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Abstract
Metaphor has significant implications for revealing cognitive and thinking mechanisms.
Visual metaphor image generation not only presents metaphorical connotations intuitively
but also reflects AI’s understanding of metaphor through the generated images. This paper
investigates the task of generating images based on text with visual metaphors. We explore
metaphor image generation and create a dataset containing sentences with visual metaphors.
Then, we propose a visual metaphor generation image framework based on metaphor under-
standing, which is more tailored to the essence of metaphor, better utilizes visual features,
and has stronger interpretability. Specifically, the framework extracts the source domain,
target domain, and metaphor interpretation from metaphorical sentences, separating the ele-
ments of themetaphor to deepen the understanding of its themes and intentions. Additionally,
the framework introduces image data from the source domain to capture visual similarities
and generate visual enhancement prompts specific to the domain. Finally, these prompts are
combined with metaphorical interpretation sentences to form the final prompt text. Experi-
mental results demonstrate that this approach effectively captures the essence of metaphor
and generates metaphorical images consistent with the textual meaning.

Keywords Metaphor understanding · Metaphorical text-to-image generation · Visual
metaphor image · Prompt learning

1 Introduction

Visual metaphor is an artistic technique that uses visual elements to convey and express
certain concepts, emotions, or ideas. The task of visual metaphor image generation can
intuitively showcase the content conveyed by visual metaphors. J. Hessel et al. evaluated
AI’s understanding of humor by mapping between comic images and comic title texts[1].
The visualmetaphor imagegeneration taskwe study involvesmapping frommetaphorical text
to metaphorical images, which also demonstrates AI’s understanding of metaphors. Visual
metaphor image generation is crucial as it not only presents visual metaphors intuitively but
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Fig. 1 Stable Diffusion image generation model with different image output generated by different prompt. a
Directly uses the original sentence “The sunset is fire in the sky”. b Using prompt “The sunset glow was as
red as fire”. c Is the prompt we generated “The sunset glow is red. The sunset in the style of ’burning’, ’edge
disturbance’, ’flame decorated”’

also reflects AI’s understanding ofmetaphors. Yuri Bizzoni et al. have preliminarily proposed
modeling metaphors in the visual space by exploring the similarities and differences between
misclassified metaphorical images and visually meaningful metaphors[2]. We aim to further
explore visual metaphor image generation.

Large-scale text-to-image models have exhibited exceptional reasoning capabilities when
provided with natural language descriptions, enabling the generation of diverse images in
various styles[3–7]. These models have found application in artistic creation and design pro-
cesses. Nonetheless, their utility is constrained by the user’s proficiency in articulating the
desired target through textual input[8]. Metaphorical expressions are challenging for gener-
ating models to directly understand their meanings. Metaphors differ from literal language
as they involve mapping from a source domain (conceptual metaphor) to a target domain
(target concept), encompassing abstract and non-literal meanings. An illustrative example of
visual metaphor is “The sunset is like a flame in the sky.” In this example, the target domain
is the sunset, and the source domain is the flame, based on their similarity for metaphorical
mapping. Metaphorical texts exhibit characteristics of uncertainty and ambiguity.

Due to the uniqueness ofmetaphorical language, existingmodels face challenges in under-
standing and capturing subtle differences in visual metaphors. Therefore, they may struggle
to grasp metaphorical mapping relationships, resulting in generated images that contradict
the intended meanings, as shown in Figure (a) and (b) in Fig. 1. Tuhin Chakrabarty et al.
used Instruct GPT-3 (davinci-002) with Chain-of-Thought (CoT) prompts to generate visual
interpretations of linguistic metaphors, using them as inputs for a diffusion model to generate
visual metaphors[9]. However, this model fails to capture visual composition and imagery,
and it lacks interpretability[10]. To address the issues of poor explanatory power and under-
utilization of visual features in metaphor image generation, we explore optimization methods
for adapting metaphorical features in a multimodal model context.

Prompt optimization has gained traction as a promising method for leveraging large pre-
trained language models, eliminating the need for costly fine-tuning of the entire model and
providing an efficient alternative. Numerous approaches have focused on optimizing soft
prompts, such as continuous embedding vectors, utilizing gradient descent methods [11–13].
However, these prompts pose challenges in terms of human comprehensibility and lack com-
patibility across different language models (LMs) [14]. On the other hand, discrete prompts,
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Fig. 2 Frame of our work

whilemore challenging to optimize, are typically generated using heuristic enumeration-then-
selection methods that do not systematically explore the prompt space. Prior methods have
relied on manual engineering or selecting from multiple paraphrased/generated prompts[15,
16]. However, these approaches suffer from limitations in terms of effectiveness and practical
applicability. AutoPrompt[17] addresses these issues by leveraging gradient information to
modify prompt tokens. However, it is susceptible to training instability and faces similar lim-
itations as gradient-based soft prompting methods. Mingkai Deng et al. proposed an efficient
approach to discrete prompt optimization employing reinforcement learning (RL)[18]. They
formulate a parameter-efficient policy network that generates optimized discrete prompts
through training with reward signals. Although the resulting optimized prompts may exhibit
ungrammatical or nonsensical text, they retain significant performance and can be transferred
between different LMs.

Considering the inherent characteristics of metaphor generation tasks, we propose an
improved metaphor-related image generation framework that utilizes prompts for optimiza-
tion. Our framework focuses on optimizing metaphorical text to enhance the performance
of downstream models. Initially, we employ an optimization process that involves extract-
ing the source domain, target domain, and metaphorical interpretation from the given text.
This separation helps to deepen our understanding of metaphorical themes and intentions.
Additionally, we introduce image data from the source domain to capture visual similarities
and generate domain-specific visual enhancement prompts. These prompts are then combined
with themetaphorical interpretation sentences to create the final prompt text. For an overview
of our approach, please refer to Fig. 2. Our optimized prompts are specifically tailored to
the characteristics of visual metaphors, and the results show a significant improvement in
effectiveness. The progressive optimization approach used to generate the final text prompts
allows for more flexible improvements. The main contributions of this paper are as follows:

• Proposed a visual metaphor image generation framework.
• Integrated understanding of metaphors into image generation.
• The framework introduces image data from the source domain to capture visual

similarities and generate visual enhancement prompts.
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Table 1 Words with higher
specificity in the concreteness
rating data set

Word Specificity rating (1–5)

Sit 4.80

Hum 4.62

Clapping 4.32

Singing 4.20

Sip 4.17

Heartbeat 4.08

2 Visual Metaphor Dataset Collection

We first conducted research on the datasets related to the concept of “visuality” in current
natural language studies. Brysbaert et al.[19] presented a publicly available English domain
dataset: the concreteness rating dataset, which contains ratings from annotators on the con-
creteness of nearly 40,000 English words and phrases, with scores ranging from 1 (abstract)
to 5 (concrete). In their research, Brysbaert et al. defined concreteness of a word as the extent
to which it represents things that can be directly perceived through the five senses, such as
“phone” and “moist”, while abstract words are concepts that are farther from direct percep-
tion or can only be explained by other words, such as “joy” and “truth.” Table 1 shows words
with higher concreteness ratings in the concreteness rating dataset.

The Visual Genome[20] and ImageNet[21] datasets include annotations for specific
objects in images, with Visual Genome providing more detailed object boundary annota-
tions in images. The images in the ImageNet dataset mainly consist of natural scenes and
images of real-world entities, while the text modality is used for labeling the entire image.
Therefore, we will use the textual data from the object annotation tasks in the Visual Genome
and ImageNet datasets to construct our visual metaphor corpus.

When processing the collected text data, we divide it into two parts for processing. Firstly,
we extract a large number of adjectives describing objects from the dataset, which are closely
related to visual attributes such as color, texture, and shape. By extracting these adjectives,
we build a visual attribute word library to better understand and analyze the visual features
in visual metaphors. Secondly, we extract nouns and their synonyms to build a visual object
noun library. This noun library is used to match and filter metaphorical triplets defined by
visual metaphors. When processing these labels, we perform a series of preprocessing steps,
including removing punctuation, converting to lowercase, removing stopwords, performing
stem extraction, and filtering compound words and abbreviations. Finally, through part-of-
speech tagging, we separate the noun part and the modifying adjectives before the noun,
automatically removing duplicate words. In the process of building the visual object noun
library, to further remove noise, we also use data from the specificity rating dataset to filter
out labels with low specificity in the noun library. We found a total of 11,544 object nouns
in our dataset, with an average specificity score of 4.08 (rating range 0–5). We calculated the
average specificity score for the remaining words in the specificity rating dataset as 2.81, so
we use 2.81 as a threshold to further filter our visualized noun objects, removing those with
low specificity. This step helps to improve the quality of the noun library and facilitates a
more accurate identification and analysis of visual metaphors. Through the above steps, we
successfully built a visual attributeword library containing3,818 adjectives and avisual object
word library containing 18,544 nouns, providing corpus data support for better understanding
and applying visual metaphors in our future research.
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Table 2 Examples of visual metaphor sentences

Metaphor triplets Metaphor sentences

(Pillow, soft, cloud) Our pillows are as soft as clouds

(River, flowing, silk) The river is a ribbon of silk flowing smoothly

(Shadow, long, snake) Shadows stretched out before them, long as snakes

(Hair, golden, wheat) Her hair shimmered like golden fields of wheat in the sunlight

(Grass, green, emerald) The grass spread out like a green field of emeralds

(Snow, white, cotton) Snow blanketed the ground, as white as cotton

To determinewhether ametaphor in the dataset is a visual metaphor, we first automatically
check whether its source domain and target domain are both contained in our generated
visual object noun library. If both exist, we consider the metaphor to be a visual metaphor.
For example, in the metaphor “The sunset is a flame in the sky”, people can find clues to
“fire” by identifying visual features such as color in the image, all based on the stable visual
imagery of “sunset” and “fire” in human cognition. Non-visual words such as “laughter”
and “fear” will be filtered out. Words such as “summer”, “wind”, and “day” have some
visual associations and high specificity scores in the specificity rating dataset, but they do
not have stable visual imagery and do not meet the definition of visual metaphors based on
the variations in human experience and perception. To avoid noise, we applied a filtering
process to remove complex metaphorical sentences from multiple datasets[22, 23]. This
process involved detecting sentence lengths and conducting manual annotations, resulting in
a total of 216 triplets for metaphor image generation. Several examples of these triplets are
provided in Table 2 for reference.

3 Visual Metaphor Image Generation Framework

In response to the characteristics of metaphor generation tasks, we adopt a strategy called
prompt learning to optimize the performance of downstream models in handling metaphor-
related image generation tasks at the text prompt level. We propose a prompt-optimized
visual metaphor generation framework. Initially, we optimize metaphorical texts from the
perspective of text modality metaphor understanding. To enhance the downstream model’s
understanding of metaphorical semantics, we extract the source domain, target domain, and
metaphor understanding results for each metaphorical sentence. We transform the original
metaphorical sentences into metaphorical interpretive sentences with the target domain as
the subject and mapped attributes, such as “The sunset is red.” This step separates the target
domain and the attributes to be mapped explicitly from the sentence, improving the accuracy
of grasping metaphorical themes and intentions. Additionally, considering that visual modal-
ity metaphormapping hasmore subtle and rich visual feature connections, we believe that the
textual interpretation is insufficient to fully express the visual similarity between the source
domain and the target domain. To highlight the visual features of the source domain, we
introduce the image data of the source domain. Based on the metaphorical interpretive text as
the initial visual prompt, we generate readable source domain visual enhancement prompts
specific to the visual characteristics of the source domain through discrete prompt optimiza-
tion methods. Then, we concatenate them with the metaphorical interpretive sentences to
form the final prompt text. The overall framework of our method is shown in Fig. 2.
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Fig. 3 Image-text similarity calculation of CLIP

Our goal is to generate readable prompts,which require optimizing the discrete space of the
text, while the image information of the source domain is encoded in the continuous space.
CLIP (Contrastive Language-Image Pre-Training)[24] is a multimodal pre-training model
designed to project representations of images and text into the same embedding space for
semanticmatching, as shown in Fig. 3. CLIP utilizes Transformer architecture and contrastive
learning techniques, while employing a large amount of image and text data for pre-training.
It consists of two main components: a text encoder and an image encoder. The text encoder
usesTransformer to encode natural language sentences into vector representations. The image
encoder is a convolutional neural network that encodes images into vector representations.
Taking into account the similarity-based visual mapping characteristics of visual metaphors
and inspired by the optimization with discrete prompt tokens, we propose to utilize the
multimodal representation space of CLIP to gradient optimize text mappings to CLIP’s
continuous embedding space, and then map the optimized continuous embedding sequence
back to the discrete feature space. During this process, we use gradient projection during
forward and backward propagation to project the computed gradients back to the discrete
space while retaining the precision of storing continuous space weights and accumulated
gradients. Although applying this strategy directly to language models poses a problem
of not considering token positions, our prompt generation for image generation models is
different from general fluent text generation. Generating visual prompts for source domain
images mainly involves extracting the semantic information from the images and does not
require fluent text. Therefore, we believe that this optimization strategy is suitable for our
task.

First, the metaphorical interpretation sentence is generated by the text encoder of CLIP,
and is mapped from the discrete feature space to the continuous feature space represented by
tensors. Since the feature space of CLIP’s pre-training text - image has been aligned, we take
the source domain image feature as the target feature, and take the cosine similarity of the
randomly sampled source domain image representation and the current prompt representation
as the objective function, and carry out gradient update on the current prompt representation in
the continuous feature space. In each iteration, we project the updated continuous embedding
vector from the continuous feature space back to the discrete feature space, which is a discrete
text token sequence. Then in the next iteration, we use the continuous feature corresponding
to this text sequence and the target image feature sampled from the source domain to calculate
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Fig. 4 Prompt Optimization based on source domain images

the cosine similarity score, and use it to update the prompt in the continuous space by gradient
optimization. The visualization process is shown in Fig. 4.

Next, a set of source domain images is collected and preprocessed. All collected source
domain images are encoded using the ViT image encoder of CLIP. ViT is a Transformer-
based visual processing model, which is specifically designed for processing visual input
using Transformer architecture. The ViT model divides the image into fixed-size regions and
uses self-attention mechanism to capture global relationships in the input image.

After initializing the prompt with source domain words, we perform a limited number
of iterations of gradient optimization, and randomly sample source domain image features
Ib ⊆ I to form amini-batch sample (Ib, Pcurr ) in each iteration. Then,wemap the continuous
prompt embedding to the embedding space of the discrete vocabulary. Specifically, we use
a semantic search function to find the nearest neighbor in the embedding of the vocabulary
for each prompt embedding. This is a method used in natural language processing to search
for text or words with similar semantic meanings in a large vector set by finding the nearest
vector similar to the given query vector. Dot product is used as the similarity measurement
method for text to search for the nearest neighbor. First, the current embedding and the
vocabulary matrix are normalized, and the normalized dot product is equivalent to cosine
similarity. Then, the dot product score between the current embedding and each vector in
the vocabulary matrix is calculated, the similarity scores are sorted, and the vector with the
highest score is taken as the nearest neighbor result. The identified nearest neighbor identifier
corresponds to the discrete word token in the word embedding matrix:
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Pcurr = [e1, e2, e3, · · · , en], ei ∈ R
d (1)

Pcurr constitutes a collection of query vectors (dimension: n × d) and a collection of
vocabulary vectors V (dimension: m × d), where n is the number of query vectors, m is the
size of the vocabulary, and d is the dimension of the vectors. We first normalize the vectors
in P and V , then calculate the dot product between the query vectors and the vectors in the
corpus to obtain the similarity matrix S:

S = Pnorm × V T
norm (2)

Here, Pnorm and Vnorm represent the normalized collections of query vectors and corpus
vectors, respectively, (·)T denotes matrix transposition. For each ei , we find the vocabulary
vector with the highest similarity and its projection prompt embedding in the continuous
space. We then calculate the cosine similarity between the projected prompt embedding and
the target image embedding:

Scosim = Pproj · Ib
‖Pproj‖‖Ib‖ (3)

Our objective is to maximize the cosine similarity between the current projected prompt
embedding and the target image embedding.Mathematically, this is equivalent tominimizing
the negative cosine similarity. To achieve this, we optimize the process by minimizing the
following objective function:

L(P, Ib) = 1 − Scosim (4)

After a fixed number of iterations of gradient updates on the prompt embedding, we select the
embedding vector with the highest score as the optimized source domain-enhanced prompt
embedding, which exhibits semantic relevance to the source domain images. Subsequently,
we decode this embedding into natural language text, which serves as the optimized source
domain enhancement prompt.

During both the forward and backward propagation stages, we employ gradient re-
projection to adjust the computed gradients back to the discrete space, while preserving
the precision of continuous space weights and accumulated gradients. Although applying
this strategy directly to language models may have issues with positional information, our
text prompt generation for image generation models is different from general fluent text gen-
eration. Our focus lies in generating visual prompts that explore the semantic information of
images rather than generating fluent text. Hence, we perceive this optimization strategy as
suitable for our task.

4 Experiment

To assess the quality of generating metaphorical images with regards to visual metaphors,
we combine both manual evaluation methods and automated metric evaluation methods. The
image generation experiments in this chapter will be conducted on the Stable-Diffusion-
base[3] and DALL-E[4] models to examine the effectiveness of the proposed framework for
visual metaphor generation, and analyze the results accordingly.

During the source domain image collection phase, we utilize the Unsplash1 image library.
For each metaphor, we gather a set of source domain images. The method employed in this
research involves using the source domain as keywords to construct query requests, invoking

1 https://api.unsplash.com/.
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the Unsplash image library’s API to obtain a set of images related to the keywords, sorting
them by relevance, and selecting the top N most relevant images.

As for combining the target domain and source domain templates, we conducted prelim-
inary experiments using the Stable Diffusion model with the setting “< target domain> in
the style of< source domain enhanced visual prompt>”. This template yielded favorable
results in combining the target and source domain content, providing a reliable foundation for
our subsequent experiments. This template serves as a variable parameter in our framework,
allowing for flexible replacement and adjustment based on the requirements of downstream
image-text generation models, catering to the needs of different tasks.

4.1 Experimental Settings

During the phase of visual prompt generation and optimization, we employed the OpenCLIP-
ViT-H/14 model. This model shares the same text encoder as our Stable-Diffusion-v2 image
generation model, ensuring consistency in prompt optimization. The OpenCLIP-ViT-H/14
model was trained using an English subset of the LAION-5B dataset[25], which comprises
2 billion samples. For image encoding in our study, we utilized the Visual Transformer
(ViT)[26] with the ViT-B/32 version. This version of ViT is recognized for its exceptional
accuracy and parameter count, achieving an 85.8% top-1 accuracy on the ImageNet dataset.

The detailed parameters of the ViT-B/32 model we utilized are as follows: the input layer
consists of 224x224 pixel RGB image data. The feature extractor comprises 12 Transformer
modules, each including a multi-head self-attention mechanism and a feed-forward neural
network. The multi-head self-attention mechanism consists of 12 heads, with a hidden layer
dimension of 768. The outputs of these Transformer modules are flattened into a vector,
serving as the feature input for the classifier. The classifier consists of a fully connected
layer, with a hidden layer dimension of 3072 and an output layer dimension of the number
of categories (which is 1000 in the ImageNet dataset). The entire ViT-B/32 model contains
a total of 86M parameters. In the optimization process for source domain image-enhanced
guidance, we utilized a general learning rate of 0.1 and applied a weight decay of 0.1 using
the AdamWoptimizer[27], running for 3000 optimization steps. For the Stable-Diffusion-v2,
we set the guidance scale to 8 and the number of inference steps to 50.

In the testing phase, the image generation model utilized was the Stable-Diffusion-v2 [3].
This model is designed as a generative model that converts textual input into corresponding
images. It utilizes a frozen CLIPVIT-L/14 text encoder to adapt themodel’s output according
to textual prompts. Additionally, for generalization testing, we conducted experiments using
the DALL-E [4] model.

4.2 AutomatedMetric EvaluationMethods

To quantitatively assess the efficacy of image generation, we utilized the following two
automated evaluation metrics:

• CLIP Score: CLIP evaluates image-text consistency using cosine similarity of features, a
common method for multimodal generation tasks. This approach involves the extraction
and normalization of features from both generated images and text, followed by the
calculation of their dot product. Scaling the resultant value provides a correlation score
that quantifies the association between the images and the metaphorical explanations.
Higher CLIP scores indicate a stronger textual-image correlation.
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• P@k: To evaluate image topic recognition, we checked if the top-k candidate results
matched the correct results in the target domain. This metric calculates the percentage of
samples for which the correct matching results were obtained. It quantifies the model’s
capacity to generate target domain-specific images and evaluate their coherence.

To broaden the scope of the cosine similarity metric utilized by CLIP, we employed a
rescaling approach [28] influenced by BertScore[29]. The cosine similarity was adjusted by
applying a rescaling operation with a scaling factor of 2.5.

This rescaling technique effectively alleviated the confinement of cosine similarity within
the 0−0.4 range, rendering it more appropriate for comparisons with conventional evaluation
metrics.

To measure the semantic coherence between the generated images and the metaphorical
target domain, we employed the ImageNet-21K[30] pre-trained Vision Transformer (ViT)
model for image topic recognition. Prior to inputting the images into the model, a series of
preprocessing steps were applied, including resizing, center cropping, converting to tensor
format, and normalization, following the identical protocols used during model training.
Subsequently, the preprocessed images were fed into the ViT model for prediction. The
model’s output provided the top-k predicted categories, representing the k topics with the
highest probabilities. These predicted topics were then paired with the target domain using
the metaphor sentence as the basis for comparison. For the image topic recognition task,
each generated topic was presented in the form of a synonym set, organized according to
the WordNet architecture. This arrangement obviated the necessity for synonym expansion
during the matching process.

4.3 Manual EvaluationMethods

Considering that there is no absolute standard for evaluating text-to-image generation tasks,
the aforementioned multimodal metrics cannot fully represent the specific visual effects of
the generated images. These metrics are not entirely applicable when assessing whether
the generated images captured the mapping of visual metaphors. Therefore, we intro-
duce manual evaluation as an assessment method. Human subjective evaluation, based on
human visual cognition, can directly assess the quality of generated images and the degree
of correspondence between images and text, complementing the limitations of automated
metrics.

For both the baseline and our method, we constructed 200 test instances consisting of
pairs of images to investigate the generation results. We asked human evaluators to answer
questions from three aspects: the degree of visual-textual matching, the strength of source
domain association, and the degree of thematic matching. In each instance pair, evaluators
were required to answer and select from the three questions based on the original metaphor-
ical sentence pair. The collected results were from two well-versed English evaluators. The
questions given to the evaluators were as follows:

• Which image better matches the theme of the target domain? (Target domain thematicity)
• Which image exhibits more prominent features from the source domain? (Source domain

similarity)
• Which image better corresponds to the metaphorical sentence? (Overall visual-textual

matching)
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4.4 Analysis of Experimental Results

We set up a contrastive experiment to test the validity of the framework for visualizing our
metaphors. In addition to using the original prompt as the baseline method, we also set up an
optimization prompt ablation experiment to eliminate source-domain visual enhancement.
Finally, the results generated by the original prompt, elimination of the optimization prompt
based on source domain visual enhancement, and the final prompt input Stable Diffusion are
compared. The experimental results are shown in Table 3(our method is abbreviated as Ours).
From the experimental results, it can be seen that the optimized prompt image generated by us
performs better in all indicators, especially compared with the original prompt, we increased
the CLIP image similarity score by 6.8% and 7.4% in p@1 and p@5 respectively, and 8.3%
in the CLIP image similarity score.

From the perspective of the ablation experiment, our method has shown an improvement
of 1.9% in CLIP score and is comparable to the P@5 automation indicator when compared to
the approach of eliminating the source domain visual-enhancement module. Although there
was a slight decrease in the P@1 indicator, our method still had certain advantages when it
comes to the human evaluation, especially the proportion of the source domain image effect
voting. Given that this module is mainly aimed at enhancing the source domain image effect,
and the direction examined by our designed P@k automation indicator mainly focuses on
the domain theme highlight of the target domain, we believe that the decrease in this index is
acceptable. In summary, the above experimental results indicate that our method has shown
a certain improvement effect in enhancing the target domain theme of metaphorical images,
highlighting source domain features, and conforming to metaphorical text.

From the perspective of manual evaluation, our method generated images that have
obtained higher “visual similarity” scores in human evaluation.Moreover, it has interpretabil-
ity: Taking “sunset is the flame in the sky” as an example, from the optimized prompt content,
our final generated prompts contain very detailed and professional visual rendering prompts
for fire, such as “burning”, “edge disturbance”, “flame decorated”, and so on, which indicates
that our method has captured more abundant visual features from the source domain object
“fire”. Partial visual metaphor image results are displayed in Fig. 5, and more results can be
found in Appendix A.

The visually metaphorical image generated in Fig. 5 effectively showcases the meaning of
the metaphor itself, providing people with new aesthetic experiences. In turn, this indirectly
demonstrates that AI has a good understanding of metaphors. For example: The sunset is
portrayed as red, giving it a burning flame-like appearance. Through this image, themetaphor
“The sunset is fire in the sky” is vividly and powerfully expressed visually, allowing people
to intuitively understand and experience its essence. It also indicates that AI’s understanding
of the metaphor of the sunset being likened to a flame is quite accurate. Regarding the visual
expression of the metaphor “Snowflakes are feathers”, white snowflakes interweave with
feathers in the image. This visual expression not only gives the white color and texture of the
snowflake feathers, but also depicts the lightness and delicacy of the snowflake. It also deepens
the viewers’ understanding of the relationship between snowflakes and feathers through this
metaphor. This way of expression undoubtedly enhances the poetic and emotional impact
of the entire picture. Through precise, vivid, and poetic visual expression, the imagery and
emotions conveyed by the metaphor “snow is feather” are successfully communicated. It also
indirectly reflects the similarity in the mapping between snowflakes and feathers in terms of
color and texture in AI’s understanding.

To evaluate the transferability of our metaphorical visual prompts to other models, we
also conducted experiments on another generative model, DALL-E. When comparing the
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Fig. 5 The metaphor generation results are shown, and the images are labeled as metaphor triplets

Table 4 Universal experimental
results

Model CLIP score P@1 P@5

Stable Diffusion 0.707–0.790 0.718–0.786 0.840–0.889

DALL-E 0.748–0.762 0.734–0.784 0.892–0.905

The bold part is the result after optimization

results of the original metaphorical phrase input and the results generated by our optimized
prompts for the input of the original metaphorical phrase, the experimental results are shown
in Table 4, where the bold part represents the optimized results.

According to the experimental results, themetaphorical images generated after optimizing
the text prompts for the DALL-E model have also shown some improvement compared to
the original metaphorical sentence input, which proves that our optimized prompts are also
applicable toDALL-E.However, comparedwith the StableDiffusionmodel, the performance
improvement of the DALL-E model on all indicators is relatively limited. This may be due
to the fact that during the text prompt optimization stage, we used the CLIP ViT-L/14 text
encoder, while the Stable Diffusion model’s text-to-image generation process also uses the
same frozen text encoder for diffusion adjustment, which makes the text prompts generated
by us more suitable for the Stable Diffusion model and thus perform better on the Stable
Diffusion model.

5 Conclusion

We propose an interpretable framework tailored for generating visual metaphors. The
framework first models themapping of source domain and target domain for metaphor under-
standing, and then optimizes the prompts based on visual prompts. Specifically, it separates
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metaphorical elements for deeper understanding and gradually enhances the source domain
description based on the similarity between image embeddings and prompt representations.
This multimodal prompt, which is modeled and optimized based on metaphor understand-
ing, effectively captures the complexity in metaphorical expressions. The final text prompts
are generated in a progressively optimized manner, allowing for flexible improvements. The
utilization of visual information from the source domain is also a major innovation in this
paper.

The proposed framework bridges metaphorical language and visual perceptions, allowing
intuitive appreciation of the thought processes and aesthetics. Both quantitative evaluations
and sample cases demonstrate noticeable improvements in preserving semantic consistency
and realization of the desired imagery. This establishes connections between the compre-
hension of figurative expressions and the construction of relevant visual representations.
Our work highlights new possibilities in explainable AI and multimodal understanding of
abstract concepts. The cross-modal generation process reflects a deeper understanding of the
intrinsic characteristics of metaphors. Moving forward, expanding the scope and diversity
of the metaphor dataset, as well as exploring advanced fusion methods, remain promising
directions. We hope this research provides useful inspirations for human-centric AI and
transparency in complex cognitive tasks.

5.1 Limitations

In the metaphorical text-to-image generation task, our research primarily focuses on generat-
ing images based on visually similar mappings of metaphors, which is relatively limited
in scope. In the future, there is a need to explore more diverse and creative types of
metaphors. For example: tactilemetaphors, auditorymetaphors, conceptualmetaphors, struc-
tural metaphors, and so on. Additionally, our current experiments are based on a limited
dataset. Expanding the dataset further is also a direction we are working towards. Further-
more, to enhance the model’s generalization ability and stability, we can expand the dataset
to cover more types of metaphors as well as text and image data from multiple domains. In
the future, we will explore multimodal deep learning methods that can better integrate text
and image features and improve image generation models.

Data Availability Data will be made available on request.
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Appendix A: Metaphorical Visual Images Generated by Stable Diffusion

See Figs. 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19.

Fig. 6 Leaves are falling
butterflies

Fig. 7 The night sky is agate

Fig. 8 The lake water is
transparent glass
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Fig. 9 The bread is as hard as a
rock

Fig. 10 The stars in the sky are as
numerous as sand

Fig. 11 Books are as thick as
bricks
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Fig. 12 Rain is a curtain of silver

Fig. 13 The sea is a calm mirror

Fig. 14 The moon is a pearl in
the night sky
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Fig. 15 The branches are like
twisted ropes

Fig. 16 The roots dig into the
earth like anchors

Fig. 17 The path is like a
winding river
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Fig. 18 Dewdrops are glittering
tears

Fig. 19 The leaves under my feet
are as crisp as cookies
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