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Abstract
Recognizing the pivotal role of choosing an appropriate distancemetric in designing the clus-
tering algorithm, our focus is on innovating the k-means method by redefining the distance
metric in its distortion. In this study, we introduce a novel k-means clustering algorithm utiliz-
ing a distance metric derived from the �p quasi-norm with p ∈ (0, 1). Through an illustrative
example, we showcase the advantageous properties of the proposed distance metric com-
pared to commonly used alternatives for revealing natural groupings in data. Subsequently,
we present a novel k-means type heuristic by integrating this sub-one quasi-norm-based
distance, offer a step-by-step iterative relocation scheme, and prove the convergence to the
Kuhn-Tucker point. Finally,we empirically validate the effectiveness of our clusteringmethod
through experiments on synthetic and real-life datasets, both in their original form and with
additional noise introduced. We also investigate the performance of the proposed method as
a subroutine in a deep learning clustering algorithm. Our results demonstrate the efficacy of
the proposed k-means algorithm in capturing distinctive patterns exhibited by certain data
types.

Keywords Sub-one quasi-norm · k-means clustering · Lloyd’s heuristics

1 Introduction

Partitional clustering involves the segmentation of a set of samples into clusters based on
defined criteria such that samples in the same cluster exhibit greater similarity than those in
different clusters. The k-means algorithm, a prominent unsupervised partitional clustering
scheme [26], accomplishes this by categorizing data points into k disjoint clusters while
minimizing the total distortion function. Distortion, in this context, is the sum of distances
between data points and their assigned cluster center. This algorithm has gained widespread
acclaim due to its simplicity, efficiency, ease of implementation, and empirical success in
various fields such as datamining, pattern recognition,marketing research, and social network
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analysis [12, 20, 37]. Jain andKar provided a comprehensive overview of clusteringmethods,
addressingmajor challenges and key issues in the algorithm design [22]. Themost commonly
used heuristic for k-means clustering is the Lloyd’s method. It commences with a set of
randomly chosen initial cluster centers, and in each iteration, assigns each data point to the
cluster with the closest center, determined by a distance metric. The cluster representatives
are then updated to the center of the newly formed clusters. This iterative process is repeated
until a predefined stopping rule is met.

One of the major decisions in the design of the k-means method is the choice of an
appropriate distance metric. The sum of squared Euclidean distances is the conventional
measure of dissimilarity between data and has been widely adopted in studies involving k-
means and deep learning based clustering [35]. In this paper, we propose a k-means clustering
algorithmwith the usage of a distance metric derived from the sub-one quasi-norm (�p quasi-
norm with p ∈ (0, 1)). In contrast to the Euclidean distance, this metric leverages similar
data-items more effectively while assigning less weight to dissimilar ones. To illustrate the
desired properties inherent in the proposeddistancemetric,weuse the Iris dataset to exemplify
its ability to yield more unbiased similarity values in classification tasks. Computational
experiments on both synthetic and real-life datasets corroborate the enhanced performance
of our proposed k-meansmethod in achieving effective classification. Additional experiments
were conducted on datasets with introduced random noise to underscore the resilience of the
proposed k-means method to noise. Moreover, we also integrated our novel k-means method
into a deep learning clustering model to further investigate its efficacy in handling more
intricate tasks and real-world applications. These findings validate the context-dependent
effectiveness of our proposed sub-one quasi-norm based k-means algorithm over standard
k-means algorithms using other common distance metrics.

The rest of this paper is organized as follows. Section2 reviews the search for an appro-
priate distance metric in the k-means clustering literature. Section3 introduces the sub-one
quasi-norm-based distance and analyzes its desired properties. In Sect. 4, we incorporate
the sub-one quasi-norm-based distance metric into a k-means type heuristic and provide a
step-by-step iterative relocation scheme. Section5 presents numerical results to compare the
performance of k-means algorithms with the proposed distance against other commonly used
distance metrics. Section6 concludes the paper.

2 Literature Review

The widely recognized k-means algorithm seeks to minimize the sum of squared Euclidean
distances from each data point to its nearest cluster center [14, 21, 26]. Nonetheless, the
Euclidean distance metric may not consistently produce high-quality cluster centers espe-
ciallywhen the dataset contains noise or outliers. Numerous studies have proposed alternative
mathematicalmetrics to improve distance calculations. In order to increase resistance to noise
and outliers, Kersten suggested employing Manhattan distance instead of Euclidean distance
in the k-means clustering algorithm [25]. Singh et al. explored the implementation of the
k-means algorithm using Minkowski distance metric [33]. Recently, there has been a trend
towards exploring various nonlinear distance metrics as an alternative to Euclidean distance
[31]. Bobrowski and Bezdek extended the k-means clustering algorithm by exploring two
similarity measures with nonhyperelliptical topologies: the square of the l1 norm and the
square of the supremum norm l∞ [5]. Hathaway et al. examined clustering with general l p
norm distances, with p varying from 0 to 1, and evaluated clustering performance with arti-
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ficial datasets [18]. Aside from members of the Minkowski or p-norm family, Filippone
et al. surveyed modified k-means clustering algorithms incorporating kernel-based similarity
measures that produce nonlinear separating hypersurfaces between clusters [15]. de Amorim
and Mirkin extended the existing k-means method with an automated feature weighting
scheme using the corresponding Minkowski metric to improve resilience to irrelevant or
noisy features [11].

Researchers have also suggested replacing Euclidean distance with various divergence
measures that violate some metric properties for the k-means clustering problem. Dhillon
et al. proposed a divisive algorithm based on Kullback–Leibler divergences, which are not
symmetric and do not obey the triangle inequality [13]. Banerjee et al. presented an alternative
formulation of the k-means clustering scheme using the general Bregman divergence that
unifies all divergence measures [4]. Nielsen et al. investigated a parametric family of diver-
gence measures for k-means clustering [29]. Chakraborty and Das derived the S-distance
from the S-divergence defined on the open cone of positive definite matrices and proved the
convergence of the induced k-means algorithm to a local optimum [7]. In fuzzy partitioning
clustering, where a data sample can belong to multiple clusters with varying degrees of fuzzy
membership, Saha and Das explored using geometric divergence to enhance the immunity
of fuzzy k-means type algorithms towards noisy features [30]. Seal et al. proposed a Jeffrey-
divergence based distancemetric and developed a fuzzy c-means (FCM) clustering algorithm
that guarantees convergence to a local minimum [31].

Recognizing the sensitivity of the commonly used Euclidean distance to the distortion of
heavy outliers and its biased impact on the overall similarity values [10], alternative mea-
sures of dissimilarity have been studied in the machine learning literature. The non-convex
�p quasi-norm with p ∈ (0, 1) has gained research interest due to its capacity for promoting
sparsity in model parameters. This sub-one quasi-norm has found various applications in
matrix completion [28], proximal support vector machine [9], vector reconstruction [24] in
the fields of machine learning and compressed sensing. It has been shown to be more robust
than the classical sparse-inducing term �1 norm, which induces the Manhattan distance [34].
The advantages of the sub-one quasi-norm in handling approximately sparse data, noisymea-
surements, and heavyoutliers have beendemonstrated. In light of these advantages, Jiang et al.
[23] first proposed a sub-one quasi-norm-based similarity measure for collaborative filtering
in a recommender system. This similarity measure has proven superior to commonly used
distance metrics, as it makes better use of rating values and avoids overweighing dissimilar
ratings between users, whether in fully co-rated, sparsely co-rated or cold-start scenarios. Our
work represents another step towards exploiting the desired properties of �p quasi-norm in
learning models by extending the sub-one quasi-norm-based similarity measure to clustering
analysis.

3 Sub-One Quasi-Norm-Based DistanceMetric

This section describes the distance metric induced by the �p quasi-norm with p ∈ (0, 1) and
its desired properties.

For all x, y ∈ R
m , a well-defined function d : R

m × R
m → R+ that measures the

distance between x and y has to satisfy the following three requirements:

• Identity of indiscernibles: d(x, y) = 0 ⇐⇒ x = y;
• Symmetry: d(x, y) = d( y, x);
• Triangle inequality: d(x, z) ≤ d(x, y) + d( y, z).
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Fig. 1 Equal distance contour plot of l0.5-distance and Euclidean distance

Minkowski distance (
∑m

i=1 |xi − yi |p)1/p constitutes a family of classical distance met-
rics derived from the �p norm ‖x‖p = (

∑m
i=1 |xi |p)1/p where p ≥ 1. Familiar examples

within this family include the Euclidean distance (induced by p = 2) and the Manhattan
distance (induced by p = 1). In this research, we focus on p ∈ (0, 1) for which ‖ · ‖p is no
longer subadditive and forms a quasi-norm. For p ∈ (0, 1), it holds that

‖x‖p
p + ‖ y‖p

p ≤ ‖x + y‖p
p

for any x, y ∈ R
m . Hence, the function ‖ · ‖p

p induced by the �p quasi-norm becomes
subadditive and defines a distance function expressed as

dp(x, y) =
m∑

i=1

|xi − yi |p.

The Minkowski distance and the �p quasi-norm-based distance metric exhibit distinct
behaviors in similarity evaluation. As the value of p diminishes below 1, there is a heightened
sensitivity of the �p quasi-norm-based distance to no change or minor variations in a single
dimension when assessing similarity. To illustrate this characteristic, we depict the contour
of the �0.5 quasi-norm-based distance function alongside the Euclidean distance function in
a two-dimensional space in Fig. 1. Notably, the point (0, 4) has the same Euclidean distance
from the origin (0, 0) as the point (2.83, 2.83). However, it is as distant from the origin as
the point (1, 1) in terms of the �0.5 quasi-norm-based distance. Therefore, the point (0, 4)
is deemed more similar to the origin when �0.5 quasi-norm-based distance is adopted as a
similarity measure, compared to the Euclidean distance. In other words, the �p quasi-norm-
based distance metric with p ∈ (0, 1) emphasizes similarity along the x-axis between the
points (0, 0) and (0, 4), while Euclidean distance emphasizes variations along the y-axis.

In the context of data classification tasks, leveraging �p quasi-norm-based distance as a
similarity measure offers two advantages. First, assigning greater importance to similar data-
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Table 1 Example of six iris
plants

Attribute in cm A B C D E F

Sepal length 6.3 5.0 5.8 6.7 5.8 5.9

Sepal width 2.3 2.3 2.7 2.5 2.7 3.0

Petal length 4.4 3.3 5.1 5.8 5.1 5.1

Petal width 1.3 1.0 1.9 1.8 1.9 1.8

Fig. 2 Class-stratified histogram of attributes in Iris dataset

items helps mitigate the impact of substantial variations in few dimensions, which can aid
in the identification of data samples belonging to the same category. Second, it enhances the
robustness of clustering algorithms against noise and outliers by avoiding excessive emphasis
on dissimilar data-items.

We demonstrate the effectiveness of the proposed �p quasi-norm-based distance metric
using an illustrative example involving six iris plants from the well-known Iris dataset [16],
which is widely recognized in the pattern recognition literature. Table1 presents the sepal
and petal length and width measurements (in centimeters) for plants A, B, C, D, E, and F. In
this context, plants A and B belong to the Versicolor type, while plants C, D, E and F belong
to the Virginica type. From Table1, we can make the following observations: (i) Regarding
the sepal length variable, the measurement of plant A falls in the range of plants C, D, E, and
F, while themeasurement of plant B stands out. (ii) Regarding the sepal width, plant A has the
same measurement as plant B, but differs from plants C, D, E, and F. (iii) Regarding the petal
length and width, the measurement of plant A is similar to that of plant B, but deviates from
plants C, D, E, and F. To gain a deeper understanding of attribute value distribution for the
Versicolor andVirginica iris species, we present histograms in Fig. 2 examining each attribute
individually across all instances in the Iris dataset. The figure reveals that petal length has the
widest distribution, whereas petal width exhibits the lowest mean among the four attributes.
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Table 2 Distance to plant A under different distance metrics

Distance metric B C D E F

�0.5 quasi-norm-based distance 2.7367 2.9508 2.9700 2.9508 3.0129

Manhattan distance (�1 norm-based distance) 2.7000 2.2000 2.5000 2.2000 2.3000

Euclidean distance (�2 norm-based distance) 1.7292 1.2225 1.5524 1.2225 1.1790

Chebyshev distance 1.3 0.7 1.4 0.7 0.7

Although there is a notable overlap in the distributions of Versicolor and Virginica for sepal
length and width, the measurements for petal length and width form fairly distinct groups.
Thereby, distinguishing between the two species requires recognizing the similar petal length
and width measurements within the same iris type.

An ideal distance metric should produce a smaller distance between plants A and B
compared to that between plant A and other plants. To achieve this, this distance metric
should not be excessively influenced by significant variations in sepal length but should
recognize similar petal length and width measurements between iris plants of the sane type.
Table2 presents distances between plant A and other plants under �p quasi-norm-based
and other commonly used metrics (Manhattan, Euclidean and Chebyshev) for comparison.
Larger distances indicate greater dissimilarity from plant A. It is evident that, except for
the �0.5 quasi-norm-based distance, other metrics were not able to identify plant B as the
most similar to plant A, consequently failing to classify them under the same iris type. These
metrics tended to overemphasize dissimilarities in sepal length, a variable with a broad
distribution, and failed to capture the shared sepal width as well as the close petal length and
width measurements between plants A and B. Due to the concave nature of the contour plots
of the l p quasi-norm function, l p quasi-norm-based distance makes better use of identical
data-items while avoiding giving excessive weights to dissimilar data-items. This property
is particularly advantageous when handling data with slight variations in a single variable,
especially one possessing significant discriminatory power for classification, as demonstrated
in our experimental results in Sect. 5.

4 Sub-One Quasi-Norm-Based k-Means Algorithm

Consider a set of vectors X = {xi }ni=1 with xi ∈ R
m , i = 1, . . . , n. We want to partition

X into k many exhaustive and mutually exclusive classes (2 ≤ k ≤ n). Adopting the �p
quasi-norm-based distance metric, we formalize the clustering problem in the following
mathematical form:

(P): min f (W,Z) =
n∑

i=1

k∑

j=1

wi j dp(xi , z j )

s.t.
k∑

j=1

wi j = 1, i = 1, . . . , n,

wi j ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , k,

where W = [wi j ] ∈ Z
n×k
2 , Z = [z1, . . . , zk]T ∈ R

k×m .
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Regardless of the choice of the distance metric, Problem (P) is an NP-hard non-convex
programming problem [2]. By relaxing the binary requirements of wi j , this problem can be
reformulated as a reduced problem defined as:

(RP): min F(W) := infZ f (W,Z)

s.t. W ∈ C := {W ∈ R
n×k |

k∑

j=1

wi j = 1, wi j ≥ 0, i = 1, . . . , n, j = 1, . . . , k}.

Problems (P) and (RP) are equivalent because, due to the concavity of F(·), the optimal
solutions for Problem (RP) precisely correspond to the extreme points of C. Meanwhile,
the extreme points of C inherently satisfy the constraints of Problem (P). Problem (RP) is
typically addressed through a greedy alternating minimization algorithm. Here, we introduce
a sub-one quasi-norm-based k-means clustering algorithm for solving (RP) based on thewell-
established Lloyd’s k-means method. The following iterative heuristics provide a detailed
account of its implementation.

Algorithm 1 .
Input: Parameters n, m, k. dataset {xi }ni=1 with xi ∈ R

m , i = 1, . . . , n.

Initialize: A set of randomly selected k vectors in R
m such that Z(0) = [z01, . . . , z0k ]T . W(0) =

argminW∈C f (W,Z(0)). Set t = 0;
1: Compute Z(t+1) = argminZ f (W(t),Z), i.e.. update the cluster centers based on the most recent class

assignment. If f (W(t),Z(t+1)) = f (W(t),Z(t)), terminate the algorithm; otherwise, continue.
2: Compute W(t+1) = argminW∈C f (W,Z(t+1)), i.e. fix the cluster centers and assign each vector to its

nearest center. If f (W(t+1),Z(t+1)) = f (W(t),Z(t+1)), terminate the algorithm; otherwise, continue.
3: Update t → t + 1, return to Step 1.
Output: Current cluster assignment and cluster centers.

In Algorithm1, Problem (P) is solved by alternating separate optimizations over the fol-
lowing two problems:

• (P1): For fixed Z ∈ R
k×m , minimize f (W,Z) subject toW ∈ C;

• (P2): For fixedW ∈ Z
n×k
2 , minimize f (W,Z) subject to Z ∈ R

k×m .

The solution to Problem (P1) is straightforward. Given any Z ∈ R
k×m , for each i =

1, . . . , n, we set wir = 1 for the smallest r satisfying dp(xi , zr ) ≤ dp(xi , z j ) for all
j = 1, . . . , k. Subsequently, we set wi j = 0 for all j 
= r . However, the solution to Problem
(P2) is not as straightforward, especially when the �p quasi-norm-based distance function
dp with p ∈ (0, 1) is adopted. Problem (P2) is an �p quasi-norm minimization problem that
has been proved to be strongly NP-hard [17]. Due to the non-convexity of �p quasi-norm, a
local optimum of Problem (P2) may not be a global optimal solution.

For a fixedW ∈ Z
n×k
2 , as the distance function dp is separable by variable, Problem (P2)

can be decomposed into independent univariate minimization problems:

(P2- jl) : min f jl(z jl) :=
n∑

i=1

wi j |z jl − xil |p

for all j = 1, . . . , k and l = 1, . . . ,m. Z∗ is an optimal solution to Problem (P2) if and only
if z∗jl solves Problem (P2- jl) for all j = 1, . . . , k and l = 1, . . . ,m. We note that the local
minimizer of Problem (P2- jl) is easy to locate.
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Lemma 1 For any j = 1, . . . , k and l = 1, . . . ,m,Problem (P2- jl) attains its localminimum
values at xil , where i ∈ {1, . . . , n} satisfies wi j 
= 0.

Proof Consider any j and l. The function f jl(·) is continuous and differentiable everywhere
except at zil = xil for any i = 1, . . . , n with wi j 
= 0. Define n j := ∑n

i=1 wi j . Let
the sequence i1, . . . , in j be an ordered list of the set {i | wi j 
= 0, i = 1, . . . , n} with
xi1l ≤ . . . ≤ xin j l . On any open interval among (−∞, xi1l), (xi1l , xi2l), . . . , (xin j l , + ∞),
the function f jl(·) is differentiable and can be expressed as the sum of multiple strictly
concave functions. As a result, f jl(·) is strictly concave on these open intervals, with its
graph showing a downward jump at two endpoints of the interval. By summing up the
derivatives, we obtain one-sided differentials: f jl(xil+) = +∞ and f jl(xil−) = −∞, for
any i ∈ {i1, . . . , in j }. Hence, for any i ∈ {1, . . . , n} with wi j 
= 0, z jl = xil serves as a local
minimizer of Problem (P2- jl). Note that f jl(·) is not differentiable at its local minimum
points. �

To obtain the optimal solutionZ∗ of Problem (P2), we address each individual subproblem
(P2- jl) for all j = 1, . . . , k, l = 1, . . . ,m, and identify the component value z jl that
yield the overall minimum to Problem (P2- jl). Within each (P2- jl), we iterate over the set
{xi1l , . . . , xin j l} and select the smallest value that globally minimizes the objective function
f jl .
As proved in Selim and Ismail [32], Algorithm1 converges in a finite number of iterations

to a partial optimal solution (W∗,Z∗) defined as

f (W∗,Z∗) ≤ f (W,Z∗) for allW ∈ C,

f (W∗,Z∗) ≤ f (W∗,Z) for all Z ∈ R
k×m .

It is important to note that (W∗, Z∗) is a partial optimal solution if and only if W∗
solves Problem (P1) given Z = Z∗ and Z∗ solves Problem (P2) given W = W∗. Selim and
Ismail demonstrated that partial optimal solutions are Kuhn-Tucker points for Problem (P)
provided that f (W,Z) is differentiable at (W∗, Z∗). However, when utilizing sub-one �p
quasi-norm based distance dp in Problem (P), as discussed in Lemma1, f (W,Z) may not
be differentiable at Z = Z∗. In this setup, we establish that partial optimal solutions still
function as Kuhn-Tucker points for Problem (P).

Theorem 2 A point (W∗, Z∗) is a Kuhn-Tucker point of Problem (P) if and only if it is a
partial optimal solution.

Proof For any Z = [z1, . . . , zk]T and j = 1, . . . , k, let Sl(z j ) be an active set of z j on the
lth dimention, defined as

Sl(z j ) = {i | z jl 
= xil}.
The Kuhn-Tucker conditions of Problem (P) are given by

(i) dp(xi , z j ) + λi ≥ 0, i = 1, . . . , n, j = 1, . . . , k.
(ii) wi j (dp(xi , z j ) + λi ) = 0, i = 1, . . . , n, j = 1, . . . , k.
(iii)

∑k
j=1 wi j = 1, i = 1, . . . , n.

(iv) wi j ≥ 0, i = 1, . . . , n, j = 1, . . . , k.
(v)

∑
i∈Sl (z j ) pwi j |z jl − xil |p−1sgn(z jl − xil) = 0, l = 1, . . . ,m, j = 1, . . . , k.

Assume (W∗, Z∗) is a partial optimal solution. By the definition of partial optimal solutions,
W∗ solves Problem (P1) given Z = Z∗, and thusW∗ satisfies the Kuhn-Tucker conditions of
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Problem (P1) characterized by (i)–(iv)whenZ = Z∗. Likewise,Z∗ solves Problem (P2) given
W = W∗, and thus Z∗ satisfies the Kuhn-Tucker condition of Problem (P2) characterized
by (v) whenW = W∗.

Assume (W∗, Z∗) is a Kuhn-Tucker point of Problem (P). Suppose that (W∗, Z∗) is not a
partial optimal solution of Problem (P). EitherW∗ does not solve Problem (P1) withZ = Z∗,
or Z∗ does not solve Problem (P2) with W = W∗. If the former is true, then W∗ should not
solve Kuhn-Tucker conditions of Problem (P1) with Z = Z∗, which are given by (i)–(iv).
If the latter is true, then Z∗ should not solve Kuhn-Tucker condition of Problem (P2) with
W = W∗, which is given by (v). This is a contradiction and hence (W∗, Z∗) is a partial
optimal solution. This completes the proof. �

It is worth noting that when Algorithm1 terminates at a partial optimal solution (W∗, Z∗),
if Z∗ is the unique solution of Problem (P2) with W = W∗, the local optimality of W∗ for
Problem (RP) can be guaranteed. This, in turn, makes (W∗,Z∗) a local minimizer of Problem
(P), according to Selim and Ismail [32].

5 Numerical Experiments

This section provides empirical evidence regarding the effectiveness of our proposed sub-
one quasi-norm-based k-means algorithm on both synthetic and real-life datasets, which also
serves as a comparative analysis of the proposed �p quasi-norm-based distancemetric against
other commonly used distance metrics. Additionally, we further investigate the applicability
of our k-means method for handling complex tasks by implementing it within the deep
learning based clustering algorithm.

5.1 Experiment Setup

Simulations were executed on all datasets employing the proposed Algorithm1 and the tra-
ditional Lloyd’s k-means algorithms with the basic and commonly used distance metrics
in most applications. Specifically, the proposed �p quasi-norm-based distance metric with
p = 0.5 was tested against conventional distance metrics, including the Manhattan distance
(referred to as l1 distance) and the squared Euclidean distance (referred to as l2 distance),
as detailed in Table3. Moreover, when applicable, the S-distance, which is chosen among
various divergence-based distance functions due to its demonstrated superiority over con-
ventional distance metrics [7], was included in our comparisons.

The various k-means algorithms were executed on the same dataset to facilitate a direct
comparison of their clustering results. Given that the Lloyd’s k-means clustering process
produces a local optimal solution dependent on the initial cluster centers, the implementation
of a k-means algorithm was repeated 10 times for each dataset with different initial cluster
centers in each iteration. This ensures that any observed performance differences are not due
to chance or potential biases stemming from a single initial cluster configuration. In every
iteration, a common set of randomly chosen initial cluster centers was employed for for
all instances of the k-means algorithm involved in the comparison. Every dataset employed
in our experiments was equipped with known class labels for each instance. To safeguard
against any impact on the algorithm performance due to the accurate or inaccurate chosen
value for k, the input parameter k was set to be the true number of clusters when executing
the k-mean algorithms.
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Table 3 Different distance metrics under comparison

Distance metric Definition Defined space

l0.5 quasi-norm-based distance
∑m

i=1 |xi − yi |
1
2 R

m

Manhattan distance (�1 distance)
∑m

i=1 |xi − yi | R
m

Squared Euclidean distance (�2 distance)
∑m

i=1(xi − yi )
2

R
m

S-distance log
∏m

i=1
xi+yi

2 − log
∏m

i=1 xi+log
∏m

i=1 yi
2 R

m++

We employed the Adjusted Rand Index (ARI) and NormalizedMutual Information (NMI)
to evaluate the similarity between the cluster assignments generated by the k-means algo-
rithms and the true labels. The ARI quantifies the agreement between two class assignments,
where a score of 1 indicates a perfect match, and −1 indicates a complete mismatch. Mean-
while, NMI scales the similarity between clustering outcomes and true labels on a range from
0 (indicating no mutual information) to 1 (reflecting perfect correlation). Higher ARI and
NMI values signify that the clustering results closely align with the ground-truth.

5.2 Experiments on Synthetic Dataset

To validate the clustering performance of the proposed sub-one quasi-norm-based k-means
algorithm, we conducted experiments on synthetic datasets constructed with mixtures of
multivariate normal distributions. Initially, we generated multiple clusters following a mul-
tivariate Gaussian distribution, each with a mean of 0 and a covariance/correlation matrix
denoted as

θ =

⎡

⎢
⎢
⎢
⎣

1 b . . . b
b 1 . . . b
...

...
. . .

...

b b . . . 1

⎤

⎥
⎥
⎥
⎦

,

where 0 < b < 1 is a predefined parameter given by b = K 2−1
n−1+K 2 , with K > 0 representing

the ratio of the maximum eigenvalue to the minimal eigenvalue of θ . This results in multiple
normally distributed clusters spreading along the direction of (1, · · · , 1)T , and each variable
has identical isotropic covariances. To introduce diversity among clusters, we rotated them
to different directions and varied their distances/densities by adding/multiplying them with
distinct arbitrary vectors. The final dataset was then formed by overlapping multiple clusters
generated in this manner to simulate a multi-cluster scenario.

We conducted experiments on a total of eleven synthetic datasets that encompass a diverse
range of scenarios. Thefirst five datasets (c2, c3, c4, c5, c6) are standardmulti-cluster datasets,
each consisting of 2, 3, 4, 5, 6 clusters, respectively. Each cluster contains 100 records. The
remaining six datasetswere specifically designed to incorporate various clustering challenges,
as summarized below.

• Imbalanced datasets (im3, im4): Dataset im3 comprises 300 records distributed across
into three clusters, with the clusters containing 50, 100, and 150 records, respectively.
Dataset im4 contains 300 records divided into four clusters, each consisting of 50, 100,
150, 200 records, respectively.
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• Datasets with noise (n3, n4): In these datasets, each comprising 3 and 4 clusters
respectively, 20% of the data points were augmented with normally distributed noise
characterized by a mean of 0 and a standard deviation of 0.1.

• Datasets with outliers (o3, o4): Featuring 3 and 4 clusters respectively, each cluster in
these datasets incorporates 20% artificial outliers. These outliers are generated from a
uniform distribution on a simplex, where the simplex’s vertices were randomly chosen
from the intersection of an �2 norm ball with a radius of 2 and a hyperplane defined by
a bias term of 1 and a normal vector forming an angle of 45◦ with the major direction of
the corresponding cluster.

As the S-distance metric is exclusively defined on R
m++, we compare the performance

scores obtained by the k-means algorithms using �0.5, �1, �2 distances. Table4 reports the
average and standard deviation ofARI andNMI for the clustering results. The table highlights
the best ARI and NMI mean values across different algorithms for each experiment instance
in bold. Notably, the proposed k-means algorithm utilizing the �0.5 distance metric generally
demonstrates superior performance in comparison to other algorithms on these synthetic
datasets. This superiority can be attributed to the non-convex shape of the �p quasi-norm
balls with p ∈ (0, 1), which enables the �p quasi-norm-based distance to make better use
of similar data-items rather than over-emphasizing dissimilar ones. The enhanced clustering
performance of our proposed k-means algorithm on datasets c2, c3, c4, c5, c6 is visually
evident from Fig. 3. As the cluster number increases, resulting in clusters with significant
variations in every dimension, clustering accuracy naturally decreases. Nevertheless, our
proposed algorithm maintains its effectiveness. For datasets with a high cluster number, we
observed suboptimal and comparable performances across all k-means algorithms. Addition-
ally, the superior clustering performance of our proposed k-means algorithm on datasets im3,
im4, n3, n4, o3, o4 is visually evident from Fig. 4. This highlights the algorithm’s efficacy
in handling datasets with imbalanced clusters, noise, and outliers. The distinctive features
of our proposed algorithm position it as a robust and versatile solution to capture complex
patterns and overcome challenges posed by noise and outliers.

5.3 Experiments on Real-Life Dataset

To verify the effectiveness of the proposed k-means algorithm for clustering real-life data,
we conducted experiments on several datasets from the UCI Machine Learning Repository
[1, 8, 19]. The details of datasets are provided below.

• Wine: This dataset contains 178 instances, each including 13 integer-valued constituents
found inwines grown in the same region in Italy but derived from three different cultivars.

• Iris: This dataset consists of three different types of iris plants: Setosa, Versicolor, Vir-
ginica. Each type contains 50 instances and each instance has four real-valued attributes.

• Seeds: This dataset contains 210 instances, and each instance includes seven real-valued
continuous geometric measurements of wheat kernels belonging to three different vari-
eties of wheat.

• Ceramic: This dataset includes 88 instances that can be classified into body or glaze based
on 17 chemical compositions obtained from energy dispersive X-ray fluorescence.

• Algerian forest fires: This dataset comprises 244 instances of forest regions in Algeria,
which includes ten attributes and can be classified into fire and not fire classes.

• Facebook live sellers: This dataset contains Facebookpages ofThai fashion and cosmetics
retail sellers. The 6622 instances with nine integer-valued attribute can be divided into
two classes: video and photo.
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Table 4 ARI/NMI levels at the synthetic datasets

Dataset Distance metric ARI NMI
Mean Std Dev Mean Std Dev

c2 �0.5 distance 0.6107 0.2500 0.5426 0.1211

�1 distance 0.4969 0.0945 0.5070 0.0625

�2 distance 0.2049 0.0069 0.2639 0.0007

c3 �0.5 distance 0.7787 0.0211 0.7411 0.1366

�1 distance 0.6867 0.1490 0.7148 0.1395

�2 distance 0.4432 0.0000 0.5373 0.0167

c4 �0.5 distance 0.6770 0.0406 0.7204 0.0973

�1 distance 0.6587 0.0349 0.6666 0.1564

�2 distance 0.4018 0.0544 0.4895 0.0352

c5 �0.5 distance 0.6065 0.0000 0.7155 0.1386

�1 distance 0.5376 0.0000 0.6392 0.0694

�2 distance 0.4386 0.0000 0.5347 0.0732

c6 �0.5 distance 0.3827 0.1237 0.6511 0.0862

�1 distance 0.3805 0.0910 0.6399 0.0511

�2 distance 0.3189 0.0194 0.5910 0.0340

im3 �0.5 distance 0.7340 0.2195 0.7902 0.1943

�1 distance 0.7173 0.2030 0.7164 0.0547

�2 distance 0.4917 0.0026 0.6118 0.0128

im4 �0.5 distance 0.4068 0.0775 0.5856 0.0659

�1 distance 0.3799 0.0393 0.5564 0.0121

�2 distance 0.3727 0.0307 0.5424 0.0027

n3 �0.5 distance 0.6253 0.2415 0.6534 0.1336

�1 distance 0.5800 0.1834 0.6196 0.0871

�2 distance 0.4175 0.0241 0.5105 0.0190

n4 �0.5 distance 0.4864 0.2170 0.7184 0.0127

�1 distance 0.5093 0.1670 0.7039 0.0209

�2 distance 0.5060 0.0929 0.6603 0.0064

o3 �0.5 distance 0.5101 0.2019 0.6219 0.1340

�1 distance 0.4500 0.1327 0.5978 0.0822

�2 distance 0.4523 0.1384 0.5924 0.0149

o4 �0.5 distance 0.4831 0.0456 0.5926 0.0728

�1 distance 0.4592 0.0440 0.6180 0.0580

�2 distance 0.4375 0.0073 0.6110 0.0007

Table5 provides the average and standard deviation of ARI and NMI for clustering
results across the six real-life datasets, which underscores the superior performance of
the proposed distance metric in capturing the underlying structures in specific real-life
datasets. The table highlights the best ARI and NMI mean values across different algo-
rithms for each experiment instance in bold. On the Wine, Ceramic, Forest fire, and
Facebook live seller datasets, the k-means algorithm using the �0.5 quasi-norm-based
distance demonstrates superior clustering accuracy compared to the other algorithms.
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However, on the Seed dataset, while the proposed k-means algorithm maintains com-
parable performance, it does not exhibit a discernible advantage over the other algo-
rithms. In contrast, on dataset Iris, the utilization of the �0.5 quasi-norm-based distance
metric yields improved clustering results compared to both Manhattan and Euclidean
distances, although it falls short of surpassing the performance achieved by the S-
distance.

To assess the robustness of the proposed sub-one quasi-norm based k-means cluster-
ing algorithm, we conducted experiments on intentionally corrupted datasets with added
noise. Specifically, we introduced a pre-specified amount of noise into two real-life datasets,
namely Iris and Seeds, where the �p quasi-norm-based distance metric does not yield the
best results in Table5. We generated normally distributed noise with a mean of 0 and
applied to approximately 10%, 20%, 30% of the data points in each dataset. To account
for the different scales of variations across variables, the standard deviations of the added
noise were set equal to the mean value within each variable. The clustering experiments
involved 10 trials for each combination of distance metric and noise percentage. The pres-
ence of noise introduces challenges in recovering the underlying cluster structures of the
dataset.

Table6 presents the average and standard deviation of ARI and NMI for k-means cluster-
ing results on the noisy data, categorized by datasets, noise percentage, and distance metrics.
The table highlights the best ARI and NMI mean values across different algorithms for each
experiment instance in bold. A comparison between Tables5 and 6 reveals a deterioration
in the quality of clustering results when noise is present in the data. However, both datasets
consistently indicate the proposed �0.5 quasi-norm-based distance produces the best clus-
tering results when compared to other distance metrics. This underscores the effectiveness
of the proposed k-means method in clustering data while mitigating the adverse effects of
noise. This suggests that the k-means clustering method with �p quasi-norm-based distance
exhibits resistance to noise and outliers in the data, highlighting the efficacy and robustness
of the proposed algorithm.

5.4 Experiments with Deep-LearningModels

To investigate the practical applicability of the sub-one quasi-norm-based metric, we have
integrated the proposed k-means algorithm into advanced deep learning models. Evaluating
the clustering algorithm within a deep learning context provides valuable insights into its
applicability for more complex tasks and real-world scenarios, especially when dealing with
high-dimensional data.

This evaluation was conducted on the cutting-edge generalized deep learning cluster-
ing (GDLC) algorithm [36]. The GDLC algorithm focused on dimensionality reduction
by finding the product of two low-dimensional matrices that approximates the original
high-dimensional matrix. This deep learning approach enables the representation of high-
dimensional data in a lower-dimensional space and facilitates the completion of clustering
tasks in this reduced space. In the GDLC framework, a nonlinear constrained non-negative
matrix factorization based on stochastic gradient descent is initially employed as an element
update method. The resulting generalized weights, generalized biases, and activation func-
tion are then combined to form a generalized deep learning network for updating elements
in the low-dimensional matrix.

In the original GDLC algorithm, an �2-norm-based k-means algorithm is employed for
clustering. Notably, we replaced a segment of the existing GDLC’s clustering process with

123



  175 Page 14 of 20 Q. An, S. Jiang

Fig. 3 The figure shows the results obtained on standard multi-cluster datasets with varying cluster numbers.
Each row corresponds to a different dataset (c2, c3, c4, c5, c6). Column 1 illustrates the original cluster
structure. Columns 2 and 3 indicate the class assignments generated by the Lloyd’s k-means algorithm with
the squared Euclidean distance and the proposed k-means algorithm with the �0.5 quasi-norm-based distance
metric, respectively
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Fig. 4 The figure shows the results obtained on the complex synthetic datasets. Each row corresponds to a
different dataset (im3, im4, n3, n4, o3, o4). Column 1 illustrates the original cluster structure. Columns 2 and
3 indicate the class assignments generated by the the Lloyd’s k-means algorithm with the squared Euclidean
distance and the proposed k-means algorithm with the �0.5 quasi-norm-based distance metric, respectively
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Table 5 ARI/NMI levels on the real-life datasets

Dataset Distance metric ARI NMI
Mean Std Dev Mean Std Dev

Wine �0.5 distance 0.7389 0.0622 0.6774 0.0380

�1 distance 0.1379 0.0042 0.1516 0.0030

�2 distance 0.1106 0.0027 0.1127 0.0000

S-distance 0.6484 0.0005 0.6485 0.0000

Iris �0.5 distance 0.6840 0.1008 0.7118 0.0082

�1 distance 0.6663 0.1295 0.7507 0.0000

�2 distance 0.6617 0.1539 0.7582 0.0000

S-distance 0.7852 0.1795 0.8642 0.0000

Seed �0.5 distance 0.6981 0.0000 0.7011 0.0070

�1 distance 0.6994 0.0000 0.7029 0.0000

�2 distance 0.7103 0.0000 0.7101 0.0000

S-distance 0.5059 0.1482 0.5041 0.0000

Ceramic �0.5 distance 0.8244 0.0000 0.7766 0.0000

�1 distance 0.7610 0.0000 0.7387 0.0000

�2 distance 0.5925 0.0000 0.5868 0.0000

S-distance 0.5028 0.0000 0.5006 0.0000

Forest fire �0.5 distance 0.5274 0.0109 0.4374 0.0000

�1 distance 0.2032 0.0131 0.2842 0.0000

�2 distance 0.0628 0.0000 0.1477 0.0000

S-distance 0.3116 0.0029 0.2516 0.0000

Facebook live seller �0.5 distance 0.1972 0.1178 0.1999 0.0733

�1 distance 0.1604 0.0978 0.1519 0.0343

�2 distance 0.0603 0.0000 0.0267 0.0000

S-distance 0.0787 0.0008 0.1130 0.0000

our proposed k-means algorithm. This modification allows us to compare the performance
of two GDLC versions utilizing different metrics. Our experiments involve eight public
datasets that pose a significant data challenge due to their high dimensional feature spaces.
These datasets encompass six biographical datasets, one image dataset, and one text dataset
[3, 6, 27].

• ALLAML: This dataset contains a total of 72 instances classified into two categories,
ALL and AML. Each instance includes 7129 gene expression values.

• LUNG_DISCRETE: This dataset features 73 instances distributed among seven classes.
Each instance consists of 325 gene expression values.

• ARCENE: This dataset contains 200 instances with 10000 features derived from mass-
spectrometric data, categorized in two classes: cancer pattern and normal pattern.

• leukemia: This dataset consists of 72 bonemarrow instances based on probes from human
genes, with two classes: acute lymphoblastic and acute myeloid.

• colon: This dataset contains 62 instanceswith 2000 genes, divided into two classes: tumor
tissues and normal tissues.

• nci9: This biological dataset encompasses 60 instances, each characterized by 9712 fea-
tures and classified into nine distinct classes.
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Table 6 ARI/NMI levels on the Seeds and Iris datasets with noise

Dataset Noise percentage Distance metric ARI NMI
Mean Std Dev Mean Std Dev

Seeds 10% �0.5 distance 0.6981 0.0048 0.6898 0.0038

�1 distance 0.6895 0.0000 0.6792 0.0000

�2 distance 0.6329 0.0000 0.5748 0.0000

S-distance 0.4998 0.0000 0.4719 0.0000

20% �0.5 distance 0.6681 0.0062 0.6443 0.0000

�1 distance 0.6607 0.0000 0.6285 0.0000

�2 distance 0.5754 0.0000 0.5668 0.0000

S-distance 0.4295 0.0000 0.4069 0.0000

30% �0.5 distance 0.6394 0.0000 0.5899 0.0137

�1 distance 0.6170 0.0056 0.5368 0.0000

�2 distance 0.5269 0.0000 0.4515 0.0000

S-distance 0.3972 0.0000 0.4138 0.0000

Iris 10% �0.5 distance 0.6609 0.1039 0.7281 0.0745

�1 distance 0.6031 0.0935 0.6617 0.0647

�2 distance 0.4789 0.0168 0.5415 0.0101

S-distance 0.4846 0.0137 0.6025 0.0135

20% �0.5 distance 0.5192 0.1383 0.6301 0.0572

�1 distance 0.4570 0.1191 0.5415 0.0156

�2 distance 0.3293 0.0209 0.4298 0.0315

S-distance 0.4033 0.0033 0.4676 0.0153

30% �0.5 distance 0.5288 0.0790 0.5666 0.0333

�1 distance 0.4228 0.0553 0.4713 0.0296

�2 distance 0.367 0.0300 0.3840 0.0404

S-distance 0.3508 0.0012 0.4317 0.0023

• ORL:This dataset comprises 400 instances representing tendistinct images of 40different
subjects. Each instance is characterized by 1024 features and falls into one of eleven
classes.

• RELATHE: This dataset comprises 1427 instances, each defined by 4322 features, and
is organized into two distinct newsgroups.

Table7 presents the average and standard deviation of ARI and NMI for the clus-
tering results resulting from 10 random implementations of the GDLC algorithm. The
table highlights the best ARI and NMI mean values across different algorithms for
each experiment instance in bold. On the ALLAML, LUNG_DISCRETE, ARCENE,
leukemia, colon, and nci9 datasets, the incorporation of our proposed k-means algo-
rithm into GDLC outperforms the original GDLC algorithm in terms of ARI or NMI.
This underscores the effectiveness of our proposed metric in capturing distinctive pat-
terns exhibited by certain data types, such as biological data involving gene expression
patterns or molecular profiles. However, the updated GDLS algorithm demonstrates rel-
atively lower performance on the ORL and RELATHE datasets, indicating challenges in
handling the inherent complexities associated with text and image datasets. These datasets
typically possess different feature spaces and structures that require clustering algorithms
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Table 7 ARI/NMI levels for the GDLC algorithm using different distances

Dataset Distance metric ARI NMI
Mean Std Dev Mean Std Dev

ALLAML �0.5 distance 0.4946 0.0008 0.1379 0.0476

�2 distance 0.5290 0.0129 0.0851 0.0310

LUNG_DISCRETE �0.5 distance 0.7449 0.0143 0.2244 0.0224

�2 distance 0.7342 0.0037 0.2035 0.0385

ARCENE �0.5 distance 0.5068 0.0018 0.0114 0.0040

�2 distance 0.4979 0.0001 0.0003 0.0001

leukemia �0.5 distance 0.4965 0.0000 0.1686 0.0191

�2 distance 0.5729 0.0175 0.0847 0.0070

colon �0.5 distance 0.5270 0.0163 0.0186 0.0057

�2 distance 0.4921 0.0007 0.0002 0.0004

nci9 �0.5 distance 0.8288 0.0157 0.4210 0.0309

�2 distance 0.8178 0.0077 0.3883 0.0366

ORL �0.5 distance 0.8636 0.1654 0.4893 0.0636

�2 distance 0.9760 0.0110 0.7827 0.1536

RELATHE �0.5 distance 0.5028 0.0011 0.0118 0.0157

�2 distance 0.9397 0.0043 0.8276 0.0148

to adapt to diverse modalities. This discrepancy in performance across data types indi-
cates the sensitivity of our proposed k-means algorithm to the intrinsic characteristics and
structures present in different types of data, emphasizing its context-dependent applicabil-
ity.

6 Summary

The k-means algorithm is a widely-used clustering algorithm that partitions a given dataset
into k clusters based on their similarity. In this study, we propose an enhancement to the
k-means algorithm by employing the �p quasi-norm-based distance metric, specifically with
p ∈ (0, 1). Compared to commonly used distancemetrics, our proposed sub-one quasi-norm-
based distance metric excels at capturing similarities among data items while mitigating the
overemphasis on dissimilarities. We substantiate the effectiveness of our proposed k-means
algorithm through theoretical analysis, providing a proof of convergence to the Kuhn-Tucker
point. Extensive experimental results on synthetic and real-life datasets further highlight the
superiority of our algorithm over other distance metrics across diverse scenarios. Notably,
for datasets with added noise, the sub-one �p quasi-norm-based distance metric successfully
addresses a known drawback of k-means, demonstrating its robustness against noise. We
also integrated our proposed k-means method into the generalized deep learning clustering
algorithm that indicates its sensitivity to the inherent characteristics and structures of data and
its context-dependent applicability. As a prospective avenue, extending the implementation of
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the sub-one �p quasi-norm-based distance to Fuzzy c-means (FCM) type algorithms presents
a promising direction for future research.

Author Contributions Q.A. developed the theory and performed the numerical experiments. S.J. derived the
models and analyzed the data. Q.A. and S.J. prepared and reviewed the manuscript.

Funding This work was supported by the National Natural Science Foundation of China (NSFC Grant No.
12201528), the Research Funds for Young Scholars in the Open University of China (No. Q22F0029), and
the Fundamental Research Funds for the Central Universities of Xiamen University (No. 2072021127).

Declarations

Conflict of interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abid F, Izeboudjen N (2019) Predicting forest fire in Algeria using data mining techniques: Case study
of the decision tree algorithm. Int Conf Adv Intell Syst Sustain Dev 1105:363–370. https://doi.org/10.
1007/978-3-030-36674-2_37

2. Aloise D, Deshpande A, Hansen P et al (2009) NP-hardness of Euclidean sum-of-squares clustering.
Mach learn 75:245–248. https://doi.org/10.1007/s10994-009-5103-0

3. Alon U, Barkai N, Notterman DA et al (1999) Broad patterns of gene expression revealed by cluster-
ing analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci
96(12):6745–6750. https://doi.org/10.1073/pnas.96.12.6745

4. Banerjee A, Merugu S, Dhillon IS et al (2005) Clustering with Bregman divergences. J Mach Learn Res
6(10):1705–1749. https://doi.org/10.5555/1046920.1194902

5. Bobrowski L, Bezdek JC (1991) c-means clustering with the ll and l∞ norms. IEEE Transact Syst Man
Cybern 21(3):545–554. https://doi.org/10.1109/21.97475

6. Cai D, He X, Hu Y et al (2007) Learning a spatially smooth subspace for face recognition. 2007 IEEE
Conf Comput Vis Pattern Recognit pp 1–7. https://doi.org/10.1109/CVPR.2007.383054

7. Chakraborty S, Das S (2017) k-means clustering with a new divergence-based distance metric: Conver-
gence and performance analysis. Pattern Recognit Lett 100:67–73. https://doi.org/10.1016/j.patrec.2017.
09.025

8. Charytanowicz M, Niewczas J, Kulczycki P et al (2010) Complete gradient clustering algorithm for
features analysis of X-ray images. Inf Technol Biomed 69:15–24. https://doi.org/10.1007/978-3-642-
13105-9_2

9. ChenWJ, Tian YJ (2010) l p-norm proximal support vector machine and its applications. Proced Comput
Sci 1(1):2417–2423. https://doi.org/10.1016/j.procs.2010.04.272

10. Chiu SM, Chen YC, Chang TY et al (2016) (2016) A fast way for finding similar friends in social
networks by using neuro-fuzzy networks. Int Conf Mach Learn Cybern 2:541–545. https://doi.org/10.
1109/ICMLC.2016.7872945

11. de Amorim RC, Mirkin B (2012) Minkowski metric, feature weighting and anomalous cluster initializing
in k-means clustering. Pattern Recognit 45(3):1061–1075. https://doi.org/10.1016/j.patcog.2011.08.012

12. Deng P, Li T, Wang H et al (2023) Graph regularized sparse non-negative matrix factorization for clus-
tering. IEEE Trans Comput Soc Syst 10(3):910–921. https://doi.org/10.1109/TCSS.2022.3154030

13. Dhillon IS, Mallela S, Kumar R (2003) A divisive information theoretic feature clustering algorithm for
text classification. The J Mach learn Res 3:1265–1287. https://doi.org/10.5555/944919.944973

14. Duda RO, Hart PE, Stork DG (2000) Pattern Classif, 2nd edn. Wiley-Interscience, USA

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-36674-2_37
https://doi.org/10.1007/978-3-030-36674-2_37
https://doi.org/10.1007/s10994-009-5103-0
https://doi.org/10.1073/pnas.96.12.6745
https://doi.org/10.5555/1046920.1194902
https://doi.org/10.1109/21.97475
https://doi.org/10.1109/CVPR.2007.383054
https://doi.org/10.1016/j.patrec.2017.09.025
https://doi.org/10.1016/j.patrec.2017.09.025
https://doi.org/10.1007/978-3-642-13105-9_2
https://doi.org/10.1007/978-3-642-13105-9_2
https://doi.org/10.1016/j.procs.2010.04.272
https://doi.org/10.1109/ICMLC.2016.7872945
https://doi.org/10.1109/ICMLC.2016.7872945
https://doi.org/10.1016/j.patcog.2011.08.012
https://doi.org/10.1109/TCSS.2022.3154030
https://doi.org/10.5555/944919.944973


  175 Page 20 of 20 Q. An, S. Jiang

15. Filippone M, Camastra F, Masulli F et al (2008) A survey of kernel and spectral methods for clustering.
Pattern Recognit 41(1):176–190. https://doi.org/10.1016/j.patcog.2007.05.018

16. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2):179–188.
https://doi.org/10.1111/j.1469-1809.1936

17. Ge D, Jiang X, Ye Y (2011) A note on the complexity of l p minimization. Math Program 129:285–299.
https://doi.org/10.5555/3119419.3119628

18. Hathaway RJ, Bezdek JC, Hu Y (2000) Generalized fuzzy c-means clustering strategies using l p norm
distances. IEEE Trans Fuzzy Syst 8(5):576–582. https://doi.org/10.1109/91.873580

19. He Z, Zhang M, Zhang H (2016) Data-driven research on chemical features of Jingdezhen and Longquan
celadon by energy dispersive X-ray fluorescence. Ceram Int 42(4):5123–5129. https://doi.org/10.1016/j.
ceramint.2015.12.030

20. Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recognit Lett 31(8):651–666. https://
doi.org/10.1016/j.patrec.2009.09.011

21. Jain AK, Dubes RC (1988) Algorithms for Clustering Data. Prentice-Hall, USA. https://doi.org/10.5555/
46712

22. Jain P, Kar P (2017) Non-convex optimization for machine learning. Found Trends Mach Learn 10(3–
4):142–363. https://doi.org/10.1561/2200000058

23. Jiang S, Fang SC, An Q et al (2019) A sub-one quasi-norm-based similarity measure for collaborative
filtering in recommender systems. Inf Sci 487:142–155. https://doi.org/10.1016/j.ins.2019.03.011

24. Kabashima Y,Wadayama T, Tanaka T (2009) A typical reconstruction limit for compressed sensing based
on l p-norm minimization. J Stat Mech: Theory Exp 2009:L09003. https://doi.org/10.1088/1742-5468/
2009/09/L09003

25. Kersten PR (1997) Implementation issues in the fuzzy c-medians clustering algorithm. Proc 6th Int Fuzzy
Syst Conf 2:957–962. https://doi.org/10.1109/FUZZY.1997.622838

26. MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. In:
Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability pp 281–297.
https://api.semanticscholar.org/CorpusID:6278891

27. Nardone D (2019) Biological datasets for SMBA. Zenodo. https://doi.org/10.5281/zenodo.2709491
28. Nie F, Wang H, Cai X et al (2012) Robust matrix completion via joint schatten p-norm and l p-norm

minimization. 2012 IEEE 12th Int Conf Data Mining pp 566–574. https://doi.org/10.1109/ICDM.2012.
160

29. Nielsen F,NockR, SiAmari (2014)On clustering histogramswith k-means by usingmixedα-divergences.
Entropy 16(6):3273–3301. https://doi.org/10.3390/e16063273

30. SahaA,Das S (2016)Geometric divergence based fuzzy clusteringwith strong resilience to noise features.
Pattern Recognit Lett 79:60–67. https://doi.org/10.1016/j.patrec.2016.04.013

31. Seal A, Karlekar A, Krejcar O et al (2020) Fuzzy c-means clustering using Jeffreys-divergence based
similarity measure. Appl Soft Comput 88:106016. https://doi.org/10.1016/j.asoc.2019.106016

32. Selim SZ, Ismail MA (1984) k-means-type algorithms: A generalized convergence theorem and charac-
terization of local optimality. IEEE Trans Pattern Anal Mach Intell PAMI-6 1:81–87. https://doi.org/10.
1109/tpami.1984.4767478

33. Singh A, Yadav A, Rana A (2013) k-means with three different distance metrics. Int J Comput Appl
67(10):13–17. https://doi.org/10.5120/11430-6785

34. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Royal Stat Soc: Ser B (Methodol)
58(1):267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

35. Wang D, Li T, Deng P et al (2023) A generalized deep learning algorithm based on nmf for multi-view
clustering. IEEE Trans on Big Data 9:328–340. https://api.semanticscholar.org/CorpusID:247874882

36. WangD, Li T, Deng P et al (2023) A generalized deep learning clustering algorithm based on non-negative
matrix factorization. ACM Trans Knowl Discov from Data 17(7):1–20. https://doi.org/10.1145/3584862

37. Wang D, Li T, Huang W et al (2023) A multi-view clustering algorithm based on deep semi-nmf. Inf
Fusion 99(C). https://doi.org/10.1016/j.inffus.2023.101884

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1016/j.patcog.2007.05.018
https://doi.org/10.1111/j.1469-1809.1936
https://doi.org/10.5555/3119419.3119628
https://doi.org/10.1109/91.873580
https://doi.org/10.1016/j.ceramint.2015.12.030
https://doi.org/10.1016/j.ceramint.2015.12.030
https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.5555/46712
https://doi.org/10.5555/46712
https://doi.org/10.1561/2200000058
https://doi.org/10.1016/j.ins.2019.03.011
https://doi.org/10.1088/1742-5468/2009/09/L09003
https://doi.org/10.1088/1742-5468/2009/09/L09003
https://doi.org/10.1109/FUZZY.1997.622838
https://api.semanticscholar.org/CorpusID:6278891
https://doi.org/10.5281/zenodo.2709491
https://doi.org/10.1109/ICDM.2012.160
https://doi.org/10.1109/ICDM.2012.160
https://doi.org/10.3390/e16063273
https://doi.org/10.1016/j.patrec.2016.04.013
https://doi.org/10.1016/j.asoc.2019.106016
https://doi.org/10.1109/tpami.1984.4767478
https://doi.org/10.1109/tpami.1984.4767478
https://doi.org/10.5120/11430-6785
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://api.semanticscholar.org/CorpusID:247874882
https://doi.org/10.1145/3584862
https://doi.org/10.1016/j.inffus.2023.101884

	Sub-One Quasi-Norm-Based k-Means Clustering Algorithm and Analyses
	Abstract
	1 Introduction
	2 Literature Review
	3 Sub-One Quasi-Norm-Based Distance Metric
	4 Sub-One Quasi-Norm-Based k-Means Algorithm
	5 Numerical Experiments
	5.1 Experiment Setup
	5.2 Experiments on Synthetic Dataset
	5.3 Experiments on Real-Life Dataset
	5.4 Experiments with Deep-Learning Models

	6 Summary
	References


