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Abstract
Point-level weakly-supervised temporal action localization aims to accurately recognize and
localize action segments in untrimmed videos, using only point-level annotations during
training. Current methods primarily focus on mining sparse pseudo-labels and generating
dense pseudo-labels. However, due to the sparsity of point-level labels and the impact of
scene information on action representations, the reliability of dense pseudo-label methods
still remains an issue. In this paper, we propose a point-level weakly-supervised temporal
action localization method based on local representation enhancement and global temporal
optimization. Thismethod comprises twomodules that enhance the representation capacity of
action features and improve the reliability of class activation sequence classification, thereby
enhancing the reliability of dense pseudo-labels and strengthening the model’s capability
for completeness learning. Specifically, we first generate representative features of actions
using pseudo-label feature and calculate weights based on the feature similarity between
representative features of actions and segments features to adjust class activation sequence.
Additionally, wemaintain the fixed-length queues for annotated segments and design a action
contrastive learning framework between videos. The experimental results demonstrate that
our modules indeed enhance the model’s capability for comprehensive learning, particularly
achieving state-of-the-art results at high IoU thresholds.

Keywords Action localization · Point-level weak supervision · Contrastive learning

1 Introduction

The goal of point-levelweakly-supervised temporal action localization(P-WSTAL) is to iden-
tify action instances within the temporal dimension of unprocessed videos using point-level
annotations. Point-level annotations refer to the practice of annotating only a single times-
tamp and action class for each action instance during training. In comparison to traditional
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weakly supervised temporal action localizationmethods that solely rely on video-level labels,
the additional cost is limited, yet the performance improvement is significant. Moreover, a
substantial body of empirical evidence suggests that point-level annotation information can
effectively reduce the performance gap between weakly supervised and fully supervised
approaches. [17, 21]

While point-level supervised methods integrate more action information into temporal
action localization, the sparse nature of point-level labels can still lead to issues such as incom-
plete action instance detection and inaccurate action boundaries. To address this challenge,
some researchers proposed sparse pseudo-labels basedmethod and dense pseudo-labels based
method. For example, SF-Net [21] mines sparse pseudo-labels through segment prediction
scores and score thresholds, while LACP [17] generates dense pseudo-labels through point
annotations and segment prediction scores. Furthermore, for instance, CRRC [9] proposes
generating correction weights to enhance the reliability of sparse pseudo-labels. However,
these existing methods primarily focus on enhancing action representations within individ-
ual videos, aiming to improve representation compactness, without effectively separating
the influence of scene information on action representation enhancement. Additionally, the
correction weights in these methods is typically targeted at segments with prediction scores
exceeding the average. This approach overlooks the potential for global optimization of cor-
rection weights across the temporal domain. Considering the sparsity of point annotations,
this limitation persists, and the issue of ensuring the reliability of dense pseudo-labels remains
inadequately addressed. Due to these aforementioned challenges, the model’s ability to learn
completeness still falls short.

To address the aforementioned challenges, we propose a point-level weakly-supervised
temporal action localization method based on local representation enhancement and global
temporal optimization called LRDP-Net. On the one hand, we leverage point-level label
based on local feature to enhance action representations, reducing the impact of noisy labels
on learning video content. On the other hand, we utilize prior knowledge from point-label
to perform global temporal optimization, thereby improving reliability of dense labels. And
prior knowledge refers to the action prototype features from point-label annotated video
segments, alongwith the count of actionswithin the video. These action prototype features are
then leveraged to compute weights to optimize classification results. The count of actions is
manifested in point-level classification loss, enabling themodel to assimilate details regarding
the quantity of action instances in the video. Specifically, our framework comprises two
modules: a Prior Knowledge-based Classifier Optimization(PKCO) Module and a Scene-
agnostic Action Representation Learning(SARL) module. Firstly, our approach introduces
scene-agnostic action segment information by leveraging point-level label from different
videos and performing contrastive learning between local feature of point-level label across
videos.Wemaintainmultiple fixed-length queues to save the features of point-level label from
different videos and dynamically update the queues during the comparative learning process.
In addition, considering point-level labels tend to be action key frames, we choose to use
point-level label features to initialize action representative features. Therefore, this further
enhances the compactness of action features and the robustness of action representative
features. Afterwards, based on these robust action representation features which are treated
as prior knowledge, we calculate the feature similarity between segments and different action
classes, obtaining weight values for all action classes, which are integrated to form the weight
of segment-action class probabilities. Theseweights are then used to refine the class activation
sequences, aligning them more accurately with the true segment categories. Through this
global temporal optimization operation we further enhance the performance of the classifier
and thereby improve the reliability of dense pseudo-labels.
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We summarize our main contributions as follows:(a)We propose a Scene-agnostic Action
Representation Learning module to improve the robustness of action representative features
by introducing prior knowledge of the same class of actions across different videos. (b)
On the basis of robust action representative features, we propose a Prior Knowledge-based
Classifier Optimization Module to generate corrective weights by measuring segment and
action representative features to improve the reliability of dense labels. (c)We validate the
effectiveness of our approach on THUMOS’14, GTEA, andBEOID datasets, achieving state-
of-the-art performance at high thresholds.

2 RelatedWorks

Point-level Weakly-supervised Temporal Action Localization.Different from the tradi-
tional WSTAL method [1, 7, 19], P-WSTAL provides single-frame labels for each action
instance. Moltisanti et al. [23] first introduced point annotations to the field of action
localization. SF-Net [21] then proposed a point-based mining algorithm to obtain sparse
pseudo-labels, partially alleviating the issue of limited annotation information. DCM [14]
chose to train a keyframe detector using annotated points and divide the entire video into
multiple segments using these key points, transforming the task from action localization in
a complete video to localization within several segments. LACP [17] introduced a strategy
for action completeness learning based on dense labels, with a focus on action integrity.
After obtaining dense labels, LACP primarily performed foreground-background separation
operations. CRRC [9], on the other hand, argued that previous pseudo-label mining methods
overlooked the relationships in the feature space and proposed a novel metric pseudo-label
mining algorithm. In some other methods aimed at enhancing the reliability of pseudo-labels,
Wang et al. [29]proposed SCAM, which integrates class activation mappings from multiple
information sources to enhance the accuracy of pseudo-labels. Chen et al. [3, 4]introduced
LSTI and STVS, where the former enhances pseudo-labels reliability by incorporating cross-
domain information, i .e., inter-frame information, based on intra-frame information, while
the latter achieves significant spatial and temporal interaction through a novel temporal unit,
enabling the network to better perceive temporal information.
ContrastiveRepresentationLearning.Contrastive representation learningprimarily involves
learning an embedding space based on internal patterns in the data, where related features are
pulled together while unrelated features are pushed apart through a noise-contrastive mech-
anism. In addition, there are also graph contrastive learning [31, 36]. CMC [28] introduced
a contrastive learning framework that maximizes the mutual information between different
views of the same scene. SimCLR [5] selects negative samples by using augmented views of
other items within a mini-batch. MoCo [11], on the other hand, introduces a memory bank to
dynamically update negative samples, overcoming the limitation of batch size and achieving
negative sample consistency.

3 ProposedMethod

In this section, we will provide an overview of the P-WSTAL problem definition and detail
the baseline setup. We will then delve into the specifics of the PKCO and SARL modules,
explaining their implementation in detail. Finally, we will discuss the optimization and infer-
ence processes of our model. Figure 1 illustrates the overall architecture of our framework.
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Fig. 1 Overview of the LRDP-Net framework. The green part is our baseline. The orange part is PKCO
Module, which computes the similarity between representative features of actions and snippet features to
obtain correction weights, thus optimizing the CAS sequence. The blue part is SARL Module, which utilizes
a memory bank initialized with annotated snippets to learn feature comparisons across videos, enhancing the
model’s representational capacity

3.1 Problem Formulation and Baseline Setup

Problem Formulation Following the previous works [9, 17, 21], we set up the problem
of point-level weakly-supervised temporal action localization: During the training process,
each training video can contain multiple instances of actions, as well as their corresponding
categories. Additionally, annotations and classifications are provided for individual frames
within each action instance. Concretely, given an arbitrary video V , its point-level annotations
is Apoint = {(

ti , yti
)}Mact

i=1 , where i-th action instance is labeled at the ti -th segment with its
action label yti , and Mact is the number of action instances in the input video. The yti ∈ R

C

is a binary vector and yti [k] = 1 if the i-th action instance contains the k-th action class,
whereC is the total number of action classes. But the video level label yvid ∈ R

C is multi-hot
vector, which could be readily acquired by aggregating the point-level label yti among the
temporal dimension.
Baseline SetupAs illustrated inFig. 1, ourmodel architecture involves dividing the input video
into segments, each consisting of 16 frames. These segments would be fed into a pre-trained
feature extractor to generate RGB and flow features. The fused feature F ∈ R

D×T is obtained
by concatenating the RGB and flow features, where D represents the dimension of the input
features and T denotes the total number of segments in the input video. The fused feature
F is then fed into a one-dimensional convolutional layer to obtain task-relevant enhanced
features Fem ∈ R

D×T . These features are subsequently input into a classification module
to generate segment-level class scores P ∈ R

T×C . In addition, following the approach of
other methods [17, 21], we introduce a attention module to discriminate between foreground
and background segments, resulting in background scores Pb ∈ R

T . After obtaining both
classification scores, we fuse them to generate the final score P̃ , i .e., p̃[c] = p[c] (1 − Pb).
The video-level prediction score p̂vid can be obtained by temporal top-k pooling, and fol-
lowing the common pipeline of state-of-the-art methods [9, 17], k = [ T8 ]. After obtaining
the video-level prediction results p̂vid , we calculate the video-level classification loss Lvideo

through a standard binary cross-entropy loss.
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Following previousmethods [17], loss Lscore and L f eat were computed using the obtained
dense pseudo-labels. The generation method for dense labels employs the optimal sequence
search algorithm and utilizes the outer-inner-contrast concept [27] to determine the com-
pleteness score of a sequence. Specifically, a substantial contrast between inner and outer
scores is expected for a complete action instance, whereas it is anticipated to be minimal for
a fragmented one. Furthermore, sequence generation proceeds through a search algorithm
based on greedy principles.

3.2 Prior Knowledge-Based Classifier OptimizationModule

To mitigate the problem of dense pseudo-label noise, we propose an effective prior
knowledge-based classifier optimizationmodule that leverages the relative distances between
representative features of actions and snippet features to determine the weights of action class
probabilities and optimize the prediction scores. Taking inspiration from the concept of DCM
[14], which suggests that annotated positions often correspond to action keyframes, we uti-
lize annotated snippets at the beginning of training to obtain reliable representative features
of actions. Specifically, the representative features for an action category c can be derived
by computing the average of the features from all video snippets categorized as c across the
entire dataset. as follows:

μini t
k =

∑

Fem∈D
∑

f emj ∈Fem
f emj ∗ 1

(
y j [c] == 1

)

∑

Fem∈D
∑

f emj ∈Fem
1

(
y j [c] == 1

) , (1)

where D denotes the all training video in datasets. f emj denotes the task-related feature Fem

of j -th labeled segment, y j [c] denotes the ground truth for the annotated segment of class c
on the j-th video segment. 1 is the indicator function, specifically representing that it returns
1 if the input result is True, and returns 0 if the input result is False..

Once the representative features of actions are initialized, we calculate the similarity
between video snippet features and the representative features of actions using the Euclidean
distance. The weight coefficients for different action class predictions are then determined
based on the comparison of similarities.

S j =

C∑

c=1
exp

(
−

∥∥∥F
(
f emj

)
− F (μc)

∥∥∥
2
/τ

)

C
,

ω j [c] =
exp

(
−

∥∥∥F
(
f emj

)
− F(μc)

∥∥∥
2
/τ

)

S j
,

(2)

where j represents video snippets, c represents action classes, τ is a temperature parameter,
S j is The average similarity between the j-th segment and all representative features of
actions, and F (·) is the L2 normalization function. The obtained weights are multiplied with
the previously computed final scores P̃ to optimize the sequence of class classifications and
Acquiring updated prediction scores P̂ .

p̂ j [c] =

⎧
⎪⎨

⎪⎩

1, if p̃ j [c]ω j [c] >= 1

p̃ j [c]ω j [c], otherwise

(3)
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Where p̂ j [c] represents the optimized predicted score for class c on the j-th video seg-
ment, p̂ j [c] and denotes the predicted score for class c on the j-th video segment. Following
the sequence optimization, we also conduct sparse pseudo label mining. As we expand the
action labels, our representative features of actions are continuously refined, resulting in
more accurate representative features of actions. Furthermore, the obtained pseudo action
labels are utilized for point-level classification loss calculation. This approach not only facil-
itates dynamic updates of the representative features of actions but also enriches the label
information.

3.3 Scene-Agnostic Action Representation LearningModule

In order to optimize prediction scores effectively, it is essential to construct precise represen-
tative features of actions and consider the substantial intra-action variation observed among
different segments of the same action. This calls for a compact representation of the model’s
action features. To tackle this challenge, we introduce a scene-agnostic action representation
learning module based on annotated segments. By learning representation contrasts among
annotated segments across videos, we enhance the compactness of action representation and
improve the robustness of representative features of actions. Scene-agnostic representation
learning and scene-specific representation learningmutually reinforce each other, with scene-
agnostic learning abstracting the characteristics of actions, thereby refining the robustness of
representative features of actions.

Specifically, we start by randomly initializing the fixed-length queues with the same
number of action classes, denoted as S ∈ R

L×C×D , where L denotes the number of features
stored per category in each queue, C denotes the total number of action classes, and D
represents the dimensions of the features. Prior to model training, we traverse the dataset and
perform random sampling of annotated data for each category in each video, replacing the
corresponding values in the original queues S. This initialization process, combined with the
inherent size limitation of sequences, ensures that the features in the resulting queues S are
scene-agnostic during the initial training phase.

Next, we introduce a feature matching task for the video model to enhance its capability
in representing instance features. We extract all annotated features X ∈ R

N×D from the
task-relevant enhanced features Fem and filter out features S p ∈ R

L×D corresponding to
segments of the same category, as well as features Sn ∈ R

L×(C−1)×D corresponding to
segments of different categories, based on the annotation information. Then the InfoNCE
loss is applied:

Ŝ p = − 1

N

L∑

i=1

S p
i ,

Lconstract = − 1

N

N∑

i=1

log

(
exp(cos(xi , Ŝ p)/τ)

∑
l,c exp(cos(xi , S

n
l,c))

)

,

(4)

where l = 1 ∼ L , c = 1 ∼ C − 1, Ŝ p denotes the average of features within the queues S
that correspond to the same category as the segment Xi .

In the loss function, only sequences that share the same category as the segment are
considered as positive samples, while others are treated as negative samples. The purpose
of using this InfoNCE loss is to guide the network in enhancing the representation of action
instances. Additionally, the update of sequences follows the rule of first-in-first-out within a
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queue. After calculating the loss, the new features X obtained during the process are updated
into the sequence S, enabling dynamic updates of the sequence while ensuring that feature
comparisons are conducted across videos.

3.4 Model Optimization and Inference

The overall training objective of our model is as follows.

L = Lvideo + λ1Lpoint + λ2Lconstract + λ3Lscore + λ4L f eat (5)

where λ∗ are weighting parameters for balancing the losses, which are determined empiri-
cally.

In the testing phase, similar to previous works, when an untrimmed video is inputted,
we first utilize thresholds and P̂vid to determine which actions are present in the video.
Then, we use thresholds to assess the predicted scores P̂ for each segment and select those
above the threshold as candidate segments. Subsequently, we combine all candidate segments
to generate localized action proposals. The confidence of each action proposal is set as its
inner-outer contrast score. To improve the accuracy of the action proposals, we utilize the non-
maximum suppressionmechanism to remove overlapping proposals to obtain the localization
results.

4 Experiment

4.1 Datasets

The THUMOS-14 [13] dataset consists of a total of 20 different action categories, covering
a wide range of daily life activities and sports. It includes 200 and 213 untrimmed videos
for validation and testing, respectively. The GTEA [18] dataset comprises 28 videos that
contain 7 fine-grained categories of daily activities. Each action is performed by four different
individuals. Following the setup in previous studies, we select 21 videos as the training set
and 7 videos as the test set. The BEOID [6] dataset consists of 58 videos and includes 30
categories. On average, each video contains 12.5 action instances. In model training stage,
we only utilize point-level annotations for training, and following mainstream methods [9,
17], out annotation information is sourced from the publicly available datasets of SF-Net.

4.2 Implementation Details

Following the current SOTA methods [8, 9], we adopt LACP as the baseline of our model.
Specifically, we employ a pre-trained I3D network [2] on the Kinetics-400 [2] for extracting
both RGB and flow features, which are represented as high-dimensional vectors of size 1024.
The input videos are divided into segments consisting of 16 frames each. During the training
phase, we utilize the Adam optimizer [16] with a learning rate set to 10−4. The loss function
weights in thismodel are set to:λ2 = 1.0,λ1 and other loss functionweights are set in the same
way as the baseline method. The length of memory bank S for each class-specific sequence
is 45(i .e., L = 45), and the temperature coefficient is 1.0(i .e., τ = 1.0). To ensure optimal
convergence, we train the model for 2500 epochs in each training iteration. Following the
standard protocol for temporal action localization, we calculate the mean average precisions
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Fig. 2 Visualization of qualitative results on the THUMOS14 dataset. We provide two examples with different
action classes: a SoccerPenalty and 2 ClenAndJerk. The green bar charts represent the ground truth, and the
blue bar charts represent the localization results of the LACP and LRDP-Net, respectively. The blue curve
represents the weights, the orange curve represents the CAS of LRDP-Net, and the magenta curve represents
the CAS of LACP

(mAPs) across various intersection over union (IoU) thresholds to evaluate the performance
of our action model.

4.3 Comparisons with the State-of-the-art

In Table 1, we compare several point-level weakly-supervised, weakly-supervised, and fully-
supervised methods on the THUMOS’14 benchmark, which has been widely used in recent
years. It is worth noting that fully-supervised methods require significantly higher annotation
costs compared to weakly-supervised approaches. In the comparison of point-level weakly-
supervised methods, our model outperforms the state-of-the-art approaches at high IoU
thresholds. Specifically, we achieve a 0.3% lead in mAP@IoU(0.3−0.7) and an impressive
0.8% lead in mAP@IoU(0.7). However, our method slightly lags behind CRRC’s perfor-
mance in other metrics, particularly in terms of performance at lower thresholds. Considering
the disparities in the problem-solving approaches between CRRC and our proposed method,
we posit that enhancing the reliability of sparse pseudo labels contributes significantly to
the model’s prowess in action recognition, thus resulting in better performance at lower
thresholds. On the other hand, improving the reliability of dense pseudo labels considerably
enhances the model’s ability to learn action completeness, thereby yielding superior perfor-
mance at higher thresholds. When compared to traditional weakly-supervised methods, our
approach consistently outperforms them, both at low and high IoU thresholds, highlighting
the effectiveness of incorporating point-level annotations.

Furthermore, when comparing with fully-supervised methods, our approach performs
competitively at low IoU thresholds but lags behind at high IoU thresholds. The main reason
for this discrepancy is the lack of precise frame-level annotations,which affects the learning of
action completeness. It is worth noting that our method achieves state-of-the-art performance
at high IoU thresholds under weak supervision. After incorporating Prior Knowledge-based
ClassifierOptimizationModule andScene-agnosticActionRepresentationLearningModule,
our model demonstrates improvements across various performance metrics, validating the
effectiveness of the proposed modules.

We also conducted experiments on theBEOIDandGTEAbenchmarks, as shown inTable 2
and Table 3. Our method surpasses the current state-of-the-art approaches on both datasets,
exhibiting significantly higher performance in terms of mAP@IoU(0.1−0.7).
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Table 2 State-of-the-art
comparison on GTEA

Dataset Method mAP@IoU(%)
0.1 0.3 0.5 0.7 AVG

GETA SF-Net [21] 58.0 37.9 19.3 11.9 31.0

Ju et al. [15] 59.7 38.3 21.9 18.1 33.7

Li et al. [20] 60.2 44.7 28.8 12.2 36.4

LACP [17] 63.9 55.7 33.9 20.8 43.5

Ours 65.2 57.3 35.2 20.9 44.7

Bold values indicate optimal performance
AVG denotes the average mAP at the thresholds 0.1:0.1:0.7

Table 3 State-of-the-art
comparison on BEOID

Dataset Method mAP@IoU(%)
0.1 0.3 0.5 0.7 AVG

BEOID SF-Net [21] 62.9 40.6 16.7 3.5 30.9

Ju et al. [15] 63.2 46.8 20.9 5.8 34.9

Liet al. [20] 71.5 40.3 20.3 5.5 34.4

LACP [17] 76.9 61.4 42.7 25.1 51.8

Ours 78.2 62.9 43.3 25.3 52.4

Bold values indicate optimal performance
AVG denotes the average mAP at the thresholds 0.1:0.1:0.7

Fig. 3 Hyper-parameter analysis of L in Eq. (4). The X-axis represents the length of queues and the Y-axis
denotes the average mAP IoU@(0.1:0.7)

4.4 Ablation Study

4.4.1 Effect of each Component

In Table 4, we perform an ablation study to investigate the contribution of each component.
It can be noted that the average mAP is improved by 0.7% and 0.5% with the utilization of
the PKCO and SARL modules, respectively. Furthermore, when the two modules are com-
bined, the average mAP shows a significant improvement of 1.4%. This indicates the mutual
promotion between modules, while also confirming the enhancement of action representa-
tive features accuracy by the SARL module. On another aspect, comparing the performance
across different IoU thresholds reveals that the performance improvement is not as significant
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Table 5 Model parameters and
runtime speed analysis

Module Parameters Inference Time FPS

LACP [17] 12.6 2.57ms 389.75

Ours 12.6M 2.64ms 378.47

at lower thresholds as it is at higher thresholds. This is due to the elevated impact of refined
prediction scores on the model’s capability for integrity learning, surpassing the effect of
compact feature representation on the model’s ability for action recognition, resulting in a
superior performance of the model at higher thresholds.

4.4.2 Effect of Class Activation Sequence Optimization

To verify the corrective effect of the weights proposed by the PKCO module on prediction
scores, we conducted visualizations of the weights and final prediction scores, as illustrated
in Fig. 2. Under the correction effect of the weights, our model not only avoids missing
action segments but also accurately recognizes complete actions. This results confirm the
effectiveness of the PKCO module in improving the accuracy of prediction scores.

4.4.3 Hyper-Parameter of Fixed-Length Queues L

The hyper-parameter of the fixed length queue during training is examined to investigate the
best choice for our SARLmodule, and the performance influence are depicted in Fig. 3. From
Fig. 3,we observe that themodel shows themost promising performancewhen L take 45. This
highlights that with longer sequences, the number of segments per action category increases.
Consequently, an excessive number of negative samples during loss function computation
hampers the model’s learning of positive samples, ultimately diminishing its generalization
ability.

4.4.4 Model Parameter and Runtime Speed

In both out proposed method PKCO and SARLmodules, we do not add any extra parameters
to be learned. Additionally, considering that there is no extra computational burden during
inference, our inference time has hardly increased. The parameters as well as the inference
speed are reported in Table 5.

4.5 Qualitative Comparison

We present a qualitative comparison with LACP in Fig. 2. It shows that our method achieves
more precise localization of action instances. In the action ClenAndJerk example, LACP
exhibits issues with the continuity of action detection, while ourmodel is capable of detecting
complete action instanceswithout fragmentation. In the actionSoccerPenalty example, LACP
directly misses one action instance. This experiment demonstrates that our model effectively
enhances the baseline’s capability for completeness learning.
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5 Conclusion

In thiswork,weproposes a novel framework for point-supervised temporal action localization
to tackle the challenge of reliable dense labeling. In particular, we derive corrective weights
by computing the similarity between representative features of actions and segments. These
weights are employed to adjust prediction scores based on the feature distance relationship,
thereby enhancing the reliability of dense labels. Furthermore, in order to reduce the impact
of scene information on action representation and improve the robustness of action repre-
sentative features, we introduce a novel loss that encourages feature similarity comparison
among annotated segments across videos. Finally, we validate the effectiveness of LRDP-Net
by conducting experiments that compared its performance against those of existing methods.
Ablation experiments demonstrated that each component of the proposedmethod contributed
performance improvements on P-WTAL.
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