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Abstract
3D CNN networks can model existing large action recognition datasets well in temporal
modeling and have made extremely great progress in the field of RGB-based video action
recognition. However, the previous 3D CNN models also face many troubles. For video
feature extraction convolutional kernels are often designed and fixed in each layer of the
network, which may not be suitable for the diversity of data in action recognition tasks. In
this paper, a newmodel calledMultipath Attention and Adaptive Gating Network (MAAGN)
is proposed. The core idea of MAAGN is to use the spatial difference module (SDM) and
themulti-angle temporal attention module (MTAM) in parallel at each layer of the multipath
network to obtain spatial and temporal features, respectively, and then dynamically fuses the
spatial-temporal features by the adaptive gating module (AGM). SDM explores the action
video spatial domain using difference operators based on the attention mechanism, while
MTAM tends to explore the action video temporal domain in terms of both global timing
and local timing. AGM is built on an adaptive gate unit, the value of which is determined
by the input of each layer, and it is unique in each layer, dynamically fusing the spatial
and temporal features in the paths of each layer in the multipath network. We construct the
temporal networkMAAGN, which has a competitive or better performance than state-of-the-
art methods in video action recognition, and we provide exhaustive experiments on several
large datasets to demonstrate the effectiveness of our approach.

Keywords Action recognition · Attention mechanism · 3D convolution · Temporal
modeling

1 Introduction

Video action recognition is becoming more and more crucial in many fields as everyone now
has a cell phone, and various video-related businesses are popping up. For example, action
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recognition can be applied to the review of massive videos uploaded on youtube, for video
surveillance of dangerous movements and dangerous behaviours, and even in areas such as
robotics motion technology.

Although deep learning has made tremendous progress in the accuracy of action recogni-
tion [1–6], the accuracy of some complex action data sets, such as Something-Something v1
[7], is still not satisfactory. Video clips contain two key pieces of information: spatial infor-
mation and temporal information, which are still not well modelled by existing methods.
Spatial information represents static information in a single frame scene, such as action enti-
ties, forms, objects, and other information. Temporal information represents the integration
of spatial information on multiple frames to capture the nature of the action.

In current deep learning approaches, action recognition is usually implemented through
two mechanisms. One common practice is to use two-stream network [4, 8, 9]. One stream is
located on RGB frames for extracting spatial information, and the other uses optical streams
as input to capture temporal information. With the addition of the optical flow module in
the two-stream network, this approach can greatly improve action recognition accuracy.
However, the optical flow is very expensive to calculate. Another common method is to learn
Spatio-temporal features from RGB images by 3D convolution [10]. 3DCNN can effectively
capture spatio-temporal information, and it is widely used in the field of video understanding.
However, It cannot obtain specific before and after action differences based on optical flow
information as in two-stream networks. Therefore, starting from [1], action recognition 3D
CNN networks have evolved from single-path towards multi-path. Similar to dual-stream
networks, 3DCNNmultipath networks usually use different sampling rates to acquire inputs,
which are fed into different paths to acquire spatio-temporal information separately, and
finally in aggregating multi-layer path features.

Previous work [1, 2, 11] has explored the importance of temporal and spatial features
on action categories and has made excellent contributions. However, multipath networks
still face many challenges. Some multipath networks simply extract temporal information or
spatial information at each level, which can lead to a decrease in the accuracy of actions at
different rates. And some multipath networks extract spatial features and temporal features
serially in each layer, which can lead to the loss of some original feature information in
the later extracted temporal features. Therefore, we propose MAAGN, which extracts both
temporal and spatial features in parallel in each layer of a multilevel network and adap-
tively and dynamically fuses spatio-temporal features. First, we propose a spatial difference
module (SDM) module that uses difference operations to reduce useless feature interference
without using optical flow images and without the extra computational effort required by
two-stream networks. Models such as TDN also propose frame difference operations, where
TDN uses interval binning features in k copies, e.g., k5, and subtracts them sequentially to
obtain frame difference features. In multipath networks, as stated in slowfast [1], due to the
different sampling rates, the network at all levels naturally distinguishes between spatial and
temporal semantic information in feature acquisition, so a small granularity feature differ-
ence operation may not yield better results. Unlike previous work, SDM directly employs
a coarse-grained feature slicing operation, followed by efficiently stacking convolutional
blocks using a multilayer neural perceptron, resulting in a feature difference operation more
adapted to multilevel networks. Second, we present amulti-angle temporal attention module
(MTAM) to focus on the video global focus features to determine the action’s classification.
Finally, we also propose a spatio-temporal adaptive gating module (AGM), which can adap-
tively fuse the temporal and spatial characteristics of each path in a multilevel network, and
it is unique in each level of the network. To demonstrate the effectiveness of MAAGN, we
conducted experiments on three datasets, Kinetics-400 and Something-Something V1&V2.
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The evaluation results show that our MAAGN can achieve a competitive or better perfor-
mance than state-of-the-artmethods in video action recognition.We also performed a detailed
ablation study to demonstrate the importance of spatial difference operation and temporal
attention and investigated the effect of the specific design of MAAGN. In summary, our main
contribution lies in the following four aspects:

• We design a spatial difference module based on the idea of RGB difference for reducing
the interference of repetitive information in videos and prove that the difference operation
is very effective in reducing the complexity of action recognition modeling.

• We design a new multi-angle temporal attention module for video action modeling and
demonstrate experimentally that 3DCNN networks can effectively use attention in action
recognition.

• We designed an adaptive gating module that can adaptively fuse the spatio-temporal
characteristics of the paths at each layer in a multipath network.

• We have conducted extensive experiments to demonstrate its effectiveness on several
action recognition datasets Kinetics-400 [8] and somethingV1&V2 [7]. We also provide
ablation experiments to fully and effectively demonstrate the degree of enhancement of
the model by each module.

2 RelatedWork

2.1 ActionVideo RecognitionMethod

Attempts at video action recognition, in general, can be divided into two categories, 2DCNN-
based [4, 5, 12, 13] or 3D CNN-based [1, 8, 14, 15] methods. Simonyan and Zisserman [4]
designed a two-stream network for RGB images as spatial streams and optical flow maps
as temporal streams. The two-stream model is applied to each frame input to extract optical
stream features and RGB image features, then aggregat each frame optical stream with
image features for fusion. However, since the two-stream model requires densely sampled
video and appears to be overwhelmed when dealing with long videos, many 2DCNNmodels
based solely on RGB images have been proposed. For example, TSN [5] presents to divide
the video into multiple snippets and randomly draw frames from each snippet for each
training to achieve sparse sampling to reduce the computational cost and then aggregate the
results for classification. Subsequent gradual improvements have proposed models related
to shifting modules similar to TRN [16] and TSM [12], replacing the mean pool operation
with interpretable relational modules to capture information in the time dimension better.
Among them, many networks employ RGB and feature difference operations. For example,
TSN [5] effectively demonstrated that RGB disparity is an important form of alternative
optical flow, and STM [17] used a feature disparity approach to model motion information
based on [5]. Neural networks are hierarchical, with different layers containing different
levels of semantics. However, action recognition networks are fixed over all layers and lack
the flexibility and ability to model the multi-level semantics contained in different layers.
To address this problem, GSN [13] and AAGCN [18] present a gating module to control
interactions in spatial-temporal decomposition. TDN [19] proposes to use the time difference
operator to design time difference models for better temporal modeling of short- and long-
term motion models.

In the second approach, the researchers transformed the 2D-CNN practice into a 3DCN
form or a variant of 2D convolution and 1D temporal convolution to better capture temporal
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information. C3D [20] is a VGG-based 3DCNN model that can learn features in the time
dimension from sequence frames compared to 2D networks. To better represent the motion
patterns, I3D [8] designed a Two-stream Inflated 3D ConvNets, combining the pre-computed
optical flowwith RGB images.Still, the computational cost grew exponentially as a result. 3D
CNN networks have very many parameters and, therefore also, require more data to train the
network. Due to this problem of 3D CNN networks, many researchers are exploring whether
all the convolution cores need to be 3D and whether it is possible to use 3D cores for one
part and 2D cores for the other part. Several variants try to reduce the computational cost of
3D convolution by decomposing 3D convolution into a 2D convolution and a 1D temporal
convolution[21, 22]. In addition, some approaches starting with SlowFast, have tried to use
the idea of two-stream networks to design multi-branch architectures to capture motion
or contextual information. Along this line, Non-local Net [2] and TPN [11] use carefully
designed temporal modules or multiple RGB inputs sampled at different FPS to get more
information. Some recent work has increased research on temporal modeling, Chen et al. [23]
and Yang et al. [24] use ATTENTION to fuse multiple pre-defined convolutional kernels to
obtain global temporal information. While the recently proposed TAM [25] uses an adaptive
temporal modeling approach, the temporal kernel parameters in TAM are decomposed into
position-sensitive adaptive weights and position-independent adaptive convolution kernels to
efficiently capture the dynamic video characteristics. TAda [26] modifies the 2D convolution
operation in the action video model and proposes that relaxing the temporal invariance of
convolution can effectively enhance the temporal modeling capability of convolution.

2.2 AttentionMechanism

It is well known that attention plays an important role in human perception [27–29]. The
attention mechanism tells you where to focus and enhances feature expression in key regions.
Starting from SENet [30], the dependency of channel features is established in 2D CNN
networks shown by its squeeze-and-excitation (SE) block.RAN [31] uses an encoder-decoder
style attention module to improve the top1 accuracy of large image classification datasets.
Then, CBAM, to enhance the connection between the channel domain and the spatial domain
in the 2D network, performs a maximum pooling operation and an average pooling operation
on the intermediate features separately and then combines the twoparts. In this case, the image
recognition task is enhanced by explicitly modeling the channel-spatial interdependence.
However, all the above networks are only applied in 2DCNN without considering critical
information such as temporal properties for video action recognition. We use the 3DCNN
multiple pyramid networkTPN [11] combinedwithCBAM [32] and introduce a new temporal
attention mechanism MTAM with a feature difference module SDM, which can make the
3D CNN network and attention mechanism compensate for each other to obtain better action
recognition classification results.

3 Multipath Attention and Adaptive Gating Network

In this section, we will start to present the technical details of our proposed network. As
illustrated in Fig. 1, the video is equally segmented into T Segments. Following [1], the

input F ∈ R
N× T

τ
×C×H×W is obtained at different sampling rates τ . We use ResNet as

the backbone network, and the i-th layer network extracts the basic features from the input
features Fi first through the backbone. In SDM, a difference operation is performed at the
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Fig. 1 The framework of MAAGN. The videos are sampled at different sampling rates to obtain multiple
sequences of image collections as multiple inputs to the multipath network. MAAGN uses ResNet as the
backbone to extract the underlying picture features in each network level so that each level obtains different
spatio-temporal semantic features. The spatial and temporal features are subsequently extracted in parallel
using a spatial difference module with a multi-scale temporal attention module. Then the spatio-temporal
features are dynamically fused by the adaptive gatingmodule. Finally, the features are quadratically aggregated,
and their categories are output by the classifier

Fig. 2 The overview of SDM. SDM combines a difference operation with neural networks to generate feature
maps

spatial level to remove the interference of unimportant information. At the same time, the
intermediate features are subjected to MTAM to extract the global action temporal features.
After that, AGM dynamically adjusts the gate unit so that each layer of the network gets
its own unique gate unit for better fusion of spatio-temporal features. Finally, each branch
feature is fused by the same weights to predict the classification result of its video. We will
then introduce the SDM, MTAM and AGM sub-modules and specific technical details.

3.1 Spatial DifferenceModule

We believe that blind stacking of convolutional layers after a certain level does not signif-
icantly impact action classification accuracy. Humans also analyze a specific activity by
capturing the before-and-after action differences to precisely determine the action type.
Therefore, our SDM module focuses on before-and-after feature differences to produce
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Fig. 3 The illustration of SDM. Our SDM operates based on intermediate feature differences and increases
module robustness through a multi-layer perceptron. Eventually, it is fused with the original input by the
residual operation to reduce noise interference

Fig. 4 The illustration of MTAM. Our MTAM proposes a multi-angle extraction Mask mechanism to enhance
temporal information extraction using multi-scale information

efficient feature extraction results. As shown in Fig. 2, SDM extracts the before-and-after
difference features from the video information just like humans judge an action.

Specifically, SDM performs the difference operation on the intermediate features, effec-
tively extracts the front and back feature variability. As illustrated in Fig. 3, given a central
feature X ∈ R

N×T×C×H×W , input to SDM, we separate them into X0, X1, where X0 is the
front half of the feature matrix and X1 is the back half. We use X1 minus X0 to extract the
spatial difference, and the result is called Fm , which can be formulated respectively:

X0 = X [:, 0 : T /2, :, :, :] (1)

X1 = X [:, T /2 : T , :, :, :] (2)

Fm = X1 − X0 (3)
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Fig. 5 Illustrating how the adaptive gating module work. In the multipath network training, a unique Gate unit
is generated for each part of the path, thus adaptively fusing the two feature maps of the input

We access the spatial information of Fm by maximum pooling, and the result is Fmax ∈
R

N× T
2 ×1×1×1. The Fmax are then forwarded to a multi-layer perceptron(MLP) to produce

our feature map Fmlp ∈ R
N×T×1×1×1. Note that the multilayer perceptron consists of two

3D convolutional layers and one ReLU layer, where the two 3D convolutional layers are
named W0 and W1, and the ReLU follows after W0 .To reduce the parameter overhead and
improve the extraction effect, W0 is set with a reduction factor r, while W1 is set with an
amplification factor 2r, where r is 16. It can be interpreted as:

Fmlp = MLP(Max(Fm))

= W1(ReLU (W0(Max(Fm))))
(4)

Feeding Fmlp to a Sigmoid activation to obtain the spatial mask F∗ as:

F∗ = σ(Fmlp) (5)

where F∗ ∈ R
N×T×1×1×1. In short, the final spatial feature can be represented as:

Y = X + X � (σ (MLP(Max(D(X0, X1)))))

= X + X � H(X)
(6)

3.2 Multi-angle Temporal AttentionModule

MTAMdiffers from SDM in that SDM focuses on removing features that have not changed in
the input video, while MTAM focuses on parts that have changed in the input video. Previous
work [30, 32–34] used average-pooling with max-pooling in the intermediate features to
gather important cues. Beyond the earlier works, we propose the MTAM module, which
can efficiently aggregate the average pooling features and the maximum pooling features
to capture sensitive information about the actions in the time dimension, shown in Fig. 4.
Compared with the previous multi-scale temporal module, MTAM adds Shared-MLP to the
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module, focusing on better combining local temporal features with global temporal features.
The use of MLP to scale down and then scale up the features can effectively superimpose
multiple convolutional blocks to obtain stronger local temporal information, which makes up
for the deficiency of SeNet’s insensitivity to temporal features. In addition, MTAM uses the
squeeze operation, which compresses the feature dimension and speeds up the computation
based on reducing the computation of the model. Thanks to the above operation, it is possible
to use a simple 1D convolution for feature aggregation.

A 3D maximum pooling layer processes the given intermediate feature input X ∈
R

N×T×C×H×W to obtain the global pooling information Fmax ∈ R
N×T×1×1×1. Feeding

Fmax to the shared-multi-layer perceptron(SMLP) is similar to SDM, but the amplification
and scaling factors are also r. After the shared network is applied to the Fmax , we generate
Ftemp1 ∈ R

N×T×1×1×1 using the sigmoid activation function. The above operations can be
summarized as:

Ftemp1 = σ(SMLP(Max(X))) (7)

Again, X is pooled by a 3D average pooling layer, producing our average pooling feature
Favg ∈ R

N×T×1×1×1. Favg is then convolved by the same SMLP, the SMLP parameter
sharing, to generate the second mask Ftemp2 ∈ R

N×T×1×1×1, which can be interpreted as:

Avg(X) = 1

H × W

H∑

i=1

W∑

j=1

X [:, :, :, i, j] (8)

Ftemp2 = σ(SMLP(Avg(X))) (9)

The Fmax and Favg obtained from the previous operation are squeezed separately to generate
F

′
max and F

′
avg , respectively, where F

′
max and F

′
avg dimensions are RN×T×1. Those are then

concatenated to produce a rough aggregation feature Fios ∈ R
N×2T×1. The association of

average and maximum features is further strengthened by using 1D convolution, where the
convolution kernel size is 3 × 1. Finally, applying the unsqueeze operation to restore its
original dimension and passing through a sigmoid activation function, we obtain our third
mask and the most important one, Ftemp3 ∈ R

N×T×1×1×1. The calculation of the third mask
can be represented as:

F
′
avg = Sqz(SMLP(Avg(X))) (10)

F
′
max = Sqz(SMLP(Max(X))) (11)

Ftemp3 = σ(Unsqz(Conv([F ′
avg, F

′
max ]))) (12)

Finally, after summing the three masks and then multiplying them with the original input,
the multi-scale mask temporal attention is generated. In short, combining Eq. 7, Eq. 9 and
Eq. 12, the temporal attention is computed as:

Y = X + X � (F(X) + G(X) + Z(X)) (13)

3.3 Adaptive GatingModule

Gatingmodules have been used before in previousworks for action recognition [13, 18]. They
have split a featuremap or transformed a featuremap to form a new featuremap and then gated
it with the original feature map. In AGM, there are two inputs, which are the spatial residual
attentional feature map and the multiscale temporal attentional feature map. In previous
attention networks, it is usual to serialize these two modules, the spatial attention module,
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and themulti-angle temporal attentionmodule. Due to this operation, it is impossible to avoid
that the feature maps after the extraction of spatial features lose much of the representation
of temporality. It is necessary to perform spatial feature processing operation and temporal
processing operation on the original featuremap separately. Therefore,we chose to parallelize
temporal feature extraction and spatial feature extraction. Parallelization allows obtaining
optimization at the programming language coding level and performing operations on the
feature tensor of multiple modules simultaneously, resulting in a shorter convergence time
of the model parameters while obtaining a higher utilization of computing power. Moreover,
when serialization is performed, the model is modified at the module level, and the scaling
cost is higher than that of parallel processing. In particular, whenwemodify amature network
model, if we want to add a newmodule, we need to modify the neighbouring modules, which
may impact the extraction effect of the neighbouring modules. The original feature tensor
shape extracted from the video is often fixed, and the parallelization process can obtain
better results with less cost in terms of scalability. In a multipath network, frames are fed
to each layer at multiple pre-defined rates and processed through convolutional blocks. As
the number of network layers deepens, each layer can receive various visual information at
the feature level. The slowest sampling rate will capture the most spatial semantic variation
depending on the sampling rate. In contrast, the fastest sampling rate will best capture the
subtle motion of the limbs. Thus, simple summation operations can impact the modeling
ability of multipath networks, which is also reflected in our experiments. Based on these
observations, we incorporate a gating module that adaptively and dynamically changes to
adjust the importance of individual features in different layers. A lot of work [23–25, 35]
related to adaptive convolution has been proposed recently. One of them, TAM [25], differs
in the model architecture by making changes to multiple convolutional modules of ResNet to
obtain global and local temporal information. We use adaptive modules to aggregate features
at the fusion layer to obtain better spatiotemporal information. The Dynamic convolution
proposed by Wu et al. [23] uses a convolutional kernel generated by a linear module based
on the information of the current moment to obtain features independently for each moment.
Unlike [23], AGM uses a gate module to generate convolution parameters that better fit
the temporal and spatial semantics using nonlinear modules. Thus, the temporal and spatial
feature weights are dynamically adjusted to combine the two parallel branches at the global
level effectively.

The structure of AGM is shown in Fig. 5, where Gate consists of a neural unit initialized
to all zeros, called alpha, and two convolutional layers, with the neural unit alpha solved in
a back propagation gradient update. The overall solving process of the Gate module can be
expressed as:

g = Conv((X � α) � Conv(x)) (14)

At the beginning of the network training, given the spatial features Sin ∈ R
N×T×C×H×W

and temporal features Tin ∈ R
N×T×C×H×W , the output of this module is simply summing

Sin and Tin and convolving them since the Gate module parameter α is 0. Input the features
from the upper module to the gate module, and adjust the weight of spatial features adaptively
according to the formula Eq. 14. After a period of training, the AGM can find that the spatio-
temporal featuremap is helpful for themodel to determine the action’s class, and each layer of
themultipath network dynamically acquires the unique gatemodule parameters for that layer.
Specifically, the second dimension of the temporal and spatial features are linked by the concat
operation, and they are convolved,whereConv1 is a 3D convolutionwith a convolution kernel
size of 3 × 3. And the spatio-temporal features are processed by normalization to enhance
the two feature map links. Subsequently, this spatio-temporal feature is manipulated using a
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Gate unit, where the parameters of the Gate unit are constructed based on the input features.
The formula is summarized as:

Y0 = Gate(Sof tmax(Conv(Concat(Sin, Tin)))) (15)

We add the gated features with the temporal features. Finally, the initial spatial feature map
and the gated temporal feature map are summed and convolved to obtain the gated temporal
feature map, where the size of Conv2 and Conv3 convolution kernels are both 3× 3, and this
process is computed as:

Y = Conv(Sin + Conv(Y0 + Tin)) (16)

4 Experiments

In this section, we show the experiment results of MAAGN on some relevant action recog-
nition datasets [7, 8]. First, we introduce the relevant datasets and the details of the specific
experiments. Next, MAAGN is compared with the state-of-the-art. Finally, we perform abla-
tion experiments for each part of the model and analyze them to show the role of each
module.

4.1 Dataset and Training Detail

4.1.1 Video Datasets

We evaluated MAAGN on three video datasets, Kinetics-400 and Something-Something
V1&V2, focusing on different action aspects. Kinetics-400 is an important benchmark in
behavior recognition. It has about 300k YouTube videos covering 400 categories with video
durations under 10s. The Kinetics-400 dataset contains activities from daily life, and some
classes are highly correlated with interactive objects or scene contexts.We train ourMAAGN
on training data (around 240k videos) and report the performance on validation data (about
20k videos). Something-Something is a large dataset created by crowdsourcing. It is a large
labelled dataset of actions between humans and some objects in everyday life. The dataset
focuses mainly on some complex movements, so action recognition should focus on motion
features rather than objects or scene contexts. V1 contains about 86K training videos and
11K validation videos for over 174 categories, while v2 has more videos, including about
220K videos for test and validation sets. We report performance on the validation sets of
Something V1 and V2.

4.1.2 Training

Our model integrates TPN [11] to add modules on top of this. Following the setting [1],
the input frames are sampled at a specific interval τ from a set of 64 consecutive frames.
As with most model setups [2, 38], each sample frame is randomly cropped so that it is
[256,320] pixels wide and high, and the image is flipped horizontally to increase the amount
of data and a dropout [39] of 0.5 to reduce overfitting. We use ResNet50 [40] pre-trained on
the ImageNet [41] dataset as the backbone part of the initialized model. In terms of model
parameters, the learning rate is 0.01, the momentum is 0.9, the weight decay parameter is
0.0001, and the batch size is 32. We adopted SGD as optimizer to trained the model on 4
GPUs, and each GPU was trained with 8 batch-size at a time. For Kinetic-400, the learning
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rate will decay by a factor of 10 at both 100 and 125 epochs and stop training at 150 epochs.
For Something-Something V1&V2, the learning rate will decay by a factor of 10 at 75 and
125 epochs, and training will stop at 150 epochs.

4.1.3 Inference

We implement two kinds of the testing scheme. The first way is three-crop [17, 42], which
was used in slowfast, where three random crop sizes of 256 × 256 were sampled from the
action video for inference. The other way is ten-crop [5], which is the method adopted by
TSN. The ten-crop samples five 224 × 224 pixel crops and flips them over for a total of ten
crops. We used three-crop to test the Kinetic-400 for the three datasets and employed the
ten-crop to test the Something-Something V1&V2.

4.2 Comparison with the State-of-the-Art

In this subsection, we will directly compare MAAGN with the previous State-of-the-Art
network [1, 12] on the Something-SometingV1 &V2 and Kinetics-400. It is well known that
an increase in the sampling frame rate is accompanied by an increase in computational effort
and a corresponding increase in the accuracy of the network. Therefore, we will use the
same sampling rate and the same test method on various datasets for comparison with other
networks.

The experimental results are summarized inTables 1 and 2.Wewill use center crop and one
clip on the Something-Something and three-crop on the Kinetics-400. Since the behaviours
in Something-Something V1& V2, you can hardly infer their specific categories from a
single frame, for example, pushing something from left to right. Therefore, we compare
the results on the Something-Something V1& V2 with some models focusing on temporal
modeling, such as TANet [25], TSM [12], etc., to demonstrate the effectiveness of our model
for temporal modeling. As shown in Table 1, we tested the accuracy of all models in the table
on the validation sets of SomethingV1&V2. Since [5] does not have a temporal modeling
module, it is logical that it has the lowest accuracy ranking,which illustrates the importance of
temporal modeling for the Something-Something. Among them, TSMuses the temporal shift
module, and TPN uses the multiple pyramid network which can fully utilize the information
of temporal features in the data. They can achieve much better accuracy than TSN, 45.6%
and 49.0%, respectively. Our MAAGN can performmultiscale mask extraction of the overall
temporal features due to the consideration of global temporal. Under the condition that
the test input is 8-segments, MAAGN can obtain the top performance on both V1& V2,
where the accuracy of Something-Something V1 reaches 50.4%, and the accuracy of 62.7%
can be obtained in V2 data. When the test input reaches 16-segments, MAAGN increases
the accuracy as the input frames increase, indicating that the performance shown in the 8-
segments condition does not reach the upper limit of themodel. Compared to TDN and TAda,
which use more frames as input, MAAGN still shows competitive results.

On the Kinetics-400 dataset, we compare many methods that have achieved excellent
results on this dataset. Analyzing the experimental results, the method using ResNet [40] as
the backbone can outperform the way using Inception [43, 44] as the backbone.With ResNet-
50 backbone and 32 frames input, our MAAGN outperformed R(2+1)D [14], Nonlocal-Net
[2], slowfast [1], and TSM [12] by 1.1%. In addition, with the change of backbone to ResNet-
101, MAAGN has an advantage over CorrNet [10] in terms of Top5 accuracy, although Top1
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Table 1 The validation set test results for Something-SomethingV1& V2

Method Backbone Frames×clips×crops V1-Top1 V1-Top5 V2-Top1 V2-Top5

TRN-multiscale [16] BNInception 8×1×1 38.9 – 48.8 76.7

ECO [36] BNINception 8×1×1 39.6 – – –

TSN [5] Resnet-50 8×1×1 19.7 – 30 –

TSM [12] Resnet-50 8×1×1 45.6 77.5 59.1 87.5

TPN [11] Resnet-50 8×1×1 49 78.5 62 88.4

GST [13] Resnet-50 16×1×1 48.6 76.9 62.6 88.9

TimeSformer-HR [37] TimeSformer 16×1×3 – – 62.5 –

TANet [25] Resnet-50 16×1×1 47.6 77.7 62.5 87.6

TDN [19] Resnet-50 (8+32)×1×1 52.3 80.6 64.0 88

TAda [26] Resnet-50 8×2×3 – – 63.8 87.7

MAAGN Resnet-50 8×1×1 50.4 79.7 62.4 89.6

MAAGN Resnet-50 16×1×1 51.9 80.4 63.1 90.8

Table 2 In comparison with
other state-of-the-art methods on
the Kinetics-400 validation set

Method Backbone Frames Top1 Top5

S3D-G [15] Inception 64 77.2 93

I3D [8] Inception 16 71.6 90

R(2+1)D [14] Resnet-50 16 73.9 90.9

Nonlocal-Net [2] Resnet-50 32 76.5 92.6

SlowFast [1] Resnet-50 32 77 92.6

TDN [19] ResNet-50 16 77.5 93.2

TSM [12] Resnet-50 16 74.3 93

TAM [25] ResNet-50 16 76.9 92.9

TADA [26] ResNet-50 16 76.9 92.7

Nonlocal-R101 [2] Resnet-101 32 77.7 93.3

SlowFast [1] Resnet-101 32 77.9 93.2

CorrNet [10] ResNet-101 32 79.2 93.3

MAAGN Resnet-50 32 78.1 93.2

MAAGN Resnet-101 32 78.9 93.6

Bold denotes top performance

accuracy is slightly lower than that of CorrNet. SlowFast plus Non-Local Net can achieve
better results than us in Kinetics-400 but requires much more computing power.

4.3 Ablation Study

We demonstrate ablation experiments on the Something-Something V1 dataset whit 8-
segemtns as input and the following experimental results. We show the Top1 performance of
the combination of individual modules and the composition of each module tested using the
ten-crop method with an input image of 224× 224 pixels.
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Table 3 Study on module combination: we compared the accuracy of the temporal module and spatial module
in series with that of the temporal module and spatial module adding AGM in parallel

SDM MTAM Top 1

(a) Serial combination module

50.80

� 51.30

� 51.40

� (first) � (second) 51.70

� (second) � (first) 51.60

SDM MTAM Summation AGM Top 1

(b) Parallel combination module accuracy study

� � � 51.10

� � � 51.90

SDM MTAM Summation AGM Speed on sthv1 Speed on sthv2

(c) Parallel combination module speed study

� � � 10.17 task/s 10.75 task/s

� � � 13.26 task/s 14.21 task/s

4.3.1 Study on Module Combinations

We started our ablation study by how to combine the two modules. We explored the perfor-
mance of eachmodule by addingSDMalone orMTAMalone on the samebaseline andfinally,
the two modules were serially integrated to validate the overall results. Table 3(a) shows the
top1 accuracy of each module on the Something-SomethingV1 dataset. We conclude the
following: (1) The best performance is achieved by extracting spatial information first and
then temporal information. (2) For video extracting temporal information alone works better
than extracting spatial information alone. In Table 3(b), we explored the parallel use of SDM
and MTAMmodules by using the summation operation and adding AGM for the integration
of the two modules, respectively. In Table 3(c), we calculate the average speed of the model
trained on sthv1 and sthv2 using four Nvidia 3080 graphics cards. Comparing Table 3(a),
(b) with (c) , we empirically obtained the following results: (1) The effect of spatio-temporal
features obtained by simple parallel summation is much less than that obtained in the serial
mode. (2) Using the adaptive gate unit can effectively increase the accuracy in the parallel
mode. (3) In parallel mode, spatial and temporal features can be computed simultaneously,
thus speeding up the task and reducing the time spent on model training while effectively
utilizing the graphics card’s computing power.

4.3.2 Study on SDM

We explore how the extracted spatial residual information is aggregated with the original
features. As shown in Table 4, we used the following methods: (1) spatial attention points
multiplied by original features, (2) spatial attention plus original features, (3) spatial attention
points multiplied by original features plus original features, and (4)spatial attention points
minus original features. From the experimental results of each SDMmethod,method (3) is the
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Table 4 Study on SDM: we
compared different
implementations of SDM,
including extracting different
ways of combining spatial
attention

Fusion Top1

F � H 50.90

F + H 51.10

F + F � H 51.30

F − H 50.70

Table 5 Study on MTAM: we
compared different
implementations of MTAM

MaxPool AvgPool ISO Top1

� 51.10

� 50.90

� � 51.20

� � � 51.40

Table 6 Study on model
parameters: we compared the
parameters under different model
compositions

Method Params Top1 on sthv1

TPN (our baseline) 33.62 M 50.8

TPN + SDM 34.51 M 51.3

TPN + MTAM 34.84 M 51.4

MAAGN (Serial) 35.76 M 51.7

MAAGN (Parallel) 36.19 M 51.9

best. Different differential operations with larger granularity in multipath networks, such as
subtracting the first half of the featuremap from the second half of the featuremap, can obtain
a good correspondence between the front and back feature points. Thanks to these operations,
the redundant static information in the video can be effectively removed to prevent overfitting
of the convolution parameters, and the dynamic visual information can be better captured by
reweighting the features. As the results show, SDM can use approach (3) to further widen the
weight gap between the important and unimportant features after performing the difference
operation to weaken the trivial action features. Furthermore, we find that method (4) is the
least effective, which proves from the side that the extracted attentional features are the most
sensitive points in the feature map.

4.3.3 Study on MTAM

In the MTAM, it is necessary to perform a maximum pooling and an average pooling of the
original features to extract important information. We verified the impact of the following
four methods on the accuracy of MTAM: (1) maximum pooling only, (2) average pooling
only, (3) average pooling and maximum pooling, (4) average pooling with maximum pooling
and aggregation of both, generating multiple masks. As shown in Table 5, we can conclude
that the fourth approach can maximize the accuracy of the module, from 51.2% to 51.4%, far
exceeding the original effect. Therefore, we conclude that combining average pooling and
maximum pooling can extract a greater degree of video feature information. Although it is
possible to enhance the temporal field of perception by stacking convolutional blocks and
network layers to capture multiple visual temporal information, this approach is too cumber-
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Fig. 6 The input of the motion recognition network contains RGB images and optical flow images

some, and the visual temporal information obtained needs to be richer. A better approach is to
extract the information by multi-scale and large-scale algorithms. The combination of mean
pool and maximum pool algorithms can extract video feature information deeper, which
confirms the effectiveness of larger receptive fields for modeling global and local temporal
sequences. The map extracted with multiple masks has more sensitive features.

4.3.4 Study on Model Parameters

As shown in Table 6, we compare the changes in the number of parameters after assembling
each module with the baseline. All models use ResNet50 as the backbone, and the rest of
the parameter settings are kept the same. As the results show, the classification effect of the
baseline model is effectively enhanced with the enhancement of a not-too-large number of
parameters.

4.4 Advantage Analysis

In this subsection, we visualize the effect of MAAGN and use it to demonstrate that
MAAGN is indeed superior to other networks.

4.4.1 MAAGN Versus Traditional Two-Stream Network

The input requirements for two-streamnetworks [4] are very strict, requiring both optical flow
andRGBmaps, as shown in Fig. 6, which is unfavourable for practical industrial applications.
As a comparison, MAAGN only needs to be the RGB image as input, the left part of a and
b in Fig. 6, which makes more sense for practical applications.
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Fig. 7 Visualization of activation maps with GradCAM. Activation maps are generated by TSN, TSM, and our
MAAGN for the action of playing basketball. In contrast to TSN and TSM, we can be noticed that MAAGN
can focus on the action subject and ignore the irrelevant background

Fig. 8 MAAGN versus TSM on Something-Something v1 dataset with significant improvement in 10 classes.
The backgrounds of the two action examples (a) and (b) are unchanged, the main change is the position of
the hand and the object, and the classification of these two actions requires strong temporal modeling. When
humans recognize these two actions, they hardly focus on the background, only on the subject of the action.
Compared with TSM, we can see that the classification effect for these similar action categories is better than
it

4.4.2 MAAGN Versus Other RGB-Based Networks

We used GradCAM [45] to visualize the class activation map of the three models, TSN [5],
TSM [12], and our MAAGN, for the class playing basketball, and the results are shown in
Fig. 7. The results of this visualization demonstrate that (1) TSN [5] focuses on the wrong
motion regions in the video, (2) TSM [12] can localize the athletes but is still not accurate
enough, and (3) ourMAAGN can effectively localize more and more accurate regions thanks
to MAAGN’s removal of spatial noise and global temporal modeling.
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4.4.3 MAAGN Versus TSM

MMAGNcan effectively improve the accuracy ofmotion judgment for a group ofmovements
that are similar but in opposite directions. For example, throwing a ball upward and dropping
it downward, with the hand under the ball on top, is throwing up and vice versa for dropping
both foci mainly on the position of the hand and the ball, without caring about the background
or the face. As shown in Fig. 8, on the Something-Something V1 dataset, our best results
on some categories requiring strong temporal modeling are significantly better than previous
methods [46–48].

5 Conclusion

In this paper, we propose a new video action recognition network named MAAGN. The
main contribution of MAAGN is to present two modules, and one is SDM which captures
the information of video before and after frames in space using a difference operation. The
other is MTAM which captures the information of global video in time sequence using a
temporal attention mechanism. In addition, we applied the attention mechanism to multiple
path networks and empirically demonstrated that the attention mechanism works very well
on them. We also demonstrate that adaptive fusion can efficiently aggregate spatio-temporal
features and reduce training time under parallel operation. In the future, we will continue
to expand MAAGN in video understanding, possibly focusing on operations such as the
temporal residual module or improving the efficiency of the model for application to real
industrial scenarios.
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