classifier weight norms, applying different L2
norm penalties on the classifier weights corresponding to different classes. Thus, from the
conceptual and practical perspectives, Tuned WD and CBR are both different methods. As
shown in Table 3, in the second training stage, TunedWD usually needs to be combined with
reweighting methods to achieve better performance. On the other hand, CBR outperforms
without requiring modifications to the training set or loss function.

4.4.4 The Analysis of Hyper-Parameters

In Eq. 7, α represents the maximum strength of the L2 norm penalty to the majority classes,
while β determines the distribution of the regularization factor λk . Figure 6 depicts the
distributions of the regularization factor with different β when α = 0.1 on CIFAR100-LT
with an imbalance factor of 100. As β increases progressively, the distribution becomes

123



Class-Balanced Regularization for Long-Tailed Recognition Page 15 of 18   158 

Table 5 Ablation studies of
impact of the CBR
hyper-parameters on
CIFAR100-LT(IF=100)

α β Many Medium Few All

0.2 1 61.12 51.80 21.90 46.12

0.25 1 62.00 52.86 20.20 46.26

0.3 1 58.86 54.00 22.63 46.29

0.35 1 55.06 54.94 24.77 45.93

0.3 0.2 66.71 47.29 20.97 46.19

0.3 0.3 63.17 49.34 24.77 46.81

0.3 0.4 60.54 51.03 26.93 47.13

0.3 0.5 58.71 52.29 27.07 46.97

0.3 0.6 57.91 53.31 26.27 46.81

The best results are marked in bold

Table 6 The optimal values of α and β for different datasets

Dataset CIFAR100-LT CIFAR10-LT ImageNet-LT
Imbalance factor 100 50 10 100 50 10 256

α 0.3 0.15 0.1 0.6 0.4 0.15 0.15

β 0.4 0.6 0.9 1.0 1.0 1.0 0.4

steeper. The regularization factors for the majority classes are approximately equal to α,
while the factors for the minority classes are small.

To analyze the effects ofα andβ, experiments on theCIFAR100-LT(IF=100)with different
parameter sets were conducted as shown in Table 5. We initially adjusted α using grid search
while keeping β fixed at 1 and subsequently fine-tuned β. As shown in Table 5, the best
performance is achieved when α and β are set to 0.3 and 0.4, respectively. Although there is
a slight decrease in performance when modifying the parameter set, the results remain at an
outstanding level. When α or β increases, there is an obvious increasing trend of accuracy in
the medium-shot and few-shot classes, whereas accuracy tends to decline in the many-shot
classes.

The optimal parameter sets for each dataset are summarized in Table 6. The optimal
values of α and β are dataset-dependent. In the case of CIFAR100-LT and CIFAR10-LT, the
optimal value of α increases as the imbalance factor increases. This suggests that when the
class imbalance degree increases, a larger L2 norm penalty for the majority class is required
to balance the classifier. The optimal value of β for CIFAR100-LT decreases as the imbalance
level increases, while the optimal value of β for CIFAR10-LT remains consistently at 1.0.
This indicates that the optimal value of β may be related to the number of classes and the
class imbalance degree in the dataset.

5 Conclusion

In order to solve the class imbalance problem in long-tailed recognition, we propose a novel
technique called Class-Balancing Regularization (CBR), which separately adjusts the L2
regularization factors of different classifier weights based on the class sample frequencies.
CBR applies larger L2 norm penalties to the majority classes for adjusting the classifier
during training. We also adopt a two-stage training algorithm to utilize the CBR method.
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Extensive experiments are conducted on various long-tailed datasets, and the results consis-
tently demonstrate the effectiveness of CBR. The proposed CBR significantly balances the
distribution of the classifier weight norms and outperforms previous long-tailed methods. In
future work, we aim to study how to combine our method with existing techniques to handle
long-tailed problems further.
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