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Abstract
Social recommendation aims to improve the recommendation performance by learning user
interest and social representations from users’ interaction records and social relations. Intu-
itively, these learned representations entangle user interest factors with social factors because
users’ interaction behaviors and social relations affect each other. A high-quality recom-
mender system should provide items to a user according to his/her interest factors. However,
most existing social recommendation models aggregate the two kinds of representations
indiscriminately, and this kind of aggregation limits their recommendation performance.
In this paper, we develop a model called Disentangled Variational autoencoder for Social
Recommendation (DVSR) to disentangle interest and social factors from the two kinds of
user representations. Firstly, we perform a preliminary analysis of the entangled information
on three popular social recommendation datasets. Then, we present the model architecture
of DVSR, which is based on the Variational AutoEncoder (VAE) framework. Besides the
traditional method of training VAE, we also use contrastive estimation to penalize the mutual
information between interest and social factors. Extensive experiments are conducted on
three benchmark datasets to evaluate the effectiveness of our model.

Keywords Social recommendation · Disentangled representation learning · Variational
autoencoder · Contrastive learning

1 Introduction

A recommender system aims to help users to select information they are potentially interested
in. In recent years, the explosive growth of e-commerce has made recommendations an
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Fig. 1 Phenomenon of
entanglement information in
social recommendation. Factors
for interest and social
information in embeddings zxu
and zsu are in blue and yellow,
respectively. (Color figure online)
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indispensable tool for users, sellers and platforms [1–4]. On social media platforms, users can
build their social relations and share their interested items conveniently and quickly. Social
recommendation is becoming a popular branch that aims to combine interaction records and
social relations for the item recommendation task [5–7]. To effectively fuse interest and social
information, it is inevitable and important to integrate user interest representations and user
social representations. These representations are always characterized by low-dimensional
vectors called embeddings in a latent space. Under the assumption that socially connected
users tend to have similar interests, there are two types of methods to integrate interest and
social embeddings of a user for recommendations. One performs simple pooling operations
(e.g., concatenating or addition operation) on them to generate the final user representation
[8–11]. The other designs auxiliary tasks (e.g., adversarial or contrastive learning tasks) to
make interest and social embeddings similar to each other [12, 13].

In the above two kinds of integration approaches, all factors of interest and social embed-
dings are used for the item recommendation task. Usually, embeddings are learned from
complex interaction records and social links that we can observe. As these observed data are
generated by a user’s own interests, the influence of his/her social circle, or both of them,
the learned embeddings contain the user’s interest and social information. To illustrate the
complexity of information hidden in interactions and social data, we take the scenario in
Fig. 1 as an example, where an active user u purchases three items (i0, i1, i2) and has three
friends (u1, u2, u3). From the figure, we have the following two observations.

• Entangled interest and social information in interaction records. On the one hand, only
the active user u but none of his/her friends purchases item i2. These interaction records
may reflect u’s own interests. On the other hand, u and some of his/her friends (u1 and
u3) buy item i0 and i1. These interaction records may be caused by u’s own interests,
the influence from his/her friends, or both. Based on these observed interaction data, the
generated u’s embedding zxu contains his/her interest and social preferences.

• Entangled interest and social information in social links. User u has a friend u2, and u2
does not buy any items purchased by u. Thus the social relation between u and u2 is a
true friendship and independent of their interests. In addition, u has friends u1 and u3,
who buy some items (i0 and i1) same to u. Hence, the social relations among u, u1 and
u3 also contain interest information. Based on these observed social data, interest and
social information are also entangled in the generated u’s embedding zsu .

To more clearly illustrate the complex information in interaction records and social rela-
tions, we perform an empirical statistical analysis on three real-world datasets in Sect. 4.2.
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From the statistical results, we make an interesting observation that interaction records con-
tain a lot of social information, and social relations also comprise a great deal of interest
information. Hence, whichever kinds of embeddings learned from these datasets contain
entangled interest and social factors.

A high-quality recommendation should recommend what a user really likes according to
his/her own interests. So, we argue that it is inappropriate to use such entangled represen-
tations for recommendations. From the above analysis, we can see that the key problem is
how to extract pure interest factors to form a user representation for the recommendation
task. However, the biggest challenge is that it is hard to collect more data to show whether
a user’s interaction records are influenced by his/her social relations. It is also unrealistic
to let users tell us the reason why they created each social link. Fortunately, we can assign
semantics to some factors of user representations in the embedding space, and the disentan-
glement technique is commonly used for this purpose. In the computer vision field [14–16],
theVariationalAutoEncoder (VAE) [17] allows image representations to be disentangled over
factors such as object color, object size or background color. In cross-domain recommenda-
tion [18, 19], recommendation performance can be promoted by leveraging information from
other domains. Motivated by these works, this paper proposes to use the encoder-decoder
framework of VAE to build a new recommendation model called Disentangled Variational
autoencoder for Social Recommendation (DVSR).

In the encoding phase of DVSR, we separately encode interaction records and social
relations of a user as two embeddings. Then we designate some factors in each of them to
represent the user’s interest preference and the rest to represent his/her social preference.
In the decoding phase of DVSR, all interest factors in the two embeddings are used to
reconstruct interaction records and all social factors are used to reconstruct social relations.
During the model training, we use interaction records and social relations as the supervised
signals to learn to disentangle interest factors and social factors from the two embeddings,
which aims to improve the performance of modeling interest and social factors. In order to
further disentangle interest and social factors, we employ self-supervised signals to reduce
the mutual information between interest and social factors. Finally, the learned factors can be
selectively integrated to perform the recommendation task. Here, we only integrate interest
factors for the item recommendation task.

The main contributions of this paper are summarized as follows:

• We analyze the entangled information in interaction records and social relations, propose
a VAE based model to generate disentangled representations of users and integrate useful
factors of these representations for the recommendation task.

• We integrate multiple auxiliary tasks into the model training process to improve the
modeling of social factors, promote the learning of disentangled representations and
perform the item recommendation task.

• We conduct comprehensive experiments on three benchmark datasets and the experi-
mental results show the validity of our model.

2 RelatedWork

2.1 Social Recommendation

Most existing social recommendationmodels directly integrate interest and social information
to enhance the recommendation performance. GraphRec [20] unifies the information by
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concatenating user representations from the item space and social space. CNSR [21] directly
uses an addition pooling operation on twokinds of user embeddings to construct the integrated
user representation. DiffNet++ [22] integrates the user embeddings from the social graph and
the interest graph through the attention mechanism.

Besides, some works employ social information to indirectly regularize the learning of
user representations in the interest domain. DASO [12] separately constructs two adversarial
learning tasks in the interest and social domains by mapping user embeddings from one
domain to another. SEPT [13] combines user embeddings from the preference view, sharing
view and friend view as the supervised signals to supervise the learning of user representa-
tions. SoReg [5] regularizes the learning of user representations according to the similarity
between users.

These models utilize all factors of user embeddings to integrate information. In contrast,
our DVSR explicitly disentangles interest and social factors from embeddings to improve
the recommendation performance.

2.2 Variational Autoencoder Based Recommendation

Variational AutoEncoder (VAE) [17] is the variational version of traditional autoencoder
which has a more powerful ability in representation learning and feature extraction [23].
AutoRec [24] is the first VAE based model in the recommendation field which sets just one
hidden layer in VAE and is designed as Item-based VAE (I-AutoRec) and User-based VAE
(U-AutoRec). Multi-VAE [25] is a more advanced VAE based recommendation model that
introduces the multinomial likelihood function and illustrates the validity of this function.
CDAE [26] is another VAE based recommendation model that focuses on the noise in latent
factors. Lee et al. proposed several augmented variational autoencoders with auxiliary social
information such as CVAE-CF and JVAE-CF [27].

In this work, we take advantage of VAE’s strong ability to explicitly model interest and
social effects, and build a hybrid VAE model based on interest and social data.

2.3 Disentangled Representation Based Recommendation

Liu et al. [28] and Zhao et al. [29] individually disentangled biased and unbiased factors
for recommendations. Nema et al. [30] suggested separating different semantics from user
embeddings. Ma et al. [31] proposed to categorize interaction records distinctly.

Disentangled representation learning has also been introduced to the social recommenda-
tion task. For example, DcRec [32] considers the heterogeneous behavioral patterns between
the interest and social domains, performs domain disentangling operation in the form of
GNN [33] and utilizes data augmentation on two disentangled domain views to perform
cross-domain and domain-specific contrastive learning in model training.

Besides, some studies try to capture motivations about users’ consumption and social
behaviors by disentangling embeddings at the facet level. DMJP [34] separately disentangles
embeddings of users into multiple facets to explain users’ actions in the interest and social
domains and utilizes the attention mechanism to realize the refinement of the representations.
DSR [35] disentangles user representations from the facet-to-facet perspective and designs an
independence regularization loss to ensure the validity of embeddings from different facets.
DISGCN [36] disentangles not only users but also items, but unlike the flexible facet setting
of DMJP and DSR, the number of facets is limited by the number of graphs.
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Our model designs a unique disentanglement strategy from both the cross-domain and
domain-specific perspectives, and critiques semantic information for disentangled factors.

3 Variational Autoencoder

VAE is a classical Collaborative Filtering (CF) inference model in the recommendation
field [17, 37]. As a generative model, VAE first extracts the semantic information hidden in
observed items of users and compresses it into a low-dimensional space, and then provides
recommended items to users by analyzing the low-dimensional representations.AVAEmodel
has two core components, an encoder and a decoder. Now we introduce the two components
and some necessary notations used in this paper.

3.1 Notations

The user-item interactions can be represented as a matrix X ∈ R|U |×|I|, where U represents
the set of users, I is the set of items, and |U | and |I| denote the number of users and items,
respectively. Let u ∈ U be a particular user, i ∈ I be a particular item, and xui be the implicit
feedback of user u on item i which is an entry in the matrix X. Specially, if user u has an
interaction with item i , the corresponding entry xui = 1, otherwise xui = 0.

3.2 Encoder

The encoder of VAE is responsible for encoding each input as an embedding. A VAE model
is commonly trained using a bag-of-words representation: each user u is represented by
items he/she has interacted with, i.e., row xu of matrix X [30]. After the model learning, the
encoder provides a distribution where the embedding representation zu of user u is sampled.
In other words, by feeding each user’s item list to the encoder, we obtain a low-dimensional
representation for each user. Statistically speaking, the representations of all users should
follow a normal distribution and the distribution is directly influenced by the interactions
of these users. Hence the true distribution from which zu is sampled is approximated by a
parameterized function:

qφ(zu |xu) = N (μφ(xu), diag(σφ(xu))), (1)

whereφ is the parameter set in the encoder component,μφ(xu) and σφ(xu) are themean value
and standard deviation of the normal distribution, respectively. Also, due to the stochastic
nature of zu , the model can not compute the gradient by direct backpropagation algorithm
to optimize the parameters. Therefore, VAE employs the re-parametrization trick in model
training.

3.3 Decoder

The decoder of VAE takes embedding representations as input. The decoder can analyze the
user representation and select appropriate items that the user is likely to buy. By feeding user
representation zu to the decoder, it generates the logits f decθ (zu) of user u. To facilitate model
optimization, the logits are usually transformed as:

π(zu) ∝ exp( f decθ (zu)), (2)
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where θ is the parameter set in the decoder component. Then the probability distribution over
all items can be obtained for user u:

pθ (xu |zu) =
∑

i

xui logπi (zu). (3)

In the top-N recommendation task, ideal items are the top N items after sorting in descend-
ing order. To rank interested items of users higher in the recommendation list, VAEmaximizes
the likelihood function in the learning process. Simultaneously, to avoid the overfitting, VAE
regularizes the model learning by constraining the distribution qφ(zu |xu). Since the prior
distribution p(zu) of zu is supposed to follow the normal distribution, VAE hopes that the
posterior distribution can follow the same distribution as the prior distribution as much as
possible. The KL divergence can reflect the difference between the two distributions, so the
usual objective function of VAE is defined as:

L(xu, φ, θ) = Eqφ(zu |xu)[logpθ (xu |zu)] − KL(qφ(zu |xu)|p(zu)). (4)

4 Preliminaries

4.1 Notations Relevant to Social Relations

In addition to the notations mentioned in Sect. 3, we also introduce some notations related to
user-user relations. We denote user-user relations by S ∈ R

|U |×|U | and let su represent social
links of user u and sut be a particular entry in the matrix S. If user u has a connection with
another user t , we have sut = 1, otherwise sut = 0. Furthermore, to distinguish parameters
in the interest and social domains, we use x and s to decorate interest parameters and social
parameters, respectively.

4.2 Empirical Analysis of Entangled Information

To illustrate the necessity of our proposed model, we investigate the degree of information
entanglement in the interest and social domains on different datasets. Our investigation is
highly relevant to the following two Research Questions (RQ):

• RQ1: How to measure the degree of information entanglement or the amount of the
entangled information in the interest and social domains, respectively?

• RQ2: How does measuring entangled information help us?

RQ1. As mentioned in Sect. 1, the reason that entangled social information exists in the
interest domain is the common interactions of users and their friends. In order to quantify
the entangled information, we first get the friends who have purchased the same items by:

S
′ = (XXT ) � S. (5)

Then we count the number of these friends by:

SI = 1

|U |
∑

u∈U

∑

t∈U
g(s′

ut ), s
′
ut ∈ S

′
, (6)
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Fig. 2 Empirical statistics of
entangled information
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where SI is the estimated amount of Social information in the Interest domain and can
indirectly reflect the degree of information entanglement in that domain, and

g(x) =
{
0 x = 0

1 x �= 0.
(7)

Similarly, we estimate the entangled Interest information in the Social domain by:

I S = 1

|U |
∑

u∈U

∑

i∈I
g(x ′

ui ), x
′
ui ∈ (SX) � X. (8)

RQ2. We calculate SI and I S on three popular social recommendation datasets: Yelp,
Filckr and Ciao. The details of these datasets can be found in Sect. 6.1.1, and their SI and
I S are shown in Fig. 2. From Fig. 2, we can observe that SI and I S of Yelp are the lowest
among all datasets, which means that Yelp contains less entangled information than the
other two datasets. Flickr is the highest among three datasets in two metrics, hence Flick
contains the most entangled information. To better understand our work, we explicitly state
our hypothesis: Different semantic information exists in both interest and social domains,
thereby the factors of representations learned from these two domains entangle different
information. This hypothesis is the basis of our proposed DVSR model.

5 Methodology

In this section, we introduce the proposed DVSR model which is based on the encoder-
decoder framework of VAE and has two stages. Its overall architecture is illustrated in Fig. 3,
where the target user u is taken as an example for a better understanding. In the first stage,
we take the interaction records and social relations of u as input and encode them as two
embeddings. Then, we disentangle interest and social factors from the two embeddings. In
the second stage, we pass integrated interest factors through an interest decoder to reconstruct
interaction records and pass integrated social factors through a social decoder to reconstruct
social relations. Furthermore, the reconstruction loss is used to learn for recommendation
and two self-supervised losses, intra-domain and inter-domain disentanglement losses, are
used to encourage the disentanglement of interest and social factors.
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Fig. 3 Overall architecture of DVSR

5.1 Encoding for Disentanglement

In this stage, our model focuses on how to compress the information from user-item interac-
tions and user-user relations into a low-dimensional space and how to extract disentangled
information from these embeddings. In a traditional VAE, the encoder is responsible for
producing user representations that are used directly in the subsequent decoder. However, in
our model, embedding representations encoded by the traditional encoder are only a basic
version of user representations (as shown in Fig. 3), which need to be further processed to
realize the ideal integration.

To encode user interest and social profiles separately, we design two encoders at this
stage, an interest encoder and a social encoder. For the interest encoder qφx , we take user u’s
interaction records xu as its input and use Eq. (1) to get the distribution of his/her interest
latent factors qφx (zxu |xu). Similarly, for the social encoder qφs , by employing user u’s social
relations su in Eq. (1), we obtain the distribution of social latent factors qφs (zsu |su).

Now the user’s representations in the interest domain and the social domain can be sampled
from the above two distributions, and we denote them separately by zxu and z

s
u which are two

k-dimensional embeddings. However, these user representations are only basic versions,
in which a lot of entangled information exists. So it is necessary to disentangle them to
extract different semantic information.We divide these embeddings into two non-overlapping
subsets, and critique them as interest semantics and social semantics, respectively. Note that
these semantic subsetswill be further learned duringmodel training. Let zxxu and zxsu separately
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Fig. 4 The results of extensive experiment

represent interest and social information in zxu . So do z
sx
u and zssu in zsu . Here, z

xs
u and zsxu are

selected as cross-domain factors. As shown in Fig. 3, an alternative simple strategy is to let
the first k − d (k > d > 0) factors of zxu be zxxu and the left d factors be zxsu , and let the first
d factors of zsu be zsxu and the left k − d factors be zssu . So, we have

zxu = [zxxu : zxsu ], (9)

zsu = [zsxu : zssu ], (10)

where d is the number of cross-domain factors from the two domains. In this paper, we adopt
the strategy to discriminate the different semantic information in an embedding.

5.2 Decoding for Recommendation

The above obtained zxxu , zxsu , zsxu and zssu can be divided into two categories according to their
semantic information. One reflects the user’s interest information and includes zxxu and zsxu .
The other is composed of zxsu and zssu , and embodies the user’s social information. Then factors
with the same semantic information can be utilized to generate the final user representations
for the interest and social profiles. We simply integrate them by concatenating operation as
[zxxu : zsxu ] and [zssu : zxsu ]. As a result, we exchange some factors from the two autoencoders,
and we call these exchanged factors (i.e., zxsu and zsxu ) cross-domain vectors.

To reconstruct interaction records and social relations of users separately, we design two
corresponding decoders, namely an interest decoder and a social decoder. For the interest
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decoder pθ x , we take the final user interest representation [zxxu : zsxu ] as its input, and use
Eq. (3) to get the distribution of his/her interest items pθ x (xu |[zxxu : zsxu ]). Similarly, for the
social decoder pθ s , its input is [zssu : zxsu ] and it generates the distribution of social friends
pθ s (su |[zssu : zxsu ]).

5.3 Model Training

In this section, we introduce three losses and the final objective function used to train our
model. To disentangle embedding representations from the interest and social domains, we
design two losses for the intra-domain disentanglement and inter-domain disentanglement,
respectively, which improves the effectiveness of the disentangling operation. Since the train-
ing process of the two VAEs in the model depends on each other, we design a unified
reconstruction loss to optimize them jointly.

5.3.1 Intra-domain Disentanglement Loss

As zxxu and zxsu are extracted from the interaction records of user u, they may carry some
similar information if there are not any special constraints. The same is true for zsxu and zssu ,
since they are extracted from the user’s social relations. However, to keep the validity of
disentangling operations, we hope that disentangled interest factors and disentangled social
factors from an embedding are discrepant in the latent space. That is to say, zxxu and zssu are
expected to be as far away as possible from zxsu and zsxu , respectively. For this purpose, firstly,
we separately use a linear projection on zxxu and zssu to make them have the same dimension
with zxsu and zsxu :

z̃xxu = wxzxxu , (11)

z̃ssu = wszssu , (12)

wherewx ,ws ∈ R
d×(k−d) are dimension transformation matrices. These two transformation

matrices are also parameters to be optimized in our model, so that they can adaptively
accomplish the transfer of semantic information in the transformation process. Then, we
define the intra-domain disentanglement loss Lintra as:

Lintra = ξ(zxsu , z̃xxu )

τ
+ ξ(zsxu , z̃ssu )

τ
, (13)

where ξ(·) : R
d × R

d �−→ R is a function that takes two vectors as input and outputs
the agreement score between them, and τ is a hyper-parameter scaling the similarity from
[−1, 1] to [−1/τ, 1/τ ]. In this paper, we simply take the cosine function as the estimator
ξ(·). Essentially, Eqs. (11) and (12) employ the linear projection to transform one of the
two disentangled parts of an embedding, and Eq. (13) calculates the similarity between the
transformed part and the untransformed part. In order to encourage the disentanglement, we
minimize Lintra to reduce their similarity.

5.3.2 Inter-domain Disentanglement Loss

As well known, different semantic factors extracted from different domains should be as
different as possible. For example, interest factors of the interest domain should be far away
from social factors of the social domain. For this purpose,we should design a disentanglement
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loss. Since the transferred vectors z̃xxu and z̃ssu represent the essential semantic information in
their original interest and social domains and are not subject to the cross-domain operations,
we construct their inter-domain disentanglement loss Linter by:

Linter = log
exp(ξ(z̃ssu , z̃xxu )/δ)∑

t∈U
exp(ξ(z̃ssu , z̃xxt )/δ)

, (14)

where δ is a hyper-parameter that scales the similarity from [−1, 1]. Essentially, minimizing
Eq. (14) can reduce the mutual information between z̃xxu and z̃ssu , which encourages the
disentanglement of the two parts. By rewriting Eq. (14), we can derive

Linter = ξ(z̃ssu , z̃xxu )

δ
− log(

∑

t∈U
exp(

ξ(z̃ssu , z̃xxt )

δ
)). (15)

From the first term of Eq. (15), we can see that the similar strategy of Eq. (13) is also
adopted to ensure the inter-domain disentanglement results. In addition, the second term can
be seen as a sampling strategy that constrains z̃xxu and z̃ssu to avoid the overfitting.

5.3.3 Reconstruction Loss

From Fig. 3, we can see that interest and social VAEs are dependent on each other. So we
build different reconstruction losses according to their own structure.

In the item recommendation process, the final user interest representation [zxxu : zsxu ]makes
the recommendation process be under the effect of two distributions. By extending the first
term of Eq. (4), we have the first reconstruction loss of DVSR as:

La(xu, su, φx , φs, θ x ) = Eqφx ([zxxu :zxsu ]|xu),qφs ([zsxu :zssu ]|su)[log pθ x (xu |[zxxu : zsxu ])]. (16)

In addition, we have the subset of factors zxsu disentangled from interest embeddings and the
subset of factors zssu disentangled from social embeddings. They can be used to reconstruct
the social relations of user u. So the second reconstruction loss of DVSR can be represented
as:

Lb(xu, su, φx , φs, θ s) = Eqφx ([zxxu :zxsu ]|xu),qφs (z
sx
u :zssu |su)[log pθ s (su |[zssu : zxsu ])]. (17)

Besides the two reconstruction losses, we should keep the rationality of approximate dis-
tribution. As shown in the second term of Eq. (4), the KL divergence is used to measure
the similarity between the approximate distribution and the true distribution of embedding
representations. Under the assumption that the prior distribution of each factor in embedding
representations always follows the normal distribution N (0, I), we use this distribution as
the true distribution in our training to supervise the learning of approximate distributions and
define the KL divergence by:

LKL = −KL(qφx ([zxxu : zxsu ]|xu)|N (0, I)) − KL(qφs ([zssu : zsxu ]|su)|N (0, I)). (18)

For the convenience of tuning parameters, we can unify the above three losses and represent
the unified reconstruction loss of DVSR as:

Lrec = La + Lb + LKL. (19)
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5.3.4 Objective Function

The final objective function consists of the three losses above:

LDVSR =
∑

u∈U
− Lrec + αLintra + βLinter, (20)

where α and β are two parameters controlling the strength of the intra-domain disentangle-
ment and the inter-domain disentanglement, respectively.Weminimize the objective function
to train model parameters. The training process of DVSR is given in Algorithm 1.

Algorithm 1: Training process of DVSR.
Input: user-item interaction matrix X, user-user relation matrix S, model parameters φx , φs , θ x , θ s ,

wx and ws .
Randomly initialize model parameters;
for each iteration do

for u ∈ U do
Get qφx (zxu |xu) and qφs (z

s
u |su) according to the two encoders;

Sample zxu and zsu from qφx (zxu |xu) and qφs (z
s
u |su) by the reparameterization trick,

respectively;
Obtain zxxu and zxsu from zxu using Eq. (9);
Get zsxu and zssu from zsu using Eq. (10);
Obtain z̃xxu and z̃ssu using Eqs.(11) and (12);
Calculate Lintra and Linter using Eqs.(13) and (14);
Send [zxxu : zsxu ] and [zssu : zxsu ] to the interest decoder and social decoder, respectively;
Obtain the distribution pθ x (xu |[zxxu : zsxu ]) and pθs (su |[zssu : zxsu ]) according to the two
decoders;
Calculate the VAE loss using Eq. (19);

end
Compute the total loss of all users in this iteration by Eq. (20);
Update model parameters using the Adam optimization method;

end
Output: optimized model parameters.

6 Experiments

In this section, we show relevant experimental results and explain the model performance
according to the characteristics of our model.

6.1 Experimental Setup

6.1.1 Datasets

Our experiments are conducted on three benchmark datasets: Yelp [22], Flickr [38] and Ciao
[39]. All three datasets were crawled down from their respective websites with the same
name and can be publicly downloaded (Yelp and Flickr,1 and Ciao2).

1 https://github.com/PeiJieSun/diffnet.
2 https://github.com/Coder-Yu/QRec.
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Table 1 Statistics of datasets

Dataset #Users #Items #Ratings #Links Rating density Link density

Yelp 17,237 38,342 204,448 143,765 0.03% 0.05%

Flickr 8,358 82,120 327,815 187,273 0.05% 0.27%

Ciao 7,317 104,975 283,319 111,781 0.04% 0.21%

• Yelp is one of the largest review sites in the United States, where people can rate the
services of some locations (e.g., restaurants, cinemas, etc.) and social relations are built
directly from users’ friend lists.

• Flickr is one of the largest social image sharing platforms, where users can share their
preferences for images and videos with their social followers and also can follow the
people they are interested in.

• Ciao is an online shopping site, where millions of products or services are critically
reviewed or rated for the benefit of other consumers and people can build their social
circles based on the attention of their reviews.

The statistics of these datasets are summarized in Table 1. Our experimental task is a
top-N recommendation, thus we convert all explicit ratings to implicit ratings and remove
repeated ratings. Specifically, as long as the active user rates one item, we treat that item as
positive feedback for the user. Finally, we randomly select 10% of the rating data as the test
set, while the remaining data is used as the training set.

6.1.2 Evaluation Metrics

To evaluate the performance of our model and baselines, three common metrics,
Precision@N , Recall@N and NDCG@N , are adopted for the top-N recommendation task.
By default, we set N = 20, report the average metrics for all users in the test set [40], and
omit the percent sign of model performance in all tables.

6.1.3 Baselines

Two recent VAE based social recommendation models and a recent disentangled learning
based social recommendation model are compared with DVSR to validate its effectiveness.

• CVAE-CF [27] is a VAE based social recommendationmodel. Thismethod considers the
social information as a specific condition that can influence the recommendation result,
and models a conditional distribution of users’ responses to items considering the social
links of users.

• JVAE-CF [27] builds two VAEs for the item recommendation task and the friend rec-
ommendation task. It attempts to model a joint distribution of users’ responses to items
and persons by using social relations.

• DcRec [32] is a recent graph neural network based social recommendation model. It
builds multiple contrastive learning tasks to induce disentangled representation learning.

6.1.4 Experiment Settings

For a fair comparison, all models are optimized using the Adam optimizer [41] and ini-
tialized in the same manner. The batch size is set to 2, 048, the learning rate is tuned in
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{1, 10−1, 10−2, 10−3, 10−4}, and the maximum training epoch is set to 100. For DcRec, we
follow its original paper to set the hyperparameter. For all architectures of VAE based mod-
els, we build them on the MultiLayer Perceptron (MLP) architecture. Their input and output
layers coincide with the number of items or users, which depends specifically on the task
VAE is performing. Specifically, except for the input and output layers, the hidden layers of
the encoder have the same architecture: 600 → 200 → 128. So for DVSR, k is 128. We use
one layer perceptron as the decoder. To investigate the performance of different architectures
of VAE based models, we keep most of the critical tricks consistent for these models. Our
experiments are implemented in PyTorch.

Based on theMLP architecture, the computational complexity of DVSRmainly originates
from its encoding and decoding stages, which are closely related to the number of layers and
neurons in the neural network. Let dl be the perceptron number of the l-th hidden layer. For
a single user, the complexity of the interaction side on DVSR is O(|V|d1 + ∑L

l=2 dl−1dl +
|V|dL), and the complexity of the social side isO(|U |d1+∑L

l=2 dl−1dl+|U |dL). Furthermore,
the complexity involving Eqs. (11) and (12) isO(2d(k−d)). Therefore, the total complexity
of DVSR approximates O(|U |(|V| + |U |)).

6.2 Overall Performance Comparison

The overall performance of DVSR and baselines is given in Table 2. From the table, we have
the following observations:

• Our DVSR achieves the best performance DVSR consistently outperforms all base-
lines across Precision, Recall and NDCG metrics. Compared to the best baseline, the
improvement of DVSR is 2.94%–7.87% and 4.15%–7.32% on Yelp and Ciao, respec-
tively. Especially, on Flickr, the DVSR improvement is 11.17%–25.38%, which can be
considered to be significant. As mentioned in Sect. 4.2, Flickr contains the most entan-
gled information among the three datasets. Therefore, we can attribute the improvement
of DVSR to its excellent ability to handle entangled information.

• It is essential to disentangle the interest and social semantic information from both
interactions and social behaviors In CVAE-CF, JVAE-CF andDcRec, the interest infor-
mation is extracted only from interaction data, and the social semantic information is
extracted only from social relation data. CVAE-CF and JVAE-CF combine both kinds of
information to generate recommendations. The difference between them lies in the way
the extracted social information is used. CVAE-CF only uses social information for the
recommendation, but JVAE-CF also uses social information to infer social links. As the
social information of JVAE-CF is not disentangled for its two purposes, JVAE-CF per-
forms worse than CVAE-CF. Although DcRec only uses the interest information for the
recommendation, it maximizes the similarity between the interest and social information
of the same user. As a result, the social semantics may be weakened and the performance
is degraded. Our DVSR can improve the ability to disentangle interest factors from the
interest and social information both of which are entangled in interaction records and
social relations.

• Explicit disentanglement losses are necessary The disentangling operations of CVAE-
CF, JVAE-CF and DcRec are essentially to model interest and social semantic informa-
tion, respectively. They lack an explicit disentanglement loss to distinguish between the
two kinds of information. Our DVSR beats them by considering the explicitly different
semantic information between the interest and social domains, and the inner heterogeneity
of the information existing in the two domains.
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Table 3 Performance of DVSR with respect to different values of d

d Yelp Flickr Ciao
Precision Recall NDCG Precision Recall NDCG Precision Recall NDCG

112 0.4452 5.023 2.214 0.3109 1.504 0.8041 1.413 6.729 4.176

96 0.4501 5.064 2.237 0.3262 1.555 0.8698 1.449 6.882 4.346

64 0.4549 5.103 2.285 0.3245 1.635 0.9119 1.479 7.206 4.601

32 0.4540 5.178 2.256 0.3287 1.498 0.8414 1.463 7.041 4.450

16 0.4588 5.253 2.289 0.3125 1.457 0.8196 1.469 7.092 4.431

6.3 Parameter Analysis

We conduct the sensitivity experiments on the three hyper-parameters of our model. The
d is the number of cross-domain factors, and α and β control the strength of intra-domain
disentanglement and inter-domain disentanglement, respectively. The sensitivity experiments
of the hyper-parameters are given in Tables 3, 4 and 5.

From Table 3, we can see that on Flickr and Ciao, almost all three metrics reach their
peaks at d = 64, but the model achieves the best performance on Yelp at d = 16. We think
the sensitivity of d is strongly influenced by the complex semantic information in the two
domains. Theoretically speaking, the cross-domain factors from the interest domain should
carry social information. The number of these factors should be positively correlated with
the amount of social information. Similarly, the number of cross-domain factors from the
social domain should have a positive correlation with the amount of interest information in
the social domain. Meanwhile, by analyzing the result of the statistics in Fig. 2, we find that
it is consistent with our hypothesis. Yelp has less entangled information and DVSR achieves
better performancewhen d is assigned to a smaller value. Flickr andCiao havemore entangled
information than Yelp and DVSR achieves better performance when d is assigned to a larger
value. In conclusion, we suggest setting a larger d value for datasets containing a lot of
entangled information and a smaller d value for datasets with less entangled information.

FromTable 4,we can observe thatDVSRhas a similar sensitivity toα on all datasets,which
illustrates the validity of the intra-domain disentanglement and again proves the existence of
entangled semantic information. It is worth noting that intra-domain disentanglement plays a
very important role in the disentanglement stage, so we should tune α rather carefully. If the
disentangling strength is too small, cross-domain factors may incorporate residual entangled
information, which will hinder the integration of information. If the disentangling strength is
too large, the quality of cross-domain factors will also deteriorate and thus the performance
of the model will degrade.

FromTable 5, it can be seen that DVSR has different sensitivities to β on different datasets.
We find that on Yelp, Flickr and Ciao, almost all three metrics reach their peaks when β is
set to 0.1, 0.01 and 0.03, respectively. The model performs best on Yelp when β is tuned
around a larger value, but it achieves better performance on Ciao and Flickr when β is
tuned around a small value. The two types of disentanglement work together to ensure
the effect of the disentanglement. The intra-domain disentanglement has done most of the
disentanglement, and the inter-domain disentangling operation is done to further decouple
the remaining entangled information. Yelp has less entangled information, so setting β to a
small value will make it difficult to produce effective effects. On Ciao and Flickr, DVSR is
very sensitive to β because there is a lot of entangled information in the ratings and links.
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6.4 Study of Disentanglement and Integration

As is shown in Fig. 3, for a given user u, we disentangle interest factors (zxxu and zsxu ) and
social factors (zssu and zxsu ) from the entangled semantic information. Then, the integration
operation concatenates interest and social factors separately to obtain the final embedding
representations [zxxu : zsxu ] and [zssu : zxsu ]. To investigate the impact of disentangling and
integration, we perform a study on them. We design three variants of DVSR and compare
their performance on all datasets. The first variant is denoted as DVSR-I which keeps disen-
tangling operations but does not exchange cross-domain factors. In other words, disentangled
factors participate directly in the decoding stage in the original VAE without any integration
operation. Besides, the integration is based on the disentangling, so we can not eliminate the
disentangling operation to validate the integration. However, we can remove the disentangle-
ment losses which greatly improve the quality of disentangled factors. Therefore, we design
the second variant denoted by DVSR-D, which removes all disentanglement losses in model
training and keeps the integration operation. The third variant is denoted by DVSR-D&I,
which eliminates all disentanglement losses and integration operations. Essentially, DVSR-
D&I makes DVSR degrade to Multi-VAE [25]. The results are given in Table 6, and from
the table we have the following observations:

• All disentangling and integration operations are important in our model. It is easy to see
that the performance of both DVSR-D and DVSR-I is worse than DVSR on all datasets.
DVSR-D can combine factors from the two domains, but these factors may contain a lot
of residual entangled information due to the lack of the disentangling operation. On the
contrary, DVSR-I can ensure the quality of disentangled factors, but these factors can not
be used to perform the proper recommendation task due to the lack of integration.

• Disentangling operations can make a greater contribution to datasets with less entangled
information than to datasets with more. From Table 6, we also observe that DVSR-D
achieves the worst performance on Yelp among these variants.We attribute the difference
in performance to the different degree of information entanglement in these datasets. As
shown in Sect. 4.2, the degree of information entanglement in Yelp is at a low level.
If disentangled losses are removed, cross-domain factors on Yelp are more likely to
incorporate harmful information that conflicts with the recommendation task compared
to Flickr and Ciao. In other words, without the disentanglement, the integration operation
will fail to incorporate beneficial information for the recommendation task.

6.5 Study of Model Applicability

The performance of DVSR is closely related to the degree of information entanglement in a
dataset, and it is not hard to find that the user is the link of information entanglement through
Eqs. (6) and (8), so we try to make the simplest and most general hypothesis:DVSR performs
better in the context with a large number of users and worse in the context with a small
number of users. To prove the hypothesis, we add a Graph Neural Network (GNN) based
model, LightGCN [42], as a baseline. As well known, GNN based models are very popular in
the recommendation field because of their excellent information fusion ability. These models
focus on how to integrate different kinds of information through the aggregation operation.
LightGCN greatly simplifies the aggregation process of GNN based models by removing the
feature transformation and nonlinear activation.

To test the model applicability of DVSR, we randomly drop some users from each dataset.
For the remaining users, we randomly select 10% of their processed data as the test set
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and the remaining 90% as the training set. Considering the small number of users in Ciao,
further reducing the number of users may disrupt the distribution of the data. Therefore, the
experiment is conducted only on Yelp and Flickr. Results with varying reduction ratios are
shown in Fig. 4.

From the figure, we can see that DVSR performs much better than LightGCN on the
two datasets when the number of users is large. However, as the number of users gradually
decreases, different trends become apparent on the two datasets. On Yelp, when the number
of users decreases by about 25%, the performance of LightGCN and DVSR becomes similar.
On Flickr, when the number of users decreases by around 15%, their performance becomes
similar. The reason for the different trends in the two datasets is that the level of information
entanglement in Flickr is much higher than that in Yelp. As a result, reducing the number of
users in Flickr has a more severe impact on DVSR. So DVSR can be generalized to datasets
with a large number of users.

7 Conclusions and FutureWork

In this paper, we analyze the source of the entanglement of different information in the interest
domain and the social domain and propose a method to estimate the amount of entangled
information. We find that the phenomenon of entanglement exists in many datasets, so we
try to enhance a recommender model from the disentanglement view. Motivated by the
disentanglement in other fields, we develop the DVSR model. It critiques different domain
information for disentangled factors from the same representation and integrates the factors
with the same semantic information. In addition,DVSRhas some auxiliary tasks to encourage
disentanglement and critiquing. Experiments in our work demonstrate the effectiveness of
DVSR.

As we know, not only users are influenced by their social connections, but also users’
interests are dynamic. Our future work is about how to model the two aspects of users from
the disentanglement view. Besides disentangling social information, we will adopt a similar
strategy to disentangle a user’s invariant preference and variant preference with time for
high-quality recommendation performance.
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