
Neural Processing Letters (2024) 56:144
https://doi.org/10.1007/s11063-024-11599-9

Novel GCNModel Using Dense Connection and Attention
Mechanism for Text Classification

Yinbin Peng1 ·Wei Wu1 · Jiansi Ren1,2 · Xiang Yu1

Accepted: 17 March 2024
© The Author(s) 2024

Abstract
Convolutional Neural Network (CNN) or Recurrent Neural Network (RNN) based text classi-
fication algorithms currently in use can successfully extract local textual features but disregard
global data. Due to its ability to understand complex text structures and maintain global
information, Graph Neural Network (GNN) has demonstrated considerable promise in text
classification. However, most of the GNN text classification models in use presently are typ-
ically shallow, unable to capture long-distance node information and reflect the various scale
features of the text (such as words, phrases, etc.). All of which will negatively impact the per-
formance of the final classification. A novel Graph Convolutional Neural Network (GCN)
with dense connections and an attention mechanism for text classification is proposed to
address these constraints. By increasing the depth of GCN, the densely connected graph
convolutional network (DC-GCN) gathers information about distant nodes. The DC-GCN
multiplexes the small-scale features of shallow layers and produces different scale features
through dense connections. To combine features and determine their relative importance, an
attentionmechanism is finally added. Experiment results on four benchmark datasets demon-
strate that our model’s classification accuracy greatly outpaces that of the conventional deep
learning text classification model. Our model performs exceptionally well when compared
to other text categorization GCN algorithms.

Keywords Densely connect · Graph convolution · Attention · Text classification

1 Introduction

The fundamental task of natural language processing (NLP) is text classification, which
assigns text to a certain category based on its content.As a result, text classification technology
has been extensively applied in a variety of domains, including opinion mining [1], spam
classification [2], news filtering [3] and others. Text preprocessing, text representation, and

B Jiansi Ren
renjsv@cug.edu.cn

1 School of Computer Science, China University of Geosciences, Wuhan 430078, China

2 Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences,
Wuhan 430078, China

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-024-11599-9&domain=pdf

 144 Page 2 of 17 Y. Peng et al.

text classification [4] are the three basic phases of text classification. The most crucial phase
is text representation.

In traditional text classification methods, bag-of-words features (such as TF-IDF [5] and
N-gram [6], etc.) are frequently utilized as text representation. Then, popular classifiers are
applied, including Naive Bayes (NB) [7], Support Vector Machine (SVM) [8], k Nearest
Neighbor (KNN) [9] and others. Deep learning technology has advanced quickly when it
comes to computer vision, speech recognition and other applications. It has also been effec-
tively used for text representation. Currently, deep learning based text classification models
mainly include: Convolutional Neural Network (CNN) [10, 11], Recurrent Neural Network
(RNN) (such as long short-term memory network (LSTM) [12], and gated recurrent neu-
ral network (GRU) [13]) etc. As transformer [14] has been paid more and more attention
by researchers, transformer-based text classification methods [15, 16] have also appeared.
Transformer’s self-attention mechanism can process sequential data including text well.

Graph Neural Network (GNN) [17], including graph convolutional network(GCN), has
recently drawn a lot of interest. As opposed to conventional deep text classification models
(like CNN and RNN), GNN/GCN describes the text as a collection of edge-connected word
networks rather than as a sequence. As a result, GNN/GCNmakes it simpler to remember the
text’s overall information when compared to CNN and RNN. Yao et al. [18] proposed Text-
GCN, which is the first time GCN is used for text classification. Text-GCN considers both
documents and words as nodes in a graph, thus constructing a graph for the whole corpus.
Solving the text classification task by classifying nodes that represent text, Text-GCN can
achieve good performance on the task with a 2-layer structure, but its performance does not
improve when the number of layers increases. Although existing GCN models have shown
better text categorization results, they still have certain issues:

• Shallow GCN networks cannot capture features between long-range nodes, while purely
stacking the GCN layers will cause shallow features (e.g., words, phrases) to be lost,
which is detrimental to text classification.

• Most of the existing GCN models build a graph for the whole corpus, which leads to the
overly large graph consuming a lot of memory resource. Also, new samples outside the
existing corpus cannot be predicted.

In this paper, aiming at the above problems, we propose a densely connected graph
convolutional network (DC-GCN) with attention to text classification. First, a deep graph
convolutional network (GCN) [19] is built for feature extraction. As the GCN network deep-
ens, the nodes tend to be smooth [20] and shallow featureswill disappear, which has a negative
effect on the classification result. To eliminate the effect, the dense connection method in
DenseNet [21] is used in our model. In addition, dense connections can also generate features
of different scales by multiplexing shallow features, which makes our model more friendly
to text features of different scales. Moreover, we use a new way to build the graph. Instead of
building the entire corpus into a single graph, we create a unique graph for each text. We also
change the original Text-GCN node classification task back to the document classification
task. Different from node classification, document classification needs to aggregate all the
node features before the final classification [22]. As a result, we create an attention module
that can both collect node information and determine the relative relevance of various node
information. In summary, the following are this paper’s main contributions:

• A new way of composition is devised to build a separate graph for each sentence.
• Extend dense connection to GCN network and propose a new DC-GCN network

framework.

123

Novel GCN Model Using Dense Connection... Page 3 of 17 144

• The network employs an attention mechanism to automatically determine the relative
relevance of various word nodes.

The portions of this essay are divided as follows: A study on text classification methods
is performed in the second section of the essay. The third section introduces the paradigm
put forward in this study. The experimental validation of the model put forward in this
study continues in the fourth section. The conclusion, which follows in the fifth section, will
summarize this paper’s findings.

2 RelatedWork

2.1 Text Classification

In traditional text classification methods, the three steps are usually followed. The first step
is text preprocessing, including word segmentation, data cleaning, removing stop-words, etc.
The next step is to extract artificial features from the document (or any other text unit). Some
popular artificial features include bag-of-words features and extended features. In the third
step, the classifier uses these features as input to make predictions. The most commonly
used classification algorithms include NB, SVM, KNN, etc. Although these traditional text
classification methods have achieved good classification results. They commonly have some
serious problems. First, manual feature extraction is time-consuming and laborious. Second,
artificial features extracted from one domain cannot be well migrated to a different domain
[23].

2.2 Deep LearningMethods

The issues with conventional text classification techniques can be resolved by using deep
learning in this area. Deep learning methods have high transferability and can automatically
extract text features. Currently, CNN, RNN, and their combination make up the classic deep
learning text categorization models.

With its great local feature extraction ability, CNN plays an irreplaceable role in text
classification. In shallow CNN [10, 24, 25] text classification models, a single-layer multi-
channel text classification model proposed by Kim et al. [10] achieved the best classification
performance at the time. Inspired by computer vision to improve the effect by deepening the
network depth, some researchers attempt to achieve better text classification performance by
deepening the depth of CNN. Therefore, a number of models based on deep CNN [11, 26]
are used for text classification. Johnson et al. [26] proposed a pyramid-shaped deep CNN
(DPCNN) text classification model that has become the representative model of deep CNN.
In addition, different from the traditional word level text classification models, Zhang et al.
[27, 28] proposed a char level text classification model, which encodes text with CNN at the
char level and achieves excellent classification performance.

RNN can determine the sentence’s long-term dependencies by using its chain structure.
As a result, more studies favor using RNN to extract textual features. For example, Tai et
al. [29] proposed a tree-structured LSTM to learn richer semantic features. Zhang et al. [30]
proposed a new type of LSTM, which combines LSTM with reinforcement learning, and
has been verified on benchmark datasets. Xu et al. [31] borrowed ideas from DenseNet, and
proposed a multi-channel RNN model for text processing.

123

 144 Page 4 of 17 Y. Peng et al.

To further enhance the performance of text classification, some research has combined the
benefits ofCNNandRNN.Lai et al. [32] used recursiveRNNbasedonCNNfor text encoding,
which reduced noise when traditional window CNN was used to extract features. Zhou et al.
[33] combined CNN and LSTM. They sent the local features that CNN had extracted into
LSTM for re-encoding so that LSTM could acquire long-term relationships from high-order
sequence data. Liu et al. [34] used LSTM to re-encode phrase features extracted by CNN in
both forward and reverse directions, which further improved the classification performance.

Due to the high performance of transformer in processing sequential information, a num-
ber of researchers have used it for text classification. Shi et al. [15] proposed a POS-aware
and layer ensemble transformer, which can utilize the parts-of-speech information explicitly
of text and combine output frommultiple encoder layers for classification. Liu et al. [16] pro-
posed a model that combines transformer and GCN, which can extract context and sequential
information.

2.3 Graph Convolutional Neural Network

Recently, with the success of GNN in action recognition tasks [35], some text classification
researchers have also turned their attention to GNN. Different from traditional deep learning
text classification models (CNN and RNN), GNN treats the text as a set of edge-related word
nodes and then learns the features of the nodes in a specificway. In 2016, Defferrard et al. [36]
first used GNN for text classification tasks and reached cutting-edge efficiency. Since then, a
lot of research has applied GNN to text classification. Peng et al. [37] converted the text into
a graph of words, which can learn features of word nodes through GCN. They proved the
advantages of graph convolution in collecting non-consecutive and distant semantics through
experiments. Yao et al. [18] constructed the entire corpus as a graph, and shifted the text
classification task into a graph node classification task. using GCN as a node propagation
approach. Based on Yao et al., Liu et al. [38] constructed graphs from sequence, syntax
and semantics, which further enriched the semantic information in the text representation.
However, it takes a lot of memory of the computer to form a graph of the full content.
Therefore, Huang et al. [39] didn’t construct the entire corpus as a graph, but constructed
a separate graph for each text. They verified the effectiveness of this approach through
experiments.

3 Methodology

The framework of our model is shown in Fig. 1. For an input text sequence S =
[w1, w2, w3, . . . , wn], graph building and word embedding ensure that the data can be input
to the GCN network and form initial features. Then through a densely connected deep GCN
for feature extraction. Text features of different scales are extracted. An attention mechanism
is designed to select the important features in the graph. Finally, a fully connected layer and
a softmax function are used as classifiers to obtain the final classification results.

3.1 Graph Building

Text-GCNconstructs a graph for thewhole corpus (includingdocument nodes andwordnodes
to be classified). Therefore, the constructed graph is very large and the model is consumed
by a large amount of memory. Moreover, it is not possible to classify new samples because

123

Novel GCN Model Using Dense Connection... Page 5 of 17 144

Fig. 1 Overall model framework

Fig. 2 The procedure for creating a graph. Assume that the sliding window’s size p is 2. The adjacency matrix
is shown in the figure on the right

the graph architecture and parameters depend on the existing corpus. To avoid the above
shortcomings, we build a separate graph for each document and then train the model. In this
way, a new graph can also be built for a new sample to complete its classification. A graph
G = (V , E) for every text is built separately. V = [w1, w2, w3, . . . , wn] represents the set
of all words in a text. The edge set E between vertices is determined by a sliding window
p, similar to the sliding window in Text-GCN. Therefore, we can get the adjacency matrix
A ∈ Rn∗n of graph G, where n is the number of word nodes. For example, given a sentence
S = [w1, w2, w3, . . . , wn], the sliding window p is 2. Then in the adjacency matrix, the
corresponding value of w1 and w2 is 1, the corresponding value of w2 and w3 is 1, and so
on. The specific process is shown in Fig. 2.

3.2 Word Embedding

Strings cannot be processed directly by a computer. In consequence of this, for a given string
S = [w1, w2, w3, . . . , wn], where n is the sentence length. We need to transform it into a
format that computers can understand. Word embedding is a fundamental technique that can
convert each word in the following statement into a fixed-dimensional word vector space:

123

 144 Page 6 of 17 Y. Peng et al.

Fig. 3 Graph convolution structure

xi = Ewi (1)

where wi ∈ RI represents the i − th word in sentence S. E ∈ Rd∗ I is a word embedding
dictionary matrix. I is the vocabulary size. d is the word embedding dimension. Therefore,
the output of this layer X = [x1, x2, x3, . . . , xn] ∈ Rn∗d is a set of node vectors.

3.3 Densely Connected Graph Convolution

3.3.1 Graph Convolution

The multi-layer GCN neural network is made up of the input layer, hidden layers, and the
output layer. It makes use of word co-occurrence associations as edges, word co-occurrence
vectors as nodes, and the adjacency matrix for learning node features. Figure 3 depicts the
structure of a graph convolution.

Specifically, for the node feature matrix X = [x1, x2, x3, . . . , xn] and adjacency matrix
A. Self-loops cause the diagonal elements of A to be set to 1. In addition, we also introduce
a degree matrix D ∈ Rn∗n , where each element Dii in D is:

Dii =
∑

j

Ai j (2)

Therefore, for a GCN with one layer, the learning process of node features is:

L(1) = relu
(
ÃXW0

)
(3)

where Ã = D−1/2AD−1/2, W0 is a trainable parameter.

3.3.2 Dense Connection

It can be seen from Sect. 3.3.1 that a single-layer GCN can only capture the features of
its neighboring nodes, Multi-layer GCN can capture the features of distant nodes through
multiple neighbor nodes, which can get the key features in a multi-node graph. Multi-layer
GCN stacking can be represented by the following formula:

L(m) = relu
(
ÃL(m−1)Wm−1

)
(4)

where m is the number of layers of GCN.

123

Novel GCN Model Using Dense Connection... Page 7 of 17 144

Fig. 4 Densely connect graph convolution structure. Li is the i-th GCN layer, and L1 is the input through the
first GCN layer

However, the shallow features can be lost as the network becomes deeper. Dense con-
nections can directly combine shallow features with deep features. Inspired by DenseNet,
we design a densely connected GCN network (DC-GCN), which can better capture node
features at longer distances by multiplexing the features of shallow GCN layers. Figure 4
displays the structure of DC-GCN.

Therefore, the m-th layer propagation process of DC-GCN is:

L(m) = relu
(
Ã

[
L(1) ⊕ L(2)⊕, . . . ,⊕L(m−1)

]
Wm−1

)
(5)

where ⊕ means splicing. Additionally, the prior GCNmodels only use the output of the final
layer, which allows for the retention of only the scale properties of the final layer. Unlike the
traditional method, we keep the results from each layer and used the intermediate features at
various scales as the final output:

hi = L(1)
i ⊕ L(2)

i ⊕ . . . ⊕ L(m)
i (6)

H = [h1, h2, . . . , hn] (7)

where hi is the i− th word node. Therefore, through this layer, we get the final feature matrix
H ∈ Rn∗(k∗m), where k is the dimension of GCN.

3.4 AttentionMechanism

The retrieved characteristics must be combined into a fixed-length vector to be classified.
For the feature matrix H = [h1, h2, h3, . . . , hn], not every feature contributes equally to
the task. As a result, we create the attention module to highlight their significance. For each
feature hi , we calculate an attention score ai , ai represents the importance of the feature to
the classification task:

ai = exp
(
eTi us

)
∑

i exp
(
eTi us

) (8)

ei = relu (Wshi + b) (9)

where Ws and us are trainable parameters, and b is the bias term.
Finally, we multiply the score on attention α = [a1, a2, a3, . . . , an] ∈ Rn and the feature

matrix H . Sum and get the finished text representation V :

V =
∑

i∈n
ai hi (10)

Through this layer, we get the final text representation V ∈ Rkm .

123

 144 Page 8 of 17 Y. Peng et al.

3.5 Classification

The classification module uses one fully connected layer. The purpose of this layer is to
calculate the probability distribution of the category according to the final text representation
V . This layer is represented by the following equation:

P = so f tmax(WV + b) (11)

where P is the category’s probability distribution. W is the trainable parameter, and b is the
bias term. so f tmax is the activation function.

3.6 Implementation

The graph G = (V , E) is created for each text individually, where the V =
[w1, w2, w3, . . . , wn] represents a text’s entire word list. The sliding window p is 2,
and the edge set E between vertices by the sliding window p. Then through the word
embedding layer, the output of this layer X = [x1; x2; x3; . . . ; xn] ∈ Rn∗d is a set
of node vectors. In the DC-GCN block, 5 GCN layers are connected densely for fea-
ture extraction, and the connection method is concat. To select task-friendly features for
text classification, we calculate an attention score ai for each feature hi , ai indicates
the feature’s significance to the categorization task. Then multiply the attention score
α = [a1; a2; a3; . . . ; an] ∈ Rn and feature matrix H . Sum and get the final text rep-
resentation V . V is sent into the classifier to get the judged label, which has a fully
connected layer and a softmax function. Algorithm1 displays the general flow of the proposed
procedure.

Algorithm 1 Proposed Model
Require: text sequence S = [w1, w2, w3, . . . , wn]
Ensure: predictions for the test dataset’s labels
1: Set batch size to 64, optimizer Adam (learning rate:1 × 10−3), epochs number n to 100;
2: Construct the graph G = (V, E) for every text separately;
3: Create train loaders and test loaders.
4: for i = 1 to n do
5: Obtain X = [x1, x2, x3, . . . , xn] by word embedding: xi = Ewi ;

6: Obtain L(m) = relu
(
Ã

[
L(1) ⊕ L(2)⊕, . . . ,⊕L(m−1)

]
Wm−1

)
with 5 DC-GCN layers;

7: Compute attention coefficient matrix: α = [a1; a2; a3; . . . ; an] ∈ Rn ;
8: Multiply attention score and feature matrix: V = ∑

i∈n ai hi ;
9: Obtain classification results by linear layer: P = so f tmax(WV + b);
10: end for
11: Using the trained model with the test dataset, predict labels;

4 Experiment

The experimental datasets, parameter settings, and comparative models are described in this
section. We will contrast and evaluate the results of the experiment for the proposed model
and the other models.

123

Novel GCN Model Using Dense Connection... Page 9 of 17 144

Table 1 Dataset statistics Dataset Train Test Class Avg.length

MR 7108 3554 2 20.39

R8 5485 2189 8 65.72

R52 6532 2568 52 69.82

Ohsumed 3357 4043 23 135.82

4.1 Dataset

This work chooses 4 benchmark datasets for experimental validation to assess the perfor-
mance of the proposed model on the task of text classification. They include: MR dataset1

[40], R8 and R52 dataset,2 Ohsumed dataset.3 Details of each dataset are as follows:

MR: A dataset of movie reviews with only one sentence per review. It contains 2 non-
intersecting categories.
R8: A portion of the 21578 dataset fromReuters. It contains 8 non-intersecting categories.
R52: A portion of the 21578 dataset from Reuters like R8. But it contains 52 non-
intersecting categories.
Ohsumed:A subset extracted from theMEDLINEdataset. It contains 23non-intersecting
categories.

Table1 displays comprehensive statistics for each dataset. We chose 10% of each training
set as the validation set at random.

4.2 Experimental Setup

4.2.1 Experimental Parameters

We use the Text-GCN parameter settings to determine our model’s parameter settings. The
channel number is 200, the batch size is 64, and the embedding size is 300. All models were
trained using a 0.001 learning rate. The other parameter settings as shown in Sect. 4.4.

4.2.2 Training Details

The model was trained with PyTorch and on an NVIDIA 1660Ti 6G GPU. For data prepro-
cessing, we referred to the processing method of Text-GCN. For the MR dataset, due to the
short text length, we did not remove any words. For other datasets, we only kept words with
a word frequency greater than 5 and remove stop words. For all datasets, we did lowercase
conversion.

We initialized the word embedding layer during training using Glove-3004 [41] pre-
training word vectors, and we allowed the parameters of the word embedding layer to follow

1 http://www.cs.cornell.edu/people/pabo/movie-review-data/.
2 https://www.cs.umb.edu/smimarog/textmining/datasets/.
3 http://disi.unitn.it/moschitti/corpora.htm.
4 http://nlp.stanford.edu/data/glove.6B.zip.

123

http://www.cs.cornell.edu/people/pabo/movie-review-data/
https://www.cs.umb.edu/smimarog/textmining/datasets/
http://disi.unitn.it/moschitti/corpora.htm
http://nlp.stanford.edu/data/glove.6B.zip

 144 Page 10 of 17 Y. Peng et al.

the model training. Adam [42] optimizer is utilized to train our network. If the correctness
of the testing set does not improve after 1000 iterations,training will be stopped. To avoid
overfitting the network, we utilized batch-normalization [43] and dropout, where the dropout
rate is set to 0.5.

4.3 ComparisonModels and Experimental Results

4.3.1 Comparison Models

We evaluated the proposed model to the recent models. The following information provides
a full comparison of the models:

CNN [10]: A convolutional neural network for text classification proposed by Kim. It
uses a single-layer multi-channel CNN for feature extraction.
LSTM [44]: A long short-term memory network for text classification proposed by
Huang et al. The final text representation is based on the LSTM’s last step state.
Bi-LSTM: Similar to LSTM. However, it uses LSTM for feature extraction in the past
and future directions of the text.
fastText [45]: A simple and effective text classification model proposed by Joulin et
al. It uses the average value of word vectors after word embedding as the final text
representation.
SWEM [46]: A simple word embedding model proposed by Shen et al. It uses a simple
pooling strategy to deal with word embedding.
LEAM [47]: A tag embedding attention model proposed byWang et al. It embeds words
and tags into a single space in order to categorize text.
Transformer [14]: A normal transformer for text classification.
GTG [16]: A transformer and graph convolutional network proposed by Liu et al. It
improves the semantic accuracy of word node features.
Graph-CNN-C [36]: AGCNmodel proposed byDefferrard et al. to perform convolution
operations on the word embedding similarity map. chebyshev filter is utilized.
Graph-CNN-S [48]: Similar to Graph-CNN-C, but a spline filter is employed.
Graph-CNN-F [49]: Similar to Graph-CNN-C, but a fourier filter is employed.
Text-Leve-GNN [39]:A new text classificationmodel based onGNNproposed byHuang
et al. It constructs a graph structure for each text and uses a globally shared edge weight
matrix.
Text-GCN [18]: A text classification model based on GCN proposed by Yao et al. The
problem of text classification is changed into a task of node classification by creating a
large graph of the entire corpus.
Tensor-GCN [50]: Similar to Text-GCN, but it constructs three graphs of the corpus
from three perspectives and then integrates the three graphs to obtain the final node
representation.
GC-GCN-BERT [51]: A GCN network combined with a gating mechanism proposed
by Gao et al. and initialized word vectors using BERT.
MP-GCN [52]: A GCN text classification network proposed by Zhao et al., which adds
a multi-head pooling module to GCN.
InducT-GCN [53]: A novel inductive graph-based text classification framework:
inductive graph convolutional networks for text classification.

123

Novel GCN Model Using Dense Connection... Page 11 of 17 144

Table 2 Accuracy of every comparison model across four datasets

Model MR R8 R52 Ohsumed

CNN 77.75 ± 0.72 95.71 ± 0.52 87.59 ± 0.48 58.44 ± 1.06

LSTM 77.33 ± 0.89 96.09 ± 0.19 90.48 ± 0.86 51.10 ± 1.50

Bi-LSTM 77.68 ± 0.86 96.31 ± 0.33 90.54 ± 0.91 49.27 ± 1.07

fastText 75.14 ± 0.20 96.13 ± 0.21 92.81 ± 0.09 57.70 ± 0.49

SWEM 76.65 ± 0.63 95.32 ± 0.26 92.94 ± 0.24 63.12 ± 0.55

LEAM 76.95 ± 0.45 93.31 ± 0.24 91.84 ± 0.23 58.58 ± 0.79

Transformer 76.56 ± 0.65 96.47 ± 1.32 92.12 ± 1.12 52.31 ± 0.94

GTG 77.24 ± 0.30 97.22 ± 0.10 94.46 ± 0.08 69.72 ± 0.13

Graph-CNN-C 77.22 ± 0.27 96.99 ± 0.12 92.75 ± 0.22 63.86 ± 0.53

Graph-CNN-S 76.99 ± 0.14 96.80 ± 0.20 92.74 ± 0.24 62.82 ± 0.37

Graph-CNN-F 76.74 ± 0.21 96.89 ± 0.06 93.20 ± 0.04 63.04 ± 0.77

Text-Leve-GNN – 97.80 ± 0.20 94.60 ± 0.30 69.40 ± 0.60

Text-GCN 76.74 ± 0.20 97.07 ± 0.10 93.56 ± 0.18 68.36 ± 0.56

Tensor-GCN 77.91 ± 0.07 98.04 ± 0.08 95.05 ± 0.11 70.11 ± 0.24

GC-GCN-BERT 76.25 ± 0.29 97.64 ± 0.05 94.61 ± 0.14 69.53 ± 0.21

InducT-GCN 77.16 ± 0.21 98.07 ± 0.13 94.89 ± 0.27 69.32 ± 0.18

MP-GCN 77.92 ± 0.10 97.85 ± 0.16 94.54 ± 0.08 70.27 ± 0.12*

Ours 78.10 ± 0.34* 98.54 ± 0.21* 95.95 ± 0.24* 69.21 ± 0.54

For each dataset, we perform 10 runs to determine the average accuracy. The result is the average accuracy ±
standard deviation. The highest accuracy of each dataset is marked in bold and *, and the second place is only
marked in bold

4.3.2 Experimental results

Table 2 contains the outcomes of the experimental comparison. It is evident that the proposed
model has delivered good results on four benchmark datasets. On the MR, R8, and R52
datasets, our model had the highest classification accuracy, while it placed third on the
Ohsumed dataset.

In detail, compared with classic deep learning text classification models such as CNN,
LSTM, and Bi-LSTM, our model produced the best outcomes on four datasets, with an
increase of 0.35% (MR), 2.23% (R8), 5.41% (R52) and 10.77% (Ohsumed), respectively.
This proves the effectiveness of graph convolution in text feature extraction, and it can extract
more effective semantic features than these classical deep learning models. Compared with
simple word embedding models such as fastText, SWEM, and LEAM, our model continued
to deliver the best outcomes on four datasets, with an increase of 1.15% (MR), 2.41% (R8),
3.01% (R52) and 6.09% (Ohsumed), respectively. Proposed model also shows better results
when compared with transformer-based model. Compared to GTG, our model improves
0.86% (MR), 1.32% (R8), and 1.49% (R52) on the three datasets, and reduces 0.51% only
on the Ohsumed dataset. This shows that graph convolution can extract deeper semantic
features based on original word embedding, thus effectively improving the classification
performance. Compared with Text-GCN, our model has achieved stable improvement on
four datasets (increased by 1.36% onMR, increased by 1.47% on R8, increased by 2.39% on
R52, increased by 0.85% on R52). This shows that it is more effective to construct a single
graph for each sentence than Text-GCN, which constructs a large graph for the whole corpus.

123

 144 Page 12 of 17 Y. Peng et al.

Compared with Text-Level-GNN with the same independent composition, our model has
achieved stable improvement on R8 and R52 datasets (increased by 0.74% on R8, increased
by 1.35% on R52), and lagged by 0.19% in Ohsumed dataset. Compared with InducT-GCN,
our model also has achieved improvement on three datasets (increased by 0.94% on MR,
increased by 0.47% on R8, increased by 1.06% on R52), and lagged by 0.11% in Ohsumed
dataset. Compared with other GCN models, the comparison results are similar to those in
InducT-GCN, it has a stable improvement in MR, R8 and R52 datasets, but lagged in the
Ohsumed dataset. This shows that our model has a better classification effect for short and
medium text, but the effect is relatively weak when dealing with long text (like the Ohsumed
dataset). The reason is that the context information of long text will be richer, and our model
is set to a fixed value of 1 when the adjacency matrix of the graph convolution is initialized,
and the rest of the graph convolution models are calculated by the PMI algorithm. So they
will contain richer weight information, and this advantage will be amplified when the text
is longer. For example, this is equivalent to our model not using pre-trained word vectors,
while the rest of the models do, even though the weights are changed during post-training.

Generally speaking, compared with the traditional non-GNN models, GNN models have
shown great advantages in the four datasets. Compared with the other GNN models, our
model is more advantageous in short and medium text.

4.4 Hyperparameter Research

4.4.1 Influence of Network Depth

The influence of network depth on classification accuracy is shown in Fig. 5. On short datasets
like MR, the model has the best effect when the depth is 3. On datasets such as R8, R52 and
Ohsumed, the best results are achieved when the depth is 5. This validates our assumption
that different lengths of text require different network depths. Moreover, the performance of
both long and short data sets degrades as network depth continues to increase after the best
results have been achieved. The reason is that deepening layers introduce unnecessary noise.

4.4.2 Influence of Window Size

The influence of window size on classification accuracy is shown in Fig. 6. It is evident that
when thewindow is relatively small (Thewindow size is 3 or 4), the difference in classification
accuracy is relatively small.However, once thewindow is too large, the classification accuracy
will decrease significantly. The reason is that the initial window affects the initial node
neighbor distance.When thewindow is small, the network continuously increases the distance
of the captured neighbor nodes as the depth increases. But once the initial window is too
large, the network will be unable to extract the information of short-distance nodes (i.e.
small-scale features). When deepening the network depth, it is easy to cause the extracted
distance range to exceed the sentence length, which increases noise and has a negative impact
on classification accuracy.

4.5 Exploring the Effectiveness of Attention

To investigate the model’s attention mechanism’s efficacy, we conduct ablation research on
the attention mechanism. The outcomes are displayed in Table 3. Compared with MaxPool

123

Novel GCN Model Using Dense Connection... Page 13 of 17 144

Fig. 5 The effect of network depth on classification accuracy

Table 3 Classification accuracy
of different pooling methods

Dataset MR R8

DC-GCN+MaxPool 78.25 98.26

DC-GCN+MeanPool 78.26 97.99

DC-GCN+Attention 78.53 98.36

andMeanPool, the Attention mechanism has improved the classification accuracy to varying
degrees.

5 Conclusion

In this research, a densely connected GCN network with attention is proposed for text clas-
sification. It starts by creating a unique graph for each text. Then add these independent
graphs to a GCN network with dense connections. The GCN network’s high degree of con-
nectivity allows the model to adaptably extract text features at various scales. The attention
module receives the extracted features and distinguishes the importance of each aspect when

123

 144 Page 14 of 17 Y. Peng et al.

Fig. 6 The effect of window size on classification accuracy

aggregating the features, thus improving the performance of the model. Experimental valida-
tion uses four benchmark datasets. The experiment results indicate that our model is highly
competitive when compared to other advanced methods, particularly for short and medium
texts.

Naturally, this is only a preliminary investigation into the use of graph neural networks
for text classification. In the future, we will study the application of graph neural networks
in text classification in more detail. For example, it is expected that the field of text classifi-
cation will use the currently popular graph attention networks and gated graph convolution
to significantly improve classification performance.

Acknowledgements This paper was supported by the Open Fund of Hubei Key Laboratory of Intelligent
Geo-Information Processing (ZRIGIP-201801).

Author Contributions Y.P.: Conceptualization, Methodology, Software, Writing—Original Draft, Writing—
Review and Editing, Visualization. W.W.: Conceptualization, Methodology, Software, Writing—Original
Draft, Writing—Review and Editing. J.R.: Supervision, Funding acquisition. X.Y.: Writing—Review and
Editing.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

123

Novel GCN Model Using Dense Connection... Page 15 of 17 144

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Souza E, Santos D, Oliveira G, Silva A, Oliveira AL (2020) Swarm optimization clustering methods for
opinion mining. Nat Comput 19(3):547–575

2. Shrivas AK, Dewangan AK, Ghosh S, Singh D (2021) Development of proposed ensemble model for
spam e-mail classification. Inf Technol Control 50(3)

3. He C, Hu Y, Zhou A, Tan Z, Zhang C, Ge B (2020) A web news classification method: fusion noise
filtering and convolutional neural network. In: 2020 2nd symposium on signal processing systems, pp
80–85

4. Minaee S, Kalchbrenner N, Cambria E, Nikzad N, Chenaghlu M, Gao J (2020) Deep learning based text
classification: a comprehensive review. arXiv preprint arXiv:2004.03705

5. Zhou Z, Qin J, Xiang X, Tan Y, Liu Q, Xiong NN (2020) News text topic clustering optimized method
based on TF-IDF algorithm on spark. Comput Mater Contin 62(1):217–231

6. García M, Maldonado S, Vairetti C (2021) Efficient n-gram construction for text categorization using
feature selection techniques. Intell Data Anal 25(3):509–525

7. Aksoy G, KarabatakM (2019) Performance comparison of new fast weighted Naïve Bayes classifier with
other Bayes classifiers. In: 2019 7th international symposium on digital forensics and security (ISDFS).
IEEE, pp 1–5

8. Guo H, Wang W (2019) Granular support vector machine: a review. Artif Intell Rev 51(1):19–32
9. Le L, Xie Y, Raghavan VV (2018) Deep similarity-enhanced k nearest neighbors. In: 2018 IEEE

international conference on big data (big data). IEEE, pp 2643–2650
10. Kim Y (2014) Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882
11. Conneau A, Schwenk H, Barrault L, Lecun Y (2016) Very deep convolutional networks for text

classification. arXiv preprint arXiv:1606.01781
12. Chang C, Masterson M (2020) Using word order in political text classification with long short-term

memory models. Polit Anal 28(3):395–411
13. Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of gated recurrent neural networks

on sequence modeling. arXiv preprint arXiv:1412.3555
14. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017)

Attention is all you need. Adv Neural Inf Process Syst 30
15. Shi Y, Zhang X, Yu N (2023) Pl-transformer: a pos-aware and layer ensemble transformer for text

classification. Neural Comput Appl 35(2):1971–1982
16. Liu B, Guan W, Yang C, Fang Z, Lu Z (2023) Transformer and graph convolutional network for text

classification. Int J Comput Intell Syst 16(1):161
17. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2008) The graph neural network model.

IEEE Trans Neural Netw 20(1):61–80
18. Yao L, Mao C, Luo Y (2019) Graph convolutional networks for text classification. In: Proceedings of the

AAAI conference on artificial intelligence, vol 33, pp 7370–7377
19. Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv

preprint arXiv:1609.02907
20. Yang C, Wang R, Yao S, Liu S, Abdelzaher T (2020) Revisiting “over-smoothing” in deep gcns. arXiv

preprint arXiv:2003.13663
21. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks.

In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708
22. Hu D (2019) An introductory survey on attention mechanisms in nlp problems. In: Proceedings of SAI

intelligent systems conference. Springer, pp 432–448
23. Kowsari K, Jafari Meimandi K, Heidarysafa M, Mendu S, Barnes L, Brown D (2019) Text classification

algorithms: a survey. Information 10(4):150

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2004.03705
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1606.01781
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/2003.13663

 144 Page 16 of 17 Y. Peng et al.

24. Chen Y, Xu L, Liu K, Zeng D, Zhao J (2015) Event extraction via dynamic multi-pooling convolutional
neural networks. In: Proceedings of the 53rd annual meeting of the association for computational linguis-
tics and the 7th international joint conference on natural language processing (volume 1: long papers),
pp 167–176

25. Xu J, Cai Y, Wu X, Lei X, Huang Q, Leung H-F, Li Q (2020) Incorporating context-relevant concepts
into convolutional neural networks for short text classification. Neurocomputing 386:42–53

26. Johnson R, Zhang T (2017) Deep pyramid convolutional neural networks for text categorization. In:
Proceedings of the 55th annual meeting of the association for computational linguistics (volume 1: long
papers), pp 562–570

27. Zhang X, Zhao J, LeCun Y (2015) Character-level convolutional networks for text classification. Adv
Neural Inf Process Syst 28:649–657

28. Zhang X, LeCun Y (2015) Text understanding from scratch. arXiv preprint arXiv:1502.01710
29. Tai KS, Socher R, Manning CD (2015) Improved semantic representations from tree-structured long

short-term memory networks. arXiv preprint arXiv:1503.00075
30. Zhang T, Huang M, Zhao L (2018) Learning structured representation for text classification via

reinforcement learning. In: Thirty-second AAAI conference on artificial intelligence
31. Xu C, Huang W, Wang H, Wang G, Liu T-Y (2019) Modeling local dependence in natural language with

multi-channel recurrent neural networks. In: Proceedings of theAAAI conference on artificial intelligence,
vol 33, pp 5525–5532

32. Lai S, Xu L, Liu K, Zhao J (2015) Recurrent convolutional neural networks for text classification. In:
Twenty-ninth AAAI conference on artificial intelligence

33. Zhou C, Sun C, Liu Z, Lau F (2015) A c-lstm neural network for text classification. arXiv preprint
arXiv:1511.08630

34. Liu G, Guo J (2019) Bidirectional lstm with attention mechanism and convolutional layer for text
classification. Neurocomputing 337:325–338

35. Yan S, Xiong Y, Lin D (2018) Spatial temporal graph convolutional networks for skeleton-based action
recognition. arXiv preprint arXiv:1801.07455

36. Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast
localized spectral filtering. arXiv preprint arXiv:1606.09375

37. Peng H, Li J, He Y, Liu Y, Bao M, Wang L, Song Y, Yang Q (2018) Large-scale hierarchical text
classification with recursively regularized deep graph-cnn. In: Proceedings of the 2018 world wide web
conference, pp 1063–1072

38. Liu X, You X, Zhang X, Wu J, Lv P (2020) Tensor graph convolutional networks for text classification.
In: AAAI, pp 8409–8416

39. Huang L, Ma D, Li S, Zhang X, Wang H (2019) Text level graph neural network for text classification.
arXiv preprint arXiv:1910.02356

40. Pang B, Lee L (2005) Seeing stars: Exploiting class relationships for sentiment categorizationwith respect
to rating scales. arXiv preprint cs/0506075

41. Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Pro-
ceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.
1532–1543

42. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980
43. Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal

covariate shift. arXiv preprint arXiv:1502.03167
44. Liu P, Qiu X, Huang X (2016) Recurrent neural network for text classification with multi-task learning.

arXiv preprint arXiv:1605.05101 (2016)
45. Joulin A, Grave E, Bojanowski P, Mikolov T (2016) Bag of tricks for efficient text classification. arXiv

preprint arXiv:1607.01759
46. Shen D, Wang G, Wang W, Min MR, Su Q, Zhang Y, Li C, Henao R, Carin L (2018) Baseline needs

more love: On simple word-embedding-based models and associated pooling mechanisms. arXiv preprint
arXiv:1805.09843

47. Wang G, Li C, Wang W, Zhang Y, Shen D, Zhang X, Henao R, Carin L (2018) Joint embedding of words
and labels for text classification. arXiv preprint arXiv:1805.04174

48. Bruna J, Zaremba W, Szlam A, LeCun Y (2013) Spectral networks and locally connected networks on
graphs. arXiv preprint arXiv:1312.6203

49. HenaffM,Bruna J, LeCunY (2015)Deep convolutional networks on graph-structured data. arXiv preprint
arXiv:1506.05163

50. Liu X, You X, Zhang X, Wu J, Lv P (2020) Tensor graph convolutional networks for text classification.
World Wide Web, Geneva

123

http://arxiv.org/abs/1502.01710
http://arxiv.org/abs/1503.00075
http://arxiv.org/abs/1511.08630
http://arxiv.org/abs/1801.07455
http://arxiv.org/abs/1606.09375
http://arxiv.org/abs/1910.02356
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1605.05101
http://arxiv.org/abs/1607.01759
http://arxiv.org/abs/1805.09843
http://arxiv.org/abs/1805.04174
http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1506.05163

Novel GCN Model Using Dense Connection... Page 17 of 17 144

51. GaoW,HuangH (2021)Agating context-aware text classificationmodelwith bert andgraph convolutional
networks. J Intell Fuzzy Syst 40(3):4331–4343

52. Zhao H, Xie J, Wang H (2022) Graph convolutional network based on multi-head pooling for short text
classification. IEEE Access 10:11947–11956. https://doi.org/10.1109/ACCESS.2022.3146303

53. WangK,HanSC, Poon J (2022) Induct-gcn: inductive graph convolutional networks for text classification.
In: 2022 26th international conference on pattern recognition (ICPR). IEEE, pp 1243–1249

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1109/ACCESS.2022.3146303

	Novel GCN Model Using Dense Connection and Attention Mechanism for Text Classification
	Abstract
	1 Introduction
	2 Related Work
	2.1 Text Classification
	2.2 Deep Learning Methods
	2.3 Graph Convolutional Neural Network

	3 Methodology
	3.1 Graph Building
	3.2 Word Embedding
	3.3 Densely Connected Graph Convolution
	3.3.1 Graph Convolution
	3.3.2 Dense Connection

	3.4 Attention Mechanism
	3.5 Classification
	3.6 Implementation

	4 Experiment
	4.1 Dataset
	4.2 Experimental Setup
	4.2.1 Experimental Parameters
	4.2.2 Training Details

	4.3 Comparison Models and Experimental Results
	4.3.1 Comparison Models
	4.3.2 Experimental results

	4.4 Hyperparameter Research
	4.4.1 Influence of Network Depth
	4.4.2 Influence of Window Size

	4.5 Exploring the Effectiveness of Attention

	5 Conclusion
	Acknowledgements
	References

