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Abstract
Knowledge distillation is a model compression technique that transfers knowledge learned
by teacher networks to student networks. Existing knowledge distillation methods greatly
expand the forms of knowledge, but also make the distillation models complex and symmet-
ric. However, few studies have explored the commonalities among these methods. In this
study, we propose a concise distillation framework to unify these methods and a method
to construct asymmetric knowledge distillation under the framework. Asymmetric distilla-
tion aims to enable differentiated knowledge transfers for different distillation objects. We
designed a multi-stage shallow-wide branch bifurcation method to distill different knowl-
edge representations and a grouping ensemble strategy to supervise the network to teach and
learn selectively. Consequently, we conducted experiments using image classification bench-
marks to verify the proposedmethod. Experimental results show that our implementation can
achieve considerable improvements over existing methods, demonstrating the effectiveness
of the method and the potential of the framework.
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1 Introduction

Knowledge Distillation (KD) [1] is a well-known model compression technique that has
attracted considerable attention in recent years for itswide usage in deep learning applications.
Compared to traditional single-model training, knowledge distillation is a procedure that
uses a high-performance large model (teacher) to guide a relatively smaller model (student)
for more appropriate training, thus transferring the advantage of the teacher to the student
with acceptable performance loss. From an optimization perspective, it can be considered a
special regularization method [2, 3] that achieves appropriate label smoothing through the
predictions generated by real models with reliable performance and acceptable noise, similar
to an experienced teacher imparting the knowledge he has mastered to the students.

Regardless of perspective, the key to knowledge distillation is determiningwhat the knowl-
edge is and how to distill it. To answer these two questions, numerous studies give their own
model techniques based on knowledge definitions and distillation methods. Knowledge def-
initions include simple predictions [1, 4], midway feature maps [5–8], and to high-level
correlations [9–11]. Besides, the distillation methods have significantly changed from the
early two-stage offline type [12] to the present one-stage online type [13].

However, these methods have placed excessive emphasis on performance improvement
while neglecting the simplicity of distillation modeling. This has resulted in overly com-
plex distillation methods that are not only incomprehensible in theoretical understanding
but challenging to practical deployment. It is difficult to discern the specific contributions
of individual components or techniques, limiting our ability to gain insights into the inner
workings of the distillation. Meanwhile, the intricate architectures and optimization tech-
niques can introduce computational and memory overhead, making it harder to implement
and deploy these methods efficiently on resource-constrained devices or in real-time applica-
tions. Therefore, it is crucial to strike a balance between performance gains and the simplicity
of knowledge distillation methods.

Our motivation is to rebuild a concise yet effective distillation model that can promote
better theoretical understanding, facilitate wider utilization, and performwell in various prac-
tical applications. To do so, this papermainly studies the following two challenging problems.
The first challenging problem is the growing model complexity. The distillation model in
early studies, such as conventional knowledge distillation [1] was simple and intuitive, with
only one teacher network, one student network, and a loss function constructed based on
their predictions. However, this simplicity has been undermined in follow-up studies due to
the introduction of new knowledge definitions and distillation methods that often call for
additional structure and supervision items. Consequently, distillation models have become
not as intuitive as before, resulting in difficulties in theoretical understanding and practical
applications. In fact, conventional teacher-student knowledge distillation [1] is still widely
adopted in applications because of its simplicity.

The other challenge is the implicit model symmetry, which is related to distillation perfor-
mance. Symmetry refers to the interchangeability between the networks in the same model
(analogous to the interchangeability between the unknowns that we call algebraic symmetry
in a system of equations). Conventional knowledge distillation is not symmetric because the
networks in such a model are supposed to be either teachers or students and are completely
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different in terms of structure, role, and behavior during training and evaluation, thereby not
interchangeable. Recent online and self-distillation studies have proposed to treat networks as
learning partners. These networks are no longer restricted to old roles as teachers or students
and can teach others while simultaneously learning from others, making them interchange-
able, and their interchange does not fundamentally change the distillation model, thereby
bringing implicit or potential symmetry to the model. However, this symmetry is not always
conducive to knowledge distillation because it also establishes strong correlations between
these interchangeable networks, thereby limiting their performance to a close level, whereas
knowledge distillation is essentially focused on individual networks that greatly outperform
themselves.

In this study,we first propose an abstract framework to unify these existingmethods,which
reduces the model complexity. Furthermore, we propose a method to construct asymmetric
distillation from the deployed network under this framework to explicitly break the symmetry.

Based on existing methods, we first analyze the commonness of various knowledge dis-
tillation models, abstracting all types of knowledge providers as instances and knowledge
transfers as interactions to describe distillation tasks in an instance-interaction framework.
In Sect. 3.1, we provide specific definitions of the framework. Following these definitions,
we can transform the framework into any existing distillation model.

With this framework, we re-analyze these typical models, pointing out that the symmetry
of these models conflicts with the asymmetry of task training deployment. To overcome this,
we deconstruct the distillation procedure into three steps and propose a method to gener-
ate a training instance group from the deployed instance to achieve asymmetric knowledge
distillation. Specifically, we discuss the generation of instances and specification of inter-
actions through theoretical derivations and experimental results. Regarding instances, we
design more effective shallow-wide branches in conjunction with the multi-stage bifurca-
tion method. For interactions, we ensure that they have a certain level of asymmetry while
maintaining simplicity and constructing many-to-one supervision.

To verify the proposed method, we conduct experiments on two benchmarks for classi-
fication tasks with appropriate structural adjustments and hyperparameter settings, thereby
demonstrating the effectiveness of our framework. For CIFAR-100, our ResNet-56 imple-
mentation outperforms the baseline by 4.93%, and ResNet-110 achieves 79.05% with a
5.45% boost, which significantly outperforms other existing methods. On ImageNet-1k, our
ResNet-18 achieves a 1.74% improvement over the baseline.

The contributions of this study are as follows:

• We propose an abstract instance-interaction framework to unify the existing knowledge
distillation methods to reduce the model complexity.

• We propose an asymmetric method under the framework to construct knowledge
distillation and give its pipeline.

• We design a multi-stage shallow-wide bifurcation method to extend a group of training-
only instances and a grouping strategy with many-to-one supervision to implement
asymmetric interactions.

• We conduct experiments on two benchmark datasets to verify the performance and
effectiveness of the proposed method.

2 RelatedWork

Teacher-Student Knowledge Distillation. Conventional knowledge distillation [1] estab-
lished a base knowledge distillation model between a teacher network and a student network,
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that is teacher-student distillation. This is considered offline learning because the training
of the teacher and student networks occurs separately in two phases: the teacher network
is trained in advance to ensure that it contains knowledge, and then the student network
learns from the teacher’s prediction. Compared with traditional single-network training,
teacher-student distillation has achieved significant performance improvement, but it also
largely increases training costs since more time and space are needed, especially for teacher
preparation. Based on this, some studies [5, 6] have suggested that feature representation
in intermediate layers also contains knowledge and proposed feature-based distillation, as
opposed to previous prediction-based distillation. Unlike their predictions, the feature map
outputs by teacher and student networks tend to have different shapes, thus requiring opera-
tions or structures for shape alignment before distillation. More studies [14–16] have focused
on learning feature representations, where student networks attempt to better match the
teacher’s hidden knowledge in feature maps through more complex and well-designed struc-
tures. For example, an extra paraphrasing module was applied to transfer feature maps in
[17].Moreover, Jacobianmatching [18] and singular value decomposition [19] have also been
adopted to improve knowledge transfer. These feature-based methods do indeed enrich the
types of knowledge, while the feature selection and matching heavily rely on empirical prior
or experimental exploration. Additionally, it will introduce additional parameters and com-
putational burden during feature matching. In fact, the differences in the structure complexity
between the teachers and students lead to disparities in their feature representation capabili-
ties, making it exceedingly challenging to compel the students to mimic the teachers’ feature
representations. Given the inherent challenges, recent studies have employed abstract correla-
tions to convey high-level knowledge. In contrast to features, the selection and transmission
of relationships offer relatively more flexibility. The correlation, encompassing structural
information [9, 20–22], activation [23], attention [10, 24], mutual-information [25] and dis-
turbance response consistency [11, 26, 27], are more easily acquired by student networks.
However, their supervision is comparatively weaker than that of feature representation or
predictions, necessitating careful handling during the distillation process and combination
with other forms of supervision.

We notice that these teacher-student distillation methods can be broadly classified into
three categories based on the knowledge types: prediction-based, feature-based, and relation-
basedmethods, each exhibiting different levels of supervisory strength. Existingmethods tend
to overemphasize their type differences and ignore their intrinsic connections. In contrast,
we adopt a unified framework to describe these three knowledge sources as the same entity,
thereby attributing their observed differences in distillation to a more in-depth analysis of
the underlying structural factors. This enables us to thoroughly investigate their inherent
connections and construct better knowledge providers and transferring, thereby reducing the
reliance on teachers and lowering training costs.

Online Mutual Learning. Recently, some studies have improved the basic two-stage
offline distillation to one-stage online distillation by replacing teacher networks with learn-
ing partners, thus proposing a mutual learning model [13]. This improvement effectively
reduces the training cost because, unlike teacher networks that call for an extra training phase
of preparation, learning partners are trained together with student networks in one phase,
which makes the training more efficient and compact. On the other hand, the knowledge
provided by learning partners is not as reliable as that of pre-trained teachers, which limits
the performance of the distillation. Meanwhile, as mentioned in [13], the benefits derived
from increasing the number of learning partners are not as substantial as initially anticipated;
instead, they exhibit a rapidly diminishing marginal return. To mitigate this problem, some
studies have focused on using existing learning partners to synthesize stronger supervision

123



A Unified Asymmetric Knowledge Distillation... Page 5 of 25   172 

because distillation members no longer belong to the one-teacher-to-one-student type, but
have derived many-to-one or even many-to-many types [28–30]. In [28] a simple ensemble
method was adopted to map multiple weak networks onto a stronger network, and more
effective ensemble methods have been further discussed in [31]. In [29], a two-level distil-
lation was designed to use diverse peers to guide the group leader. Others try to introduce
new supervision, in [32], knowledge hidden in filters is measured by information entropy
and transferred. These methods strengthen the supervision capabilities of learning partners
to a certain extent, but complicate the distillation model and increase the training burden as
well.

It can be found that these methods have mainly focused on the utilization of partner
networks, while consistently lacking in-depth discussions regarding their sources and con-
struction. Besides, they have not adequately recognized and addressed the issue of modeling
symmetry introduced by mutual learning. In our proposed method, the partner networks are
no longermere replicas of the student networks; instead, they undergo amoremeticulous con-
struction. Furthermore, we conducted a thorough analysis of modeling symmetry to construct
asymmetric knowledge distillation that effectively mitigates performance limitations.

Self-supervised Distillation. Moreover, recent studies have adopted self-distillation to
generate supervision signals from the network itself, rather than from teachers or learning
partners. In [33], a self-distillationmodel was proposed and combinedwith deeply supervised
networks [34] to better supervise a network using its intermediate discriminating information
via extra auxiliary classifiers. In [35], label smoothing was achieved using this extra self-
supervised information to improve performance. In [36], feature refinement was introduced
to generate and utilize supervised information at the feature level. These self-distillation
methods can avoid the use of more complex models and eliminate the need for generating
pseudo-labels through clustering or meta-computing steps, but they also have some limita-
tions. On the one hand, these self-distillation methods rely heavily on additional auxiliary
structures or augmented inputs [37, 38] to ensure sufficient distinctive knowledge infor-
mation for effective supervision. On the other hand, the use of auxiliary structures needs
to be carefully considered, as larger auxiliary structures can make self-distillation equiv-
alent to a mutual learning method with shared shallow network layers. Existing methods
are often constrained by this contradiction and do not thoroughly explore the relationship
between self-distillation and mutual learning, as well as the role of auxiliary structures in
achieving effective self-supervision. In this study, we address these limitations by simulta-
neously incorporating both mutual learning and self-distillation within our framework. This
approach allows us to effectively reconcile the contradiction between auxiliary structures
and the student network and facilitates more comprehensive research and discussions in this
area.

New methods have emerged continuously as network structures and supervision items
become increasingly complex.Meanwhile, the high differentiation abilities ofmethods do not
promote the core theory of knowledge distillation well, although the distillation performance
is highly improved.

Our proposed framework is highly compatible with these methods and unifies them as
knowledge extraction and transfer procedures from the framework perspective, and thus
a unified platform for discussion and comparison is provided. The proposed asymmetric
distillation method is re-modeled and re-derived under this framework and integrates the
advantages of various method types. Compared with the teacher-student model, it utilizes
single-stage training. Additionally, it uses asymmetric optimization objectives to solve the
performance bottleneck caused by the onlinemutual learningmodel.Meanwhile, as an exten-
sion of self-distillation, the generation of various types of knowledge as supervision signals,
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Fig. 1 An overview of our framework andmethod. Take some typical knowledge distillationmethods as exam-
ples: a response-based teacher-student distillation; b feature-based mutual learning; and c self-distillation.
Their corresponding models under our abstract framework are shown in (d, e, f). We abstract all network
flows for extracting knowledge as instances and knowledge transfers as interactions. The traditional sym-
metric knowledge distillation construction procedure is shown in (g). In contrast, we propose an asymmetric
knowledge distillation method based on a deployed network and discuss bifurcation and interactions as shown
in (h)

corresponding auxiliary structure characteristics, and supervision grouping strategies are
discussed in detail.

3 Methodology

In this section, we aim to view the existing knowledge distillation methods from a unified
perspective, propose a simple but effective abstract framework, re-analyze the construction
process of knowledge distillation using the proposed framework, and provide an asymmetric
knowledge distillation construction method from the deployed network. Further details of
the framework are discussed in subsequent sections.

An overview of the proposed framework and method is presented in Fig. 1.

3.1 Unified Knowledge Distillation Framework

First, we provide a general description of the knowledge distillation framework and extend
its settings for further discussion.

Suppose that the basic task is a K -class image classification task with an annotated dataset
D = {xi , yi }, where xi ∈ R

C×H×W is the i-th image in the dataset, and yi is the ground
truth label. We employ a knowledge distillation method, whatever it is, with N (N ≥ 1)
networks, named F1,F2,· · · ,FN

1. The input to the network is an image x, and the outputs
are f 1, f 2,..., f N ∈ R

K , respectively, by the following formula representation:

f i = Fi (x; θ i ) (1)

1 Here, F is not only the symbol of the network but also the network-fitted nonlinear transformation.
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, where θ i is the parameter of Fi and θ total is the union of all θ i .
Since classification tasks prefer more discrete results, we can convert f i into discrete

probability distributions pi ∈ R
K using the Sof tMax function as follows:

pi = Sof tMax( f i ). (2)

Specifically, the probability of the j-th class predicted by the i-th networks, that is, p j
i , can

be calculated as follows:

p j
i = exp( f j

i /T )
∑K

c=1 exp( f
c
i /T )

, (3)

where T is a temperature parameter used to control the smoothness.
For training, every network Fi is given a corresponding loss function Li , and the entire

loss function Ltotal can be constructed by simply summing Li . Once Ltotal is constructed,
optimization algorithms, such as SGD [39] and its variants, are employed to approximately
reach the optimization target by making Ltotal converge to the local minima. Then, during
deployment, the network with the best performance is selected to represent the rest.

However, this network-based description encounters certain problemswhen promoted, the
most serious of which is the ambiguity of the distillation subject. In general, networks are set
to hold totally independent parameters as the case (a) in Fig. 2; however, they can also share
their parameters in some cases. In fact, quite a few studies [28, 31, 40–42] have mentioned
or adopted such shared cases, and some studies, such as self-distillation [33] and deeply
supervised knowledge synergy (DSKS) [43], even take parameter sharing as the core design
or special motivation and demonstrate the benefits of doing so, such as higher performance
and lower training costs. Together with these benefits, a new problem arises: blurring the
conceptual boundaries of networks. As shown in Fig. 2, the sharing case (b), in which two
networks share parameters, can also be interpreted as the case in which a special network
outputs two predictions simultaneously in one pass, and the nature of this structure, whether
it represents a single network or two shared networks, remains ambiguous in the absence
of explicit specification. In other words, the term “network“ may no longer be adequate to
accurately describe the subject in distillation models because we cannot determine which
part it actually refers to, especially in self-distillation model.

Therefore, we propose the concept of instances instead of networks. An instance is an
individual knowledge provider that is not only related to the network structure but also to
the extraction and transfer of knowledge. It undertakes the forward inference task with a
complete network flow path from receiving input x to outputting specific knowledge, such as
a feature map or a prediction f i in classification, and thus inherits the symbol F. Put simply,
one instance takes one input and transforms it into the expected output.

Then, we can effectively describe the sharing cases by instances; for example, the case
(c) in Fig. 2 is an instance-based description that contains two instances whose network flow
paths may overlap on some shared parts but eventually separate into two different parts.
According to this overlapping property, we divide each instance into three components. We
call the position at which two instances separate the bifurcation point, the shared part before
the bifurcation point the trunk, and the independent part after the bifurcation point the branch,
as shown in Fig. 2. In particular, two completely independent networks can be regarded as
two instances whose bifurcation points are located at the beginning of their networks, with
no shared trunk.

Then, we discuss the creation and removal of instances. Since the network model is
translated into the instance model, N is the number of instances, which depends on the
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Fig. 2 From networks to instances. a two networks that hold totally independent parameters. b a sharing case
of (a), but can also be regarded as a special network that outputs two predictions. c two instances with one
trunk, one bifurcation point and two branches

number of knowledge extractions. When N = 1, the only instance is the network itself. As
N increases, new instances are extended by identifying their bifurcation points and branches.
Meanwhile, removing an existing instance erases the bifurcation point and its branches.

Furthermore, we discuss the optimization of the instances. Different instances can often
extract different forms of knowledge. Therefore, existing methods usually treat them differ-
ently in themodel, ignoring their unity under a bottom-up design. At the top level, we describe
the possible mutual function between these instances through different indicator functions
(e.g., distance, similarity, and correlation) and attempt to use optimization methods to make
the functions converge in the expected direction. At the bottom level, what we call knowledge
is actually the rich semantic information contained in the instance output, which is always
a series of matrices. Knowledge transfer is also realized by a series of mathematical opera-
tions on these matrices. Since there is no difference among these instances in optimization
from the perspective of calculation, for simplicity, we refer to the mutual function between
instances as interactions to hide complex implementation and optimization details such as
feature cosine similarity or prediction cross-entropy loss. Thereby, interactions are unified
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operations, such as connecting lines and arranging a series of instances to build connections
to promote the optimization of instances.

In summary, we provide a unified distillation framework described by instances and inter-
actions that is compatible with a simple teacher-student model, online correlative learning
with multiple partners, and a self-distillation model. Using this framework to translate these
models into instance-interaction descriptions makes it possible to place them on the same
ground, which is conducive to our further discussion.

3.2 Asymmetric Knowledge Distillation

As mentioned above, existing online distillation models often hold implicit symmetry, and
this symmetry is more manifested in the interaction under the unified framework. A common
interaction involves building a loss function Li for instances in optimization. Li is a metric
of the instance’s output f i or pi and varies in its form for different optimization targets
and supervision intensities. For example, by following the principle of deep mutual learning
(DML) [13], we can provide a possible form of Li as

Li = LCE
(
pi , y

) +
N∑

j=1, j �=i

LK L
(
pi || p j

)
, (4)

where LCE represents the cross-entropy loss between the SoftMax output p and ground-
truth label y for input x, and LK L is the Kullback–Leibler (KL) divergence loss between
two probability distributions pi and p j together with a temperature compensation item T 2,
which is finally formulated as

LK L
(
pi || p j

) = T 2
N∑

c=1

pci log
pci
pcj

. (5)

The final loss function for the entire model sums these Li as

Ltotal =
N∑

i=1

Li =
N∑

i=1

LCE
(
pi , y

) +
N∑

i=1

N∑

j=1, j �=i

LK L
(
pi || p j

)
(6)

We find that such a model is symmetric because all instances are interchangeable in the
loss function Ltotal , which means that all instances are equivalent, not only in the training
procedure but also in the deployment selection. During training, the parameters are con-
structed in a target function R as a whole, which means that they are optimized together as
follows:

θ∗
total = argmin

θ total

{R(θ total , D)}. (7)

During deployment, one of them is selected randomly or deliberately by an evaluation
function E as follows:

θbest = argmin
θ i

{E(θ i , D)|i = 1..N } (8)

This strong constraint significantly impairs the diversity among instances, making their
behavior and performance similar, and hence restricted. To illustrate this, we conducted a
simple experiment on the distillation scale, which refers to the number of networks involved
in the distillation. In the experiment, we selected ResNet-56 for the independent instances
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Table 1 CIFAR-100 top-1
accuracy of instances under
different distillation scales

Scale Ave. Acc (%) Ens. Acc (%)

2 74.85 76.53

3 75.00 77.38

4 75.33 77.68

5 75.21 77.69

6 75.04 77.24

7 74.77 76.99

The ’Scale’ refers to the number of networks involved in distillation, and
their average and ensemble accuracies are presented in the second and
third columns, respectively

to construct the distillation implementation procedure according to the above model and
gradually expanded the distillation scale from two to seven. For validation, we evaluated the
average accuracy of the instances and their ensemble accuracy using CIFAR-100. The exper-
imental results shown in Table 1 corroborate our viewpoint because adding more instances
to this model did not achieve much improvement in either their individual performance or
their ensemble accuracy. It is not difficult to imagine that when the constraints imposed by
interactions are too strong, the instances become identical and have nothing to learn from
each other, leading to distillation failure.

In contrast to this model symmetry, the distillation task itself has potential and natural
asymmetry in terms of training deployment. In the training phase, all instances and their
parameters participate, but only a subset of them is selected for deployment, which is also
reflected in the early teacher-student model. Inspired by this, we find that explicitly empha-
sizing this asymmetry by determining the deployed instance in advance simplifies the task.
This is because the deployment selection becomes redundant, and the optimization target
in the training phase becomes clearer. Intuitively, rather than obtaining a series of slightly
better instances, we prefer to obtain ONE instance that significantly exceeds its original
performance. Once the deployed instance is determined, the optimization target is to make
it learn more from others and outperform them. The construction of the interactions should
also follow this principle.

To achieve this goal, we propose an asymmetric knowledge distillation procedure that
explicitly determines the final deployed instance Fd and distinguishes it from others by
constructing asymmetric interactions. From the perspective of parameters, all parameters are
optimized during training, but only θd ⊆ θ , which represents the parameter of Fd , presents
in deployment. We slightly modify Eq.8 as follows:

θ∗
d = argmin

θd

R′(θd , θe, D), (9)

where R′ represents the loss function that explicitly treats the parameter groups differently,
and θe = θ − θd .

Combined with the instance-interaction framework, we further divide the asymmetric
knowledge distillation procedure into three steps, as shown in Fig. 3:

1. Initialize N to 1 by setting up an instance Fd that is set to be the deployed one;
2. Increase N properly by the instance extension and arrange interactions to perform

distillation;
3. Decrease N back to 1 by the instance removal, leave only Fd for deployment.
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Fig. 3 Construction of asymmetric knowledge distillation. (1) Initialize N to 1 by setting up an instance Fd
that is nominated to be the final deployed one as (a); (2) Increase N properly by the instance extension and
add the interactions to construct and perform distillation, that is, from (a) to (b); (3) Decrease N back to 1 by
the instance removal, leaving only Fd for deployment, that is, from (b) to (a)

Given that Fd is predetermined, steps 1 and 3 are considered standard and require no further
elaboration on the design details. In this manner, we transform the original problem of
knowledge distillation into two subproblems under the framework of instance extension and
interaction arrangement, which are explained in detail in the following two sections.

3.3 Multi-stage Shallow-Wide Bifurcation

Thefirst subproblem involves the principle of instance extension, specifically, determining the
type of training-only instances to extend in the asymmetric knowledge distillation framework.
This extension is performed by selecting their bifurcation points in existing structures (which
also determines their trunks) and supplementing themwith extra new branches. Asmentioned
previously, bifurcation points and branches are critical to instances because they constitute
instances together with trunks and have a direct influence on the instances’ performance and
knowledge distillation. Therefore, this subproblem is also equal to appropriate bifurcation
point selection and branch supplementation.

To solve the first subproblem, we propose a multi-stage shallow-wide bifurcation method
on instances composed of multi-stage bifurcation point selection and a shallow-wide branch
supplement.

Multi-stage bifurcation point selection means that we select these bifurcation points from
different stages of the deployed instance Fd for two reasons. First, since the same bifurcation
points and similar branches strengthen the model symmetry, the positions of the bifurcation
points should be different to avoid this issue. Second, the selection should adapt to the
mainstream network structure. At present, themainstream network structures, such as ResNet
[44], Wide ResNet (WRN) [45], MobileNet [46], and DenseNet [47], often have multi-stage
designs, meaning that the network is divided into multiple stages in series. This multi-stage
design is often accompanied by downsampling and channel widening, making the feature
maps (i.e., the network midway outputs delivered between stages) lower in spatial resolution
and broader in the channel, and the contained information gradually abstracted and complex
[48]. Inspired by deep supervised nets (DSN) [34], we adopted amulti-stage bifurcation point
selection, setting the bifurcation points at the connection between each of the two stages to
obtain midway outputs in different stages. These midway features vary in resolution and
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Table 2 CIFAR-100 top-1
accuracy of ResNet-56 with
different mutual learning partners

Partner Partner Acc (%) ResNet-56 Acc (%)

– – 72.20 (baseline)

ResNet-56 74.87 74.87

ResNet-110 76.47 74.76

WRN-16-2 75.43 75.65

WRN-22-8 81.61 74.53

MobileNetV2 [53] 75.20 74.39

The first row of results represents the baseline of ResNet-56 that is
normally trained

channel, and are considered to contain different semantic information, which is naturally
differentiated and beneficial for asymmetric distillation.

Shallow-wide branch supplementation involves supplementing multi-stage bifurcation
points with shallow but wide structures as branches, which is slightly different from recent
studies. Recent studies tend to employ deep structures because depth2 is an important concept
in current network architecture studies. According to widely recognized design principles,
the network structure should be deep and sufficiently complex to ensure a good performance
because it is no longer limited by the gradient problem caused by depth. Insufficient depth
leads to poor nonlinear fitting ability, which has been proven to be a major reason why early
networks with shallow structures (e.g., AlexNet [49] and VGG [50]) did not perform well in
previous studies [34, 51].

Although the depth is important, it is not everything. In fact, increasing the depth does
not always lead to ideal performance improvements, which is also empirically proved by the
fact that ResNet-1202 is much deeper than ResNet-110 but the latter outperforms it on the
CIFAR-100 dataset [44]. Moreover, based on an analysis of existing methods and further
experiments, it is even harder to use deeper and more complex structures to obtain better
distillation results. In the experiment shown in Table 2, we let Resnet-56 networks perform
mutual learning with different partners following the settings of DML and evaluate their
classification accuracy on the CIFAR-100 dataset. Consequently, although these partners
vary in depth and performance, there is no significant difference between the distillation
results, indicating that simply increasing the depth is not feasible in branch design.

This infeasibility is due to the fact that the original task performance of an instance is not
necessarily synonymous with its capability as a teacher in knowledge distillation. Therefore,
original task performance is not the design goal for training-only instances either. Instead,
the real goal should be to strengthen training-only instances in terms of knowledge extraction
and transfer ability and to further improve the performance in teaching Fd . In extreme cases,
the ground truth label can be regarded as the output of an instance whose accuracy is always
100%, which is considered too difficult for a student network to learn [52].

Inspired by the effectiveness of wide residual networks [45] and previous study on the
efficacy of super-wide 1x1 convolutions in neural networks [54], we design a shallow-but-
wide branch structure, as shown in Fig. 4. It is a two-level bottleneck-like structure consisting
of intra- and inter-block bottlenecks. Within a block, we adopt a bottleneck structure similar
to that proposed in [44] with two 1 × 1 convolutions to reduce/restore channels and 3 × 3
convolutions inserted in-between,while another 1×1 convolution is always applied to connect

2 Depth is the number of layers in a structure, while width refers to the number of channels in each layer and
its feature map.
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Fig. 4 Shallow-Wide branch structure. a a three-bottleneck shallow-wide branch marked as {C1, C2, C3}; b
the detailed structure of a bottleneck block with the block width (bw) C

the input and the output as a shortcut, and we define the block width as the output channel
size of the 3× 3 convolution layer. Among the blocks, we choose a narrowed-after-widened
form in the channels instead of stacking the same or gradually wider blocks. The channels of
the feature maps are significantly widened by the first two blocks and narrowed back to an
appropriate level by the last block, which constitutes the inverse-bottleneck design between
the blocks.

To perform downsampling spatially without stridden convolutions, average pooling is
added in front of each block,which can be regarded as spatial feature fusion.With these blocks
stacked, the spatial resolution of the feature maps gradually decreases, and the channels first
increase and then decrease. The features that have undergone multiple aggregations become
more robust and expressive and are translated into the output of the instance by a fully
connected layer. In such a structure, the 1×1 convolutions play an important role in repeatedly
aggregating and mapping features, thus enhancing the point-wise feature representation in
the spatial dimension and providing a direct connection for the gradient between the input
and output.

Based on the multi-stage bifurcation points and shallow-wide branches, we can obtain a
multi-stage bifurcation instance group containing various instances with different trunks and
branches to generate knowledge for more effective supervision.
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3.4 Loss Function

The second subproblem involves the principle of interaction arrangement, that is, how to
arrange interactions to make better use of these instances for knowledge distillation. As
mentioned earlier, interactions are essentially mutual functions between instances whose
final forms are loss functions based on matrix operations with related optimization methods.
Therefore, this subproblem is equivalent to providing the appropriate loss function to present
the optimization target and depict the interactions between instances.

To fit the framework, an appropriate loss function is definitely asymmetrical, and we
attribute this asymmetry to two aspects of the loss function design. One aspect is the asym-
metry between the deployed and training-only instances. For the deployed instance, the
main task in training should be to learn as much as possible from the other instances. The
rest, which are only present in the training phase, need to play the role of good knowledge
providers. Through limited learning, they shall achieve appropriate performance and better
expressiveness while preserving relative independence to better provide the various types of
knowledge they have learned. In other words, the knowledge transfer flow among instances
is in a many-to-one form, in which one learns more than it teaches, whereas others teach
more than they learn.

The other aspect is the asymmetry among the training-only instances. Existing methods
generally adopt two methods to treat teacher networks: completely independent [1, 13] or
integrated into one [29, 31], both of which are symmetric. To avoid this issue, we need to
make these instances function differently according to their capability, which means that
some teach more, whereas others teach less.

Based on these two aspects, we can provide feasible two-level supervision and the corre-
sponding loss function form, in which all instances are under the supervision of the ground
truth label y by cross-entropy loss to ensure their basic validity, while the deployed instance
Fd is further supervised by all training-only instances,which is depicted by theKLdivergence
loss.

In particular, for the training-only instances, instead of utilizing them directly, we group
them and then apply the ensemblemethod to each group to obtain several supervision sources.
The ensemble method is a technique widely used in machine learning to integrate multiple
weak predictions into a stronger one. Although it has also been widely adopted in recent
studies on knowledge distillation, the problem is that in knowledge distillation, the predictions
obtained by integration are sometimes not reliable. The experiments in [13] have indicated
that an ensemble product integrated from too many instances may grow too strong such that
its probability of peaking at the true class is close to the ground truth label, thus hindering its
expressiveness and effectiveness in supervision. Therefore, we use grouping to control the
intensity and scale of the ensemble subtly.

Moreover, grouping renders the instances in different groups no longer interchangeable
because the function of an instance in the ensemble depends on the performance and number
of othermembers in the same group. For example, the function of an instancemay differ when
considered in isolation versuswithin a group of six instances.When an instance is alone, it can
directly provide all the knowledge it has learned to the deployed instance, whereas in a group,
its knowledge is comprehensively adjusted and optimized by other group members before
being transferred. This can lead to better performance in knowledge distillation, as the group
members can complement each other’s knowledge and help eliminate any weaknesses or
errors that may exist in individual instances. Through this ensemble-after-grouping strategy,
we can make instances in different groups contribute to supervision differently, and thus
asymmetric in the loss function (or abstractly speaking, interactions).

123



A Unified Asymmetric Knowledge Distillation... Page 15 of 25   172 

Regarding the grouping principle, we provide a simple yet effective grouping strategy in
which instances are divided into two groups: those who share trunks with Fd as a group
Sa and the rest as another group Sb. We then adopt the mean ensemble method, which is
formulated as follows:

p̂ = 1

n

∑

Fi∈S
Sof tMax(Fi (x)), (10)

where n is the number of instances in the set. In contrast to the common integration using pi ,
integrating f i first and then calculating pi can make it less sharp, thus alleviating the sharp
peak problems. More details and discussions of the grouping strategies can be found in the
extra study section.

After we obtain p̂a and p̂b calculated by formula (Eq.10), we use them as soft labels to
supervise Fd by adding their KL divergence with pd to the loss function.

In summary, the final loss function is as follows:

Ltotal =
N∑

i=1

LCE
(
pi , y

) + αLK L
(
pd || p̂a

) + βLK L
(
pd || p̂b

)
(11)

where α and β are the two hyperparameters for the weight trade-off.

4 Experiments

We selected two common image classification benchmarks to evaluate the effectiveness of
the proposedmethod: CIFAR-100 and ImageNet-1k. The details of the datasets, experimental
settings, results, and supplementary studies are as follows.

4.1 Experiments on the CIFAR-100 dataset

CIFAR-100 [55] is a widely used dataset containing 60k images drawn from 100 classes with
50k for training and 10k for testing; the image size of each picture is 32 × 32 pixels.

To perform the experiments on this dataset, we selected ResNet, a widely used network
architecture proposed in [44], as the deployed network Fd . We employed ResNet for the
CIFAR dataset, adopted a three-stage architecture, further declared two extra instances F1

and F2 using the multi-stage bifurcation method, and constructed a three-instance imple-
mentation called Ours-S. For the branches, we chose {32, 64, 16}3 and {64, 128, 32} as the
shallower and deeper ones, respectively. Then, we declared a new instance F3 that had the
same structure but no shared trunk with Fd and further bifurcated it into two extra instances
F4 and F5. Finally, we constructed a six-instance implementation Ours-M. Similarly, by
repeating the above steps, we obtained a nine-instance implementation Ours-L.

Following the grouping strategy, Sa included two instances, and Sb included 0, 3, and 6
instances.

The models were trained for 200 epochs with a starting learning rate of 0.1, which was
further divided by 10 at 100 and 150 epochs. We adopted the stochastic gradient descent
(SGD) method as the optimizer and set the weight decay and momentum to 0.0005 and

3 For convenience, we use a list of numbers enclosed by a pair of braces to represent this branch structure,
where the length of the list is the number of bottleneck blocks, and each number represents the corresponding
bottleneck block width.
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Table 3 Top-1 accuracy (%) comparison on the CIFAR-100 dataset

Method ResNet-20 ResNet-32 ResNet-56 ResNet-110 WRN-16-2 WRN-16-8

Baseline 69.02 70.86 72.20 73.60 72.53 79.49

KD 70.82 73.36 75.18 75.88 74.89 81.13

DML 70.69 72.97 74.87 75.89 74.91 81.32

KDCL-3 71.13 74.16 75.69 76.63 75.92 81.61

ONE 70.80 73.05 74.89 75.46 74.92 80.59

OKDDip 71.12 73.45 75.13 76.38 75.08 81.00

FKT 70.58 73.22 74.97 76.01 75.66 80.99

Ours-S 71.90 74.54 76.65 78.11 76.09 81.94

Ours-M 71.89 74.85 77.00 78.78 76.66 82.43

Ours-L 72.06 74.97 77.13 79.05 76.80 82.47

The compared results of ONE and OKDDip are reproduced by us using the author-provided codes, and others
are produced by our implementation according to the relevant papers. All results represent the average of six
runs. The best one of each column is in bold, and the second best is underlined

0.9, respectively; the batch size was 128. We adopted simple image preprocessing meth-
ods, namely random cropping with padding and random flipping, following [44]. For the
hyperparameters, we set α = 2, β = 2 and T = 3.

We compared our method with some classical and state-of-the-art online knowledge dis-
tillation methods, including deep mutual Learning (DML) [13], knowledge distillation via
collaborative learning (KDCL) [31], on-the-fly native ensemble (ONE) [28], online knowl-
edge distillation with diverse peers (OKDDip) [29] and filter knowledge transfer (FKT) [32].
Moreover, we provide the results of conventional knowledge distillation (KD) [1] with a
normally pre-trained teacher network (with the same structure as the student network Fd )
at temperature T = 3. The implementations of ONE and OKDDip were based on the codes
provided by their authors, while the other methods were reproduced by us according to pre-
vious studies. For persuasiveness, we selected well-matched settings for the hyperparameter
and ran every model six times to report the average. KDCL, ONE, and OKDDip were imple-
mented using three auxiliary networks. In particular, in the implementation of KDCL, we
reproduced the MinLogit version proposed in [31]. We also conducted experiments onWRN
[45] to verify the effectiveness of the wider basic network. Two basic networks WRN-16-
2 and WRN-16-8 were selected. The results presented in Table 3 and Fig. 5 suggest that
the traditional KD algorithm with only one teacher can achieve good performance after
temperature adjustment, which indirectly confirms our analysis of the bottlenecks in online
knowledge distillationmethods. Furthermore, our proposed distillationmethod, despite being
an online method, still outperforms existing online knowledge distillation methods and KD,
demonstrating the effectiveness of asymmetric distillation.

Specifically, we conducted more experiments to compare our proposed method with more
teacher-student methods such as FitNet [5], attention transfer (AT) [24], contrastive represen-
tation distillation (CRD) [26], strong teacher (DIST) [56], decoupled knowledge distillation
(DKD) [57], knowledge Review (ReKD) [14], mimicking features (MF) [15], regularizing
feature norm and direction (RFND) [16], self-supervised knowledge distillation (SSKD) [37]
and the hierarchical self-supervised augmented knowledge distillation (HSAKD) [38].
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Fig. 5 Top-1 accuracy (%) comparison on the CIFAR-100 dataset with the baseline, KD, and several online
mutual learning methods, corresponding to the Table 3

Since there is no explicit concept of teacher-student in our framework, we selected the six-
instance implementationM as our base, taking the student network as the deployed instance
Fd and the teacher network as the instance F3.

Additionally, the total number of training epochs was increased to 300, and the learning
rate decay steps correspondingly changed from [100, 150] to [150, 225].

Comparedwith othermethods,HSAKDuses four times the data samples in training (which
can be approximated as a special rotating data augmentation in which 0◦, 90◦, the 180◦ and
270◦ rotations of the same image are regarded as four subclasses). Owing to the difficulty
of using the 4× data directly, we introduced six new instances by multi-stage bifurcation,
three on Fd (student) and three on F3 (teacher), and arranged the interactions between these
instances and the 4× data samples. Thereby, based on the six-instance implementation M,
we extended the 12-instance implementationM+. The results presented in Table 4 and Fig. 6
highlight the competitiveness of our proposed method compared to other offline methods,
and demonstrate that the knowledge extracted through the shallow-wide branches and group
ensemble strategy is more suitable for teaching and knowledge transfer.

4.2 Experiments on ImageNet-1k dataset

ImageNet [58] is a much larger visual task dataset for more detailed and rigorous academic
use and is the official dataset used in the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC). We used its open-access sub-dataset, available on ILSVRC2012 and officially
named ImageNet-1k. It contains about 1.28 million images of 1000 common objects for
training and 50 thousand images for validation.

We selected ResNet-18 as the deployed network and applied a bifurcation at the end
of the second and third stages with {256, 512, 128} and {512, 1024, 256}, respectively,
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Table 4 Top-1 accuracy (%)
comparison on the CIFAR-100
dataset with some representative
teacher-student methods

Student ResNet-20 WRN-16-2 WRN-40-1
Teacher ResNet-56 WRN-40-2 WRN-40-2

DIST 71.72 76.02 74.70

DKD 71.96 76.24 74.77

FitNet 71.44 75.35 74.25

AT 71.52 75.31 74.42

CRD 71.77 75.99 75.21

ReKD 70.81 76.16 74.91

SSKD 71.02 76.01 75.89

MF 71.44 76.41 74.64

RFND 72.52 76.13 75.00

HSAKD 72.58 77.20 77.00

HSAKD(*) 73.73 78.67 78.12

Ours-M 73.24 77.05 76.01

Ours-M+ 73.80 79.16 78.35

All results are reproduced by us using the author-provided codes.
’HSAKD(*)’ denotes using a more powerful teacher according to the
paper. The best one of each column is in bold, and the second best is
underlined

Fig. 6 Top-1 accuracy (%) comparison on the CIFAR-100 dataset with some representative teacher-student
methods, corresponding to the Table 4

to form a three-instance version named Ours-SX. Additionally, we implemented two six-
instance versions. One introduced another ResNet-18 instance and applied the bifurcation
method while the other introduced a ResNet-34 instance as the bifurcation base. The former
is marked as Ours-MX and the latter as Ours-EX.

We compared the proposed method with KD [1], DML [13], AT [24], CRD [26], DKD
[57], ReKD [14], SSKD [37], and HSAKD [38]. The models were trained for 100 epochs
with a starting learning rate of 0.1, which was further divided by 10 at 30, 60, and 90 epochs
with a batch size of 128; the other training settings were the same as those used in [44].
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Table 5 Top-1 accuracy (%) comparison on the ImageNet-1k dataset

Baseline KD AT DML CRD DKD ReKD SSKD HSAKD Ours-SX/MX/EX

70.13 70.66 70.70 71.08 71.38 71.70 71.61 71.62 72.16 71.35/71.58/71.87

The best one is in bold, and the second best is underlined

Table 6 Study on instance
number

Group CSa CSb Acc (%)

Ours-M 2 3 77.00

(1) 0 3 76.28

(2) Ours-S 2 0 76.78

(3) Ours-L 2 6 77.13

(4) 0 6 76.86

(5) 2 9 77.32

The results shown in Table 5 indicate that our proposed methods are competitive with
the other methods. Similar to the results for the CIFAR-100 dataset, HSAKD adopts a data
augmentation method and has an advantage in the distillation results. Limited by the comput-
ing devices, we did not perform further experiments on ImageNet-1k for comparison under
rotating data augmentation.

4.3 Ablation Study

We conducted more detailed studies and analyses on the sensitive parts and hyperparameters
of the framework. The following experiments and results are based on theCIFAR-100 dataset,
and the implementations involved are mainly the Ours-S/M/L versions in Section IV.A and
their variants.

4.3.1 Instance Number

First, we examined the effect of the instance number. The control group was Ours-M of
ResNet-56 owing to its performance and moderate number of instances in Sa and Sb. We
added the following five experimental groups:

(1) Removing all instances in Sa ;
(2) Removing all instances inSb (i.e. Ours-S);
(3) Adding three more instances to Sb (i.e., Ours-L);
(4) Removing all instances in Sa and adding three more instances to Sb.
(5) Adding six more instances to Sb.

For simplicity, in the following, we use CS to represent the number of instances in set S.
The results are shown in Table 6.

It can be found that the performance of Fd will decline after removing the instance of any
group. Conversely, when the number of instances increases, the method can still benefit from
the increase reasonably. This result also indicates that different groups of instances contribute
differently to the distillation effect, with the instances in Sa having a greater impact on the
performance of Fd .
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Table 7 Study on
branch/individual

F1 F2 F4 F5 Acc (%) Params (M) Time (s)

77.00 3.11 39.02

� 76.89 3.32 43.97

� � 76.68 3.53 55.31

� � � 76.41 3.73 60.01

� � � � 76.28 3.94 68.83

The experiments have a hierarchical relationship, with the symbol “�"
indicating that the corresponding instances (F1, F2, F4 and F5) were
gradually detached and became individual instead of bifurcation. The
models are implemented using PyTorch 1.10 with CUDA 11.3. The time
period is measured on the Nvidia RTX 3090 GPU for an entire training
epoch of 50000 images

4.3.2 Multi-stage Bifurcation

To verify the effectiveness of the multi-stage bifurcation, we gradually replaced these shared-
path instances with independent networks. In this experiment, we used the six-instance
implementation Ours-M of ResNet56 as the baseline. For convenience, we denote the
instances in Sa by F1 and F2, while F3, F4 and F5 represent those in Sb where F1 and F2

are the bifurcation of Fd and F4 and F5 are of those of F3. Then, we gradually replaced
instances F1, F2, F4 and F5 with their individual replicas to form a series of experimental
groups in numerical order. The results are shown in Table 7. This time, we focus on not only
the accuracy but also the parameter amount and the time required for one complete epoch in
training.

As seen in the results, although individual instances introduced more parameters into
the framework, they did not effectively improve the performance of Fd , but significantly
increased the training time, which deviates slightly from the common belief that more param-
eters shall lead to better performance. Our explanation for the aforementioned results is that
bifurcation forces these shared trunks to be supervised by both sides and thus establish a
special interaction to obtain better gradient feedback than individuals.

In order to provide additional evidence, we conducted more experiments to observe the
performance of Fd and its two brother instances F1 and F2 under the only supervision of the
ground truth label. Fd is always supervised, while F1 and F2 can be supervised, resulting
in the following four experimental configurations:

(1) Only Fd is supervised;
(2) Fd and F1 are supervised;
(3) Fd and F2 are supervised;
(4) all of them are supervised.

The results shown in Table 8 indicate that the accuracy of Fd can be improved even by apply-
ing conventional cross-entropy to F1 and F2, which confirms the effectiveness of bifurcation
for better gradient utilization. Additionally, the results demonstrate the effectiveness of the
proposed shallow-wide branch design for smooth gradient propagation.

4.3.3 Grouping Strategy

As mentioned previously, there are many grouping strategies, and here we selected several
representative ones for evaluation. Since we need sufficient instances for different group
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Table 8 Study on multi-stage
bifurcation

Cross-entropy supervision Top 1 accuracy (%)
Fd F1 F2 of Fd

� 72.20

� � 72.63

� � 73.13

� � � 73.37

Table 9 Study on grouping

Grouping strategy Number of groups Acc (%)

{F1,F2} {F3,F4,F5,F6,F7,F8} (Ours-L) 2 77.13±0.13

{F1} {F2} {F3} {F4} {F5} {F6} {F7} {F8} 8 76.35±0.17

{F1,F2,F3,F4,F5,F6,F7,F8} 1 77.08±0.26

{F1} {F2} {F3,F4,F5,F6,F7,F8} 3 76.70±0.24

{F1,F2} {F3} {F4} {F5} {F6} {F7} {F8} 7 76.58±0.31

{F1,F2} {F3,F4,F5} {F6,F7,F8} 3 77.25±0.24

For clarity, instances within the same ensemble group are enclosed in “{}”

strategies, we selected the nine-instance implementation Ours-L of ResNet-56 with two
instances (F1 and F2) in Sa and six (F3 to F8) in Sb. We conducted an extra study using
the following strategies:

(1) Each as a group (eight groups in total);
(2) All as a group (only one group);
(3) Sa adopts (1) and Sb adopts (2) (three groups in total);
(4) Sa adopts (2) and Sb adopts (1) (seven groups in total);
(5) split three instances out of Sb to form group Sc (three groups in total).

As shown in Table 9, Strategy (1) and (2) indicate that an ensemble that is too weak and too
decentralized is unsuitable, while an ensemble that is too strong leads to the loss of implicit
distribution information in the predictions, also rendering it unsuitable. Better results can
be achieved by appropriately controlling the number and intensity of instance ensembles in
each group as Strategy (5).

4.3.4 Feature Representation

Furthermore, we conducted additional comparisons at the feature level. Specifically, we adopt
various methods to train ResNet-56, and then extract their feature maps before the final fully
connected layer. For better comparison, we utilize the t-SNEmethod for dimension reduction,
and the visualized results are shown in Fig. 7.

It can be found that, compared with the existing methods, our proposed method can
effectively expand the inter-class distance while simultaneously tightening the intra-class
samples, which results in better classification performance.
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Fig. 7 The visualization of feature representation after t-SNE dimension reduction on the CIFAR-100 dataset.
We randomly select 10 categories in the CIFAR-100 validation dataset for a total of 1000 samples. All results
are presented on a two-dimensional plane of the same scale for comparison

5 Conclusion

In this study, we proposed an asymmetric knowledge distillation method based on a deployed
network. To do so, we first proposed an extendable knowledge distillation framework and
introduced the concepts of instances and interactions as key components of the framework.
The framework aims to address the implicit symmetry of the distillationmodelwhile ensuring
simplicity and unity. We then discussed the training-deployment asymmetry of the task
under this framework and presented the pipeline of the asymmetric distillation method.
Additionally, we designed a multi-stage shallow-wide bifurcation method to complete the
pipeline, which consists of a multi-stage bifurcation point selection and a shallow-wide
branch supplement. Experiments on the CIFAR-100 and ImageNet-1k datasets demonstrate
that the implementation under this framework outperformsmany existingmethods in terms of
validation, which proves the effectiveness of our asymmetric distillation method and further
bolsters the rationality of the unified framework.

Notably, the proposed instance-interaction framework is not a specific model but a higher
abstraction of existing methods and models. As the framework for all other distillation mod-
els, it translates different distillation methods into a standard instance-interaction description
and maintains compatibility and simplicity, indicating that these methods, although seem-
ingly different, are unified from a higher-level perspective. With the help of this framework,
we decomposed the original distillation task into two subproblems, instance extension and
interaction arrangement, and demonstrated the importance of the asymmetry model, which
is the basis of the deployed instance-based asymmetric distillation method. In addition to the
case investigated in this study, we can reproduce most of the existing distillation algorithms
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under the proposed framework, precisely controlling for the difference between them within
a limited range (instances and interactions), and thus providing more intuitive and detailed
discussions and comparisons, which are of great significance to future studies in the field.

To achieve better outcomes with this framework, we need more theoretical and general
guidelines on the instance-interaction design to explicitly evaluate instance and interaction
performances, such as assessing the teaching ability of an instance. Moreover, the framework
requires more careful refinements to adapt to more complex input–output structures in tasks
beyond image classification, such as object detection or image reconstruction.

To overcome these limitations,more robust branches and reliable adaptive grouping strate-
gies should be explored and discussed to develop additional theoretical discoveries and
applicable implementations. Nonetheless, we hope that our proposed method can serve as a
starting point to encourage further and deeper theoretical and applied studies in the field of
knowledge distillation.
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