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Abstract
Learning a robust affinity graph is fundamental to graph-based clustering methods. However,
some existing affinity graph learning methods have encountered the following problems.
First, the constructed affinity graphs cannot capture the intrinsic structure of data well. Sec-
ond, when fusing all view-specific affinity graphs, most of them obtain a fusion graph by
simply taking the average of multiple views, or directly learning a common graph from mul-
tiple views, without considering the discriminative property among diverse views. Third, the
fusion graph does not maintain an explicit cluster structure. To alleviate these problems, the
adaptive neighbor graph learning approach and the data self-expression approach are first
integrated into a structure graph fusion framework to obtain a view-specific structure affinity
graph to capture the local and global structures of data. Then, all the structural affinity graphs
are weighted dynamically into a consensus affinity graph, which not only effectively incor-
porates the complementary affinity structure of important views but also has the capability
of preserving the consensus affinity structure that is shared by all views. Finally, a k–block
diagonal regularizer is introduced for the consensus affinity graph to encourage it to have
an explicit cluster structure. An efficient optimization algorithm is developed to tackle the
resultant optimization problem. Extensive experiments on benchmark datasets validate the
superiority of the proposed method.
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1 Introduction

Recently, multiview data have become very common in many real-world applications [1, 2].
For example, in image data processing, an image can be presented by diverse features, such
as HOG, SIFT, and LBP [3]. In biometrics, a person’s identity can be recognized by faces,
fingerprints, and sounds [4]. Since diverse feature views can depict diverse perspectives
of the same object, sufficient research results have demonstrated that the performance of
multiview learning will be substantially improved by excavating complementary information
of multiview data [5].

Multiview clustering (MVC), which divides multiview data into different groups by effi-
ciently integratingmultiple feature views to guarantee that highly similar instances are divided
into the same group while dissimilar instances are divided into different groups, is a funda-
mental task of multiview learning [6, 7]. In general, most existing MVC methods employ
graph-based models since the similarity graph can effectively characterize the data structure
[8]. Typically, these methods first construct a view-specific affinity graph by using some sim-
ilarity metrics and then fuse all the constructed view-specific affinity graphs into a consensus
affinity graph. Finally, a spectral or graph algorithm is applied to realize clustering [9, 10],
or the clustering result can be obtained directly from the fusion [11].

The clustering performance of graph-based methods is largely dependent on the quality
of the constructed affinity graph [12]. To learn a better affinity graph, various affinity graph
construction methods are proposed, and typically, they are divided into three categories [13].
The first category is to predefine a similarity graph as an affinity graph [14]. Here, some
outstanding issues are as follows: (1) The construction of an affinity graph is easily affected
by the choice of similarity metric, neighborhood size, and scaling parameter, all of which are
data-dependent and noise-sensitive [15]; (2) The constructed affinity graph cannot capture
the underlying graph structure of the data well. The second category is the adaptive neighbors
graph approach, which assigns adaptive and optimal neighbors to each data point according to
local distances to learn an affinity graph [16–18]. It does not need to specify the neighborhood
size, and the similarity among data points is adaptively learned from the data. Generally, the
data points with a smaller distance have a higher affinity value, while the data points with a
larger distance have a lower affinity value. This approach is an effective way to preserve the
local manifold structure [15]. The third category is the data self-expression approach, which
reconstructs each data point by a linear combination of all other points in the same subspace
and then generates a coefficient matrix to build the affinity graph [19, 20]. This approach is
an effective way to capture the global structure [21].

In general, the underlying data structures are unknown in advance which poses a challenge
for constructing an affinity graph that can best capture the essential data structure [22].
Because both the local and global graph structures are crucial for uncovering the graph
structures of data, they can provide each other with possible complementary information to
boost the performance. Therefore, it is necessary to integrate the adaptive neighbor graph
approach and the data self-expression approach into a unified graph structure learning model
to learn a view-specific affinity graph that can not only automatically learn the similarity
information from the data but also capture the local and global structures of the data.

Given that diverse views admit the same underlying cluster structure, we can obtain the
consensus information from the fusion of diverse views to better exploit the cluster structure
[23]. Therefore, after obtaining the view-specific affinity graphs, we need to consider how
to effectively fuse them. Simply taking the average of them [24] or directly generating a
common graph from them [25] fails to consider the discrimination of different views. Kang
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et al. [26] proposed a new dynamically weighted graph fusion method to integrate multiview
information, and each view can be treated as perturbations of a consensus graph. Usually, the
closer it is to the consensus graph, the larger the weight that is assigned. This graph fusion
method can merge different views into a consensus graph, distinguish the contributions of
different views and explore the heterogeneous complementary information effectively.

An ideal consensus affinity graph should have between-cluster affinities that are all zeros,
while the inner-cluster affinities are not zeros, namely, it should obey the block diagonal
structure, which facilitates good clustering performance [27–30]. Unfortunately, in real-
life noisy applications, the consensus affinity graph may only have a weak block-diagonal
structure, and the number of target blocks in it is difficult to control. Thus, we need to
consider how to build a robust block diagonal representation for the consensus affinity graph.
Because the k-block diagonal regularizer is a method to pursue a block diagonal structure
directly containing k blocks [27], it encourages the affinity graph to obey the desired k-block
diagonal structure, and therefore, it is essential to employ the k-block diagonal regularizer to
improve the quality of the consensus affinity graph.

In summary, a novel MVCmethod, namely consensus affinity graph learning via structure
graph fusion and block diagonal representation (CAGL-SGBD) for multiview clustering, has
been proposed, and the main contributions of this work are as follows:

(1) Adaptive neighbor graph learning and the data self-expression model are integrated
into a unified structure graph fusion framework that can capture the local and global
structures of the data, be robust to noise, and guide the construction of the initial affinity
graph for each individual view.

(2) All the constructed structure affinity graphs are weighted into a consensus affinity graph
that not only incorporates the complementary affinity structure of important views but
also encourages the learned consensus affinity graph to have the capability of preserving
the consensus affinity structure that is unanimously admitted by multiple views.

(3) The k-block diagonal regularizer is introduced for the consensus affinity graph to force
it to have an explicit cluster structure.

(4) Our method integrates structure graph fusion, consensus affinity graph learning, and
k-block diagonal regularization, which helps to obtain an enhanced consensus affinity
graph thatmaintains the graph structure characteristics ofmultiviewdata and is beneficial
to clustering.

The rest of the paper is organized as follows. Section 2 briefly introduces the preliminaries
that are necessary for the research. Section 3 gives a detailed description and formulation of
CAGL-SGBD. Section 4 designs an efficient optimization algorithm, and some analyses are
presented. Section 5 presents numerical experiments. Section 6 concludes our work.

2 Preliminaries

In this subsection, we first present notations used throughout the paper, and then briefly
overview some technologies that are necessary for this work.

2.1 Notations

In this paper, matrices are denoted as boldface capital letters, e.g., X. Vectors are written as
boldface lower-case letters, e.g., x, and scalars are written as lower-case letters, e.g., x . For
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an arbitrary matrix X, its (i , j)-th entry is written as xi j , its j-th column is written as x j , and
its i-th row is written as xi . For x , its i-th entry is written as xi . The transpose and inverse
of matrix X are denoted as XT and X−1 respectively. The data matrix of the v-th view is
denoted as X(v). ‖X‖22 and ‖X‖2F represent the l2-norm and Frobenius norm of matrix X,
respectively. The identity matrix is denoted by I.

2.2 Local Structure Graph Learning

Recently, the adaptive neighbor graph approach has been widely employed in graph-based
clustering to capture the localmanifold structure [18, 21, 31]. Given nmultiview observations

{[x (1)
i ; · · · ; x (nv)

i ]}ni=1 from nv different views, x (v)
i denotes the i-th data point of the v-th

view, and X(v) = [x (v)
1 , x (v)

2 , · · · , x (v)
n ]. Z(v) is the affinity matrix of the v-th view.The

adaptive neighbors graph approach can be expressed as

min
Z(v)

nv∑

v=1

n∑

i, j=1

‖x (v)
i − x (v)

j ‖22z(v)
i j

s.t . Z(v)1 = 1, Z(v) ≥ 0, (1)

In Eq. (1), the constraint term is added to guarantee that the sum of each row of Z(v) is
one and to ensure the probability property of Z(v) [32]. The affinity matrices learned from
Eq. (1) will capture the local manifold structure adaptively. Since the local structure is very
prominent for its information discovery ability, and generally, it is believed to be better than
the global structure [33], therefore, exploring the local structure graph learning is a widely
recognized graph clustering method [34, 35]. However, it is susceptible to noise and ignores
the global structure of data.

2.3 Global Structure Graph Learning

The data self-expression approach is an effective way to automatically capture the global
structure of data [22], and its basic idea is that each data sample can be expressed as a linear
combination of other samples, and the combination coefficient indicates the similarities
between samples [26]. The multiview self-expression model can be expressed as

X(v) = X(v)Z(v) + E(v), v ∈ {1, · · · , nv} (2)

where X(v), Z(v), and E(v) stand for the data matrix, coefficient matrix, and error matrix for
the v-th view, respectively. The coefficient matrix Z(v) characterizes the similarities among
samples, a low-rank constraint can be applied to it to capture the global data structure [36],
and a l2,1-norm can be imposed onE(v) to address the sample-specific outliers and corruptions
[37]. Thus, the global structure graph learning can be formulated as

min
Z(v),E(v)

nv∑

v=1

‖Z(v)‖∗ + λ

nv∑

v=1

‖E(v)‖2,1

s.t . X(v) = X(v)Z(v) + E(v),Z(v) ≥ 0 (3)

Equation (3) is also a typical objective function of subspace clustering based on the self-
representation model, and the coefficient matrix Z(v) learned from it can capture the global
structure information of the v-th view. Many existing subspace clustering methods are based
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on the above model to cooperatively learn the low-rank representation and the affinity matrix
to improve the clustering performance [38, 39].

2.4 K-block Diagonal Regularizer

The k-block diagonal structure of the affinity graph can promote perfect data clustering. For
an arbitrary affinity matrixH ∈ Rn×n(H ≥ 0,H = HT ), its corresponding Laplacian matrix
is LH = Diag(H1) − H, The k-block diagonal regularizer [30, 40] is defined as

‖ H‖
k

=
n∑

i=n−k+1

λi (LH) (4)

where λi (LH) (i ∈ {1, · · · , n}) are the eigenvalues of LH in descending order.
The regularizer in Eq. (4) has an important property, namely, the multiplicity k of the

eigenvalue 0 of LH equals the number of connected components (blocks) in H, which will
make the affinity graph have exactly k connected components for data with k clusters. Thus,
the k-block diagonal regularizer can not only facilitate the affinity matrix to be a block
diagonal structure but also control the number of blocks [29, 30].

3 ProposedMethod

3.1 Structure Graph Fusion

To explore amore flexible localmanifold structure and a better global structure representation
capacity and to take full advantage of the possible complementary information provided by
them, we integrate Eqs. (1) and (3) into a unified structure graph fusion framework to jointly
learn a view-specific structure affinity graph, which can be formally expressed as

min
Z(v),E(v)

nv∑

v=1

{Tr(X(v)L(v)
Z X(v)T ) + λ1‖Z(v)‖∗ + λ2‖E(v)‖2,1}

s.t . X(v) = X(v)Z(v) + E(v), Z(v)1 = 1, Z(v) ≥ 0 (5)

where λ1 and λ2 are trade-off parameters. L(v)
Z denotes the Laplacian matrix, L(v)

Z = D(v)
Z −

(Z(v)T + Z(v))/2, D(v)
Z is a diagonal degree matrix, and its diagonal elements are

∑
j (z

(v)
i j +

z(v)
j i )/2. The first term in Eq. (5) ensures that each entry in Z(v) can directly describe the

local similarity between data points in the v-th view, and the second term encourages Z(v)

to follow the low-rank property to capture the global structure of the data. The third term
addresses sample-specific corruption and outliers.

Thus, the structure affinity graph Z(v) learned from Eq. (5) can not only characterize the
affinities between data points in the v-th view but also preserve the local and global structures
of the data in the v-th view.

3.2 Consensus Affinity Graph Learning

To learn an optimal consensus affinity graph, we fuse all the structure affinity graphs into
a consensus affinity graph S based on two intuitive assumptions [26]: (1) Each Z(v) can be
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regarded as a perturbation of S; (2) The closer Z(v) is to S, the larger the weight of the v–th
view is assigned. Thus, we have

min
S

nv∑

v=1

w(v)‖S − Z(v)‖2F

s.t . si1 = 1, si j ≥ 0, w(v) ≥ 0 (6)

where w(v) is the weight of the v–th view and represents the importance of the v–th view;
the larger w(v) is, the greater the importance of the v–th view. si represents the i–th row of
S, and the constraint terms are added to ensure the probabilistic nature of S.

To ensure that learned consensus affinity graph S can well characterize the affinities
between data points from different views and capture the consensus affinity structure that is
universally admitted by all views, we assume that for all structure affinity graphs {Z(v)}nv

v=1,
any two data points zi and z j should have the same affinity value si j . Then, we have

min
S

1

2

nv∑

v=1

n∑

i, j

‖z(v)
i − z(v)

j ‖22si j

s.t . si j ≥ 0 (7)

We employ Eq. (7) to learn the similarities between data points is based on an intuitive
assumption that the self-expressiveness coefficient matrix Z(v) learned from Eq. (5) can be
deemed the substitute of the data matrix X(v) because each entry of Z(v) can quantify the
similarity between two data points in X(v), namely, if two data points are close to each other
in the original space, their new representations in the new space must also be similar to each
other [13]. Furthermore, compared to the original data matrixX(v), the clean structure affinity
matrix Z(v) can better describe the intrinsic structure of the real data; thus, a more robust
consensus affinity matrix S can be derived from {Z(v)}nv

v=1.
Then, the model of consensus affinity graph learning is

min
S,w(v)

nv∑

v=1

{w(v)‖S − Z(v)‖2F + Tr(Z(v)LSZ(v)T )}

s.t . si1 = 1, si j ≥ 0, w(v) ≥ 0 (8)

where LS denotes the Laplacian matrix, LS = DS − (ST +S)/2, andDS is a diagonal degree
matrix whose diagonal elements are

∑
j (si j + s ji )/2. Equation (8) can adaptively learn a

consensus affinity graphS that has the capability of preserving the consensus affinity structure
being admitted by all the structural affinity graphs.At the same time, during the fusionprocess,
the structural affinity graph is dynamically weighted, which effectively reduces the influences
of noisy views and merges important complementary information.

3.3 Block Diagonal Representation

However, the consensus affinity graph S learned fromEq. (8)may not have the block diagonal
structure that is needed for clustering. Therefore, we introduce a k-block diagonal regularizer
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for S to ensure that it satisfies the block diagonal characteristic; then, we have

‖S‖
k

=
n∑

i=n−k+1

λi (LS)

s.t . S ≥ 0,S = ST (9)

where S = [s1, · · · , s j , · · · , sn]. The S learned from Eq. (9) is k-block diagonal and has an
explicit cluster structure.

3.4 Objective Function

By integrating the structure graph fusion in Eq. (5), the consensus affinity graph learning
in Eq. (8), and the block diagonal representation in Eq. (9) into a unified model, the final
objective function is

min
S,w(v),Z(v),E(v)

nv∑

v=1

{w(v)‖S − Z(v)‖2F + Tr(Z(v)LSZ(v)T ) + 2λ1Tr(X(v)L(v)
Z X(v)T )

+ λ2‖Z(v)‖∗ + λ3‖E(v)‖2,1} + λ4‖S‖
k

s.t . X(v) = X(v)Z(v) + E(v), Z(v)1 = 1, Z(v) ≥ 0,

si1 = 1,S ≥ 0,S = ST , w(v) ≥ 0 (10)

where λ1, λ2, λ3 and λ4 are trade-off parameters for balancing the corresponding terms. The
first term fuses the structural affinity graphs {Z(v)}nv

v=1 of different views adaptively into a
consensus affinity graph S. The second term encourages the learned S to capture the affinities
among data points that are unanimously admitted by all views. The third term ensures that
Z(v) can adaptively capture the local manifold structure of the original data. The fourth
term imposes a low-rank constraint on the representation matrix Z(v) to capture the global
structure. Through the joint learning of the first four terms, the structural affinity matrix
Z(v) can capture both the local and global structures of the data in each individual view,
and meanwhile, the intrinsic structures of data that are contained in the structural affinity
graphs Z(v) can be well integrated into the consensus affinity graph S. The fifth term resists
sample-specific corruptions and outliers to enhance the robustness of the model. The sixth
term is the k-block diagonal representation of the learned S.

Consequently, the consensus affinity graph S learned from Eq. (10) can well integrate the
underlying data structure of {Z(v)}nv

v=1, characterize the similarity among data points, and
have an explicit k-block diagonal structure.

4 Optimization

In this section, an augmented Lagrange multiplier with an alternating direction minimizing
strategy is used to solve Eq. (10). Specifically, Eq. (10) can be optimized alternatively by
introducing auxiliary variables: S = M, Z(v) = A(v), Z(v) = B(v), Z(v) = C(v) and Z(v) =
D(v), v ∈ {1, . . . , nv}, to make problem (10) separable. Then Eq. (10) is converted to the
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following optimization problem:

min
S,w(v),E(v),M,Z(v),

A(v),B(v),C(v),D(v)

nv∑

v=1

{w(v)‖S − A(v)‖2F + Tr(B(v)LSB(v)T )+

2λ1Tr(X(v)L(v)
C X(v)T ) + λ2‖D(v)‖∗ + λ3‖E(v)‖2,1} + λ4‖M‖

k

s.t . X(v) = X(v)Z(v) + E(v),Z(v) = A(v),Z(v) = B(v),Z(v) = C(v),

Z(v) = D(v),S = M,C(v)1 = 1,C(v) ≥ 0,D(v) ≥ 0,M ≥ 0,

M = MT , si1 = 1, si j ≥ 0, w(v) ≥ 0 (11)

The augmented Lagrange function of Eq. (11) is

min
S,w(v),E(v),M,Z(v),

A(v),B(v),C(v),D(v)

nv∑

v=1

{w(v)‖S − A(v)‖2F + Tr(B(v)LSB(v)T )+

2λ1Tr(X(v)L(v)
C X(v)T ) + λ2‖D(v)‖∗ + λ3‖E(v)‖2,1} + λ4‖M‖

k
+

nv∑

v=1

μ

2
(‖X(v) − X(v)Z(v) − E(v) + Y(v)

1

μ
‖2F+

‖Z(v) − A(v) + Y(v)
2

μ
‖2F + ‖Z(v) − B(v) + Y(v)

3

μ
‖2F+

‖Z(v) − C(v) + Y(v)
4

μ
‖2F + ‖Z(v) − D(v) + Y(v)

5

μ
‖2F ) + μ

2
‖S − M + Y6

μ
‖2F

s.t .C(v)1 = 1,C(v) ≥ 0,D(v) ≥ 0,M ≥ 0,M = MT , si1 = 1, si j ≥ 0, w(v) ≥ 0 (12)

where Y(v)
1 , Y(v)

2 , Y(v)
3 , Y(v)

4 ,Y(v)
5 and Y6 are Lagrange multipliers, and μ > 0 is a penalty

parameter. Equation (12) can be solved by alternately updating each variable while fixing all
the other variables. The update rules are as follows:

Update A(v) Fixing all variables except A(v), Eq. (12) can be written as

min
A(v)

w(v)‖S − A(v)‖2F + μ

2
‖Z(v) − A(v) + Y(v)

2

μ
‖2F (13)

Taking the derivative of Eq. (13) w.r.t. A(v) and setting it to 0, the updating rule of A(v) is

A(v)t+1 = (2w(v) + μ)−1(2w(v)S + μZ(v) + Y(v)
2 ) (14)

Update B(v) Fixing all variables except B(v), Eq. (12) can be simplified as

min
B(v)

Tr(B(v)LSB(v)T ) + μ

2
‖Z(v) − B(v) + Y(v)

3

μ
‖2F (15)

Taking the derivative of Eq. (15) w.r.t. B(v) and setting it to 0, the updating rule of B(v) is

B(v)t+1 = (μZ(v) + Y(v)
3 )(2LS + μI)−1 (16)
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Update C(v) Fixing all variables except C(v), Eq. (12) can be simplified as

min
C(v)

λ1

n∑

i, j=1

‖x (v)
i − x (v)

j ‖22c(v)
i j + μ

2
‖Z(v) − C(v) + Y(v)

4

μ
‖2F

s.t .C(v)1 = 1,C(v) ≥ 0 (17)

To simplify notations, the view index is tentatively ignored. Let hi j be the (i, j)-th element
of H = (Z + Y4

μ
); note that Eq. (17) is independent between different rows, we can address

the following problem separately for each i ,

min
ci1=1,ci j≥0

λ1

n∑

j=1

‖xi − x j‖22ci j +
n∑

j=1

(
μ

2
c2i j − μhi j ci j ) (18)

Denote gi j = λ1‖xi − x j‖22 − μhi j as the j-th element of gi ∈ R1×n ; then, ci in Eq. (18)
can be updated as

min
ci1=1,ci≥0

‖ci + gi
μ

‖22 (19)

The Lagrangian function of Eq. (19) is

L(ci , δ, ϕ) = ‖ci + gi
μ

‖22 + δ(1 − ci1) + ϕT (−ci ) (20)

where δ and ϕ ≥ 0 are the Lagrangian multipliers, and the optimal solution ci is

ci
t+1 = (−gi

μ
+ δ1T )+ (21)

where (·)+ = max(·, 0).
Update D(v) Fixing all variables except D(v), Eq. (12) is equivalent to

min
D(v)

λ2

μ
‖D(v)‖∗ + 1

2
‖D(v) − (Z(v) + Y(v)

5

μ
)‖2F (22)

Equation (22) can be solved by the singular value thresholding operator [41].
Update Z(v) Fixing all variables except Z(v), Eq. (12) is equivalent to

min
Z(v)

‖X(v) − X(v)Z(v) − E(v) + Y(v)
1

μ
‖2F+

‖Z(v) − A(v) + Y(v)
2

μ
‖2F + ‖Z(v) − B(v) + Y(v)

3

μ
‖2F+

‖Z(v) − C(v) + Y(v)
4

μ
‖2F + ‖Z(v) − D(v) + Y(v)

5

μ
‖2F (23)

Taking the derivative of Eq. (23) w.r.t. Z(v) and setting it to 0, the updating rule of Z(v) is

Z(v)t+1 = (X(v)TX(v) + 4I)−1(X(v)TV1 + V2 + V3) (24)

where V1 = X(v) − E(v) + Y(v)
1 /μ, V2 = A(v) + B(v) + C(v) + D(v), V3 = (Y(v)

2 + Y(v)
3 +

Y(v)
4 + Y(v)

5 )/μ.
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Update E(v) Fixing all variables except E(v), Eq. (12) is equivalent to

min
E(v)

λ3

μ
‖E(v)‖2,1 + 1

2
‖E(v) − F(v)‖2F (25)

where F(v) = X(v) − X(v)Z(v) + Y(v)
1 /μ. According to [37], if the optimal solution to Eq.

(25) is E(v), then the j-th column of E(v) is

[E(v)t+1 ]:, j =
⎧
⎨

⎩

‖[F(v)]:, j‖2−λ3/μ

‖[F(v)]:, j‖2 [F(v)]:, j , i f ‖[F(v)]:, j‖2 > λ3
μ

0, otherwise
(26)

Update S Fixing all variables except S, Eq. (12) is equivalent to

min
S

nv∑

v=1

w(v)‖S − A(v)‖22+
1

2

nv∑

v=1

n∑

i, j=1

‖b(v)
i − b(v)

j ‖22si j + μ

2
‖S − M + Y6

μ
‖2F

s.t .si1 = 1,S ≥ 0 (27)

Equation (27) is further written as

min
si1=1,si j≥0

nv∑

v=1

w(v)
n∑

i, j=1

(si j − a(v)
i j )2 +

n∑

i, j=1

oi j si j +
n∑

i, j=1

μ

2
(si j + li j )

2 (28)

where oi j = 1
2

∑nv

v=1 ‖b(v)
i − b(v)

j ‖22 is the j-th element of oi ∈ R1×n , and li j is the (i, j)-th
element of L = −M + Y6/μ. Equation (28) is independent between different i , and we can
address the following problem separately for each i ,

min
si1=1,si≥0

n∑

j=1

nv∑

v=1

w(v)(si j − a(v)
i j )2 +

n∑

j=1

oi j si j +
n∑

j=1

(
μ

2
s2i j + μli j si j ) (29)

Then, si in Eq. (29) can be updated by optimizing the following equation:

si
t+1 = argmin

si1=1,si≥0
‖si + −2

∑nv

v=1 w(v)a(v)
i + oi + μli

2
∑nv

v=1 w(v) + μ
‖22 (30)

where a(v)
i and li are 1 × n vectors whose j-th elements are a(v)

i j and li j , respectively.

Update w(v) The weight of the v-th view is computed by

w(v)t+1 = 1

2‖S − A(v)‖F
(31)

Proof :Motivated by the iteratively reweighted technique in [12, 42],we define an auxiliary
problem without w(v) as follows:

min
A(v)

√
‖S − A(v)‖2F + μ

2
‖Z(v) − A(v) + Y(v)

2

μ
‖2F (32)

Taking the derivative of Eq. (32) with respect to A(v) and setting the derivative to 0, we
have

ŵ(v) ∂‖S − A(v)‖2F
∂A(v)

+ ∂(
μ
2 ‖Z(v) − A(v) + Y(v)

2
μ

‖2F )

∂A(v)
= 0 (33)
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where ŵ(v) = 1/(2‖S−A(v)‖F ). Obviously, Eq. (33) is the same as the derivative process of
Eq. (13) with respect to A(v). Thus, ŵ(v) can be considered asw(v) in Eq. (13). Theoretically,
to avoid dividing by 0, ŵ(v) can be transformed into

w(v)t+1 = 1

2‖S − A(v)‖F + δ
(34)

where δ is infinitely close to 0. The proof is completed.
Update M Fixing all variables exceptM, Eq. (12) is equivalent to

λ4‖M‖
k

+ μ

2
‖S − M + Y6

μ
‖2F

s.t . M ≥ 0,M = MT , (35)

In view of the nonconvexity of ‖M‖
k

in Eq. (35), we introduce the following theorem:

Theorem 1. [30] LetM ∈ Rn×n and M � 0. Then,

n∑

i=n−k+1

λi (M) = min
M

〈M,Q〉

s.t . 0 	 Q 	 I, Tr(Q) = k, (36)

where M and Q are symmetric matrices, M � 0 represents that M is positive semidefinite,
Q 	 I represents Q− I 	 0, Tr(Q) represents the sum of the main diagonal elements of Q.
We can reformulate ‖M‖

k
as a convex programming problem,

‖M‖
k

= min
Q

〈LM,Q〉
s.t . 0 	 Q 	 I, Tr(Q) = k (37)

Therefore, Eq. (35) is equivalent to

λ4〈Diag(M1) − M,Q〉 + μ

2
‖S − M + Y6

μ
‖2F

s.t . M ≥ 0,M = MT , 0 	 Q 	 I, Tr(Q) = k (38)

Equation (38) can be optimized by solving M and Q alternatively. The specific updating
rules are as follows:

(1) Q can be optimized with fixed variableM as

Qt+1 = argmin
Q

λ4〈Diag(M1) − M,Q〉

s.t . 0 	 Q 	 I, Tr(Q) = k (39)

It can be solved by

Qt+1 = UUT (40)

where U ∈ Rn×k consist of k eigenvectors related to the k smallest eigenvalues of
Diag(M1) − M [28].
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(2) M can be optimized with fixed variable Q as

Mt+1 = argmin
M

λ4〈Diag(M1) − M,Q〉 + μ

2
‖S − M + Y6

μ
‖2F

s.t .M ≥ 0,M = MT (41)

Equation (41) is equivalent to

Mt+1 = argmin
M

1

2
‖M − S − Y6

μ
+ λ4

μ
(diag(Q)1T − Q)‖2

s.t . M ≥ 0,M = MT (42)

Let D = S + Y6
μ

− λ4
μ

(diag(Q)1T − Q), according to [30],

Mt+1 = [(D̂ + D̂
T
)/2]+ (43)

where D̂ = D − Diag(diag(D)).
Update multipliers μ, Y(v)

1 , Y(v)
2 , Y(v)

3 , Y(v)
4 , Y(v)

5 and Y6 are updated as follows:

μ = min(ρμ,μmax )

Y(v)
1 = Y(v)

1 + μ(X(v) − X(v)Z(v) − E(v))

Y(v)
2 = Y(v)

2 + μ(Z(v) − A(v))

Y(v)
3 = Y(v)

3 + μ(Z(v) − B(v))

Y(v)
4 = Y(v)

4 + μ(Z(v) − C(v))

Y(v)
5 = Y(v)

5 + μ(Z(v) − D(v))

Y6 = Y6 + μ(S − M) (44)

With the help of the alternate optimization scheme, the final S can be obtained and used
for clustering. The specific optimization process is summarized in Algorithm 1.

4.1 Complexity Analysis

In our model, there are ten unknown variables (S, Q, M, w, Z, A, B, C,D, E), and it is
a nonconvex optimization problem. We alternately update each variable. Let nv , t1 and n
be the number of views, iterations, and data points, respectively, and we mainly consider
computationally expensive operations. The complexity of updating A is O(nvn). The main
complexity of updating B and Z is the matrix inversion, which is O(nvn3). To update D (the
nuclear norm proximal operator), the main complexity is O(nvn3). The main complexity
of updating C and S is calculating the Euclidean distance which requires O(nvn2). The
complexities of updating E is O(nvn). The complexities of updating Q and M are O(n3)
and O(n), respectively. Since nv 
 n, therefore, the total complexity is O(t1n3).

Since Eq. (10) is nonconvex, it is difficult to ensure that it can converge to a localminimum.
Fortunately, most suboptimization problems have a closed-form solution during optimiza-
tion, and subsequent empirical evidence of the convergence analysis on real datasets also
demonstrated that the proposed algorithm has good convergence behavior.
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Algorithm 1 Optimization algorithm for CAGL-SGBD

Input: Multiview matrices {X(1), · · · ,X(nv)}, cluster number k, hyperparameter λ1, λ2, λ3, λ4.

1: Initialize: Y(v)
1 = Y(v)

2 = Y(v)
3 = Y(v)

4 = Y(v)
5 = Y6 = 0. S is initialized by weighted-sum rule

1
nv

∑nv
v=1 Z

(v). A(v) = Z(v), B(v) = Z(v), C(v) = Z(v), D(v) = Z(v), E(v) = 0, M = S, Z(v) is

initialized by KNN graph. μ = 1e−2, ρ = 1.2, μmax = 106, threshold value ε = 10−6, max I ter=100.
2: while not converged and t ≤ max I ter do
3: if 1 ≤ v ≤ nv then
4: Update A(v) according to Eq. (14);
5: Update B(v) according to Eq. (16);
6: Update C(v) according to Eq. (21);
7: Update D(v) according to Eq. (22);
8: Update Z(v) according to Eq. (24);
9: Update E(v) according to Eq. (26);
10: Update w(v) according to Eq. (31);

11: UpdateY(v)
1 ,Y(v)

2 ,Y(v)
3 ,Y(v)

4 and Y(v)
5 according to Eq. (44);

12: end if
13: Update S according to Eq. (30);
14: Update Q according to Eq. (40);
15: Update M according to Eq. (43);
16: Update Y6 and μ according to Eq. (44);
17: Check the convergence condition: max(‖X(v) − X(v)Z(v) − E(v)‖∞, ‖Z(v) − A(v)‖∞, ‖Z(v) −

B(v)‖∞, ‖Z(v) − C(v)‖∞, ‖Z(v) − D(v)‖∞, ‖S − M‖∞) ≤ ε;
18: end while
19: Apply spectral clustering algortihm to S = (S + ST )/2.
Output: clustering metrics.

5 Experiments

5.1 Datasets

(1) MSRC [43] consists of 210 images and 7 classes. For each image, five visual feature
vectors are extracted, including color moment CM (24), CENT (254), LBP (256), GIST
(512) and HOG (576).

(2) ORL [44] consists of 400 images belonging to 40 distinct subjects with 10 images for
each subject. For each image, four feature vectors are extracted, including LBP (59),
CENT (254), GIST (512) and HOG (864).

(3) HW [45] consists of 2000 digit images corresponding to 10 classes. For each image, six
features are extracted, namely, FOR (76), FAC (216), KAR (64), MOR (6), ZER (47),
and PIX (240).

(4) 100 leaves [45] consists of 1600 samples from 100 plant species. For each sample, three
features are extracted, namely, 64-D texture histogram, 64-D fine-scale margin, and
64-D shape descriptor.

(5) COIL20 [11] consists of 1440 images and 20 object categories. For each image, three
different feature vectors are extracted, namely, the 1024-D intensity feature, 3304-D
LBP feature, and 6750 Gabor feature.

(6) BBCSport [45] is a document dataset consisting of 544 documents belonging to 5 classes
from the BBC Sport website. In our experiments, two views are used whose dimensions
are 3183 and 3203.

123



142 Page 14 of 28 Z. Gui

Table 1 The default values of the four parameters

Parameter MSRC ORL HW 100 leaves COIL20 BBCSport

λ1 100 0.1 0.1 1 0.1 0.1

λ2 10 5 0.1 1 1 10

λ3 50 10 1 1 10 5

λ4 0.05 0.1 0.05 0.001 0.1 0.05

5.2 ComparisonMethods and EvaluationMetrics

We compare the proposed method with the following methods: Ncut [46], S-MVSC [44],
MCGC [23], MVGL [11], DiMSC [24], CSMSC [47], LMSC [25], MCLES [48], GBS-KO
[45], LMVSC [49], CGD [8] and GFSC [26]. For the single-view clustering method Ncut,
we employ it for MVC by concatenating the features of each view in a columnwise manner
and feed them into Ncut.

Evaluation Metrics: To facilitate evaluation, we use six widely used evaluation metrics
to evaluate the clustering performances, including accuracy (ACC), standardized mutual
information (NMI), purity, precision, F-score, and adjusted rand index (ARI). For eachmetric,
a larger value indicates a better cluster performance. The running time is also recorded to
better reflect the time utilization.

5.3 Experimental Settings

In the experiments, we fix the number of nearest neighbors to 15. For each comparison
method, we either use the default parameter settings recommended by the original paper
as much as possible in our experiments (if the parameters were provided), or we manually
tune them and retain those with the best performances. For our proposed method, the default
values of the four parameters on the six datasets when the optimal clustering performances
are achieved are listed in Table 1, and the default values will be used in the comparison
experiments, parameter analysis, ablation study, visualization, and convergence analysis.
Without loss of generality, we run each method 30 times and report the average score and
standard deviation.

5.4 Experimental Results

The results are shown in Tables 2, 3, 4, 5, 6 and 7. For each metric, the best and the second-
best values are bolded and underlined, respectively. By observing the experimental results,
we can obtain the following conclusions.

Our proposed method significantly outperforms all baselines on the MSRC, HW, 100
leaves and COIL20 datasets. Especially on the COIL20 dataset, our method achieves the
most perfect clustering results with 100% on all metrics. On the MSRC dataset, our method
outperforms the single-view clustering method Ncut by 43.1% in terms of NMI and outper-
forms the second best MVCmethodMCLES by 4.52% in terms of NMI. On the HW dataset,
in terms of NMI, our method outperforms Ncut by 24.41% and outperforms the second best
method MCGC by 2.25%. On the 100 leaves dataset, in terms of NMI, our method outper-
forms Ncut by 8.68% and outperforms the second best method GBS-KO by 0.47%. On the
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ORL dataset, our method outperforms all baselines except for the NMI, purity and precision,
which are 0.14, 0.24, and 3.17% lower than GBS-KO, MCLES and LMVSC, respectively.
On the BBCSport dataset, our method achieves the best results in terms of the ACC, NMI
and purity. The experimental results show that the proposed method is a promising MVC
method.

The performances of MVC methods are not always better than those of the single-view
clustering methods. The key problem of MVC is to make full use of the consistency and
complementarity information of different views, which is still a challenging problem in
practice.

In all the baselines, S-MVSC, MCGC, MVGL, GBS-KO, CGD and GFSC are methods
for learning a unified graph/matrix. GBS-KO shows good clustering performances on all six
datasets. CGD also shows good performances on all six datasets except for ORL. MCGC
shows the second-best best performance on the HW dataset. All three baselines consider
the manifold structure of the original data and exploit the complementary information of
multiple graphs to generate a unified graph for clustering, but they do not consider the global
structure of the data or block representation of the unified graph. Thus, their clustering results
are inferior to those of the proposed CAGL-SGBD. GFSC is a method that employs self-
weighting to automatically learn a unified graph for all views, and its clustering performance
is not good on the 100 leaves, COIL20 and BBCSport datasets. S-MVSC performs well on
the BBCSport dataset and shows highly efficient computing performances on all datasets.

Both LMSC and MCLES learn a similarity matrix or cluster indicator matrix based on
the unified latent embedding representation in the embedding space. MCLES exhibits the
second best clustering performances on the MSRC dataset, and its clustering performances
on the ORL and BBCSport datasets are also good, but it cannot be tested on the HW, 100
leaves and COIL20 datasets because it took more than three hours to run. In addition, both
LMSC and MCLES may lose some important discriminant information in the process of
embedding data from the original space to the embedding space, resulting in lower clustering
performances than CAGL-SGBD.

The proposed method CAGL-SGBD is superior to the above unified graph/matrix/repre-
sentation-based methods. This is mainly because it not only integrates the local manifold
structure and global structure information of intraviews through structure graph fusion but
also dynamically integrates the complementary information between views by consensus
affinity graph learning, and ultimately, it enforces a structured k-block diagonal representation
on the learned consensus affinity graph.

Furthermore, the running time of CAGL-SGBD is also within an acceptable range com-
pared to all the baselines.

5.5 Parameter Analysis

Our model has four parameters λ1, λ2, λ3, λ4, and we conduct a grid search for them. λ1 is
tuned from {0.001, 0.01, 0.1, 1, 10, 100} on the MSRC dataset, is tuned from {0.001, 0.01,
0.1} on the HW and BBCSport datasets, and is tuned from {0.001, 0.005, 0.01, 0.05, 0.1,
0.5, 1} on the ORL, 100 leaves and COIL20 datasets. λ2, λ3, λ4 are tuned from {0.1, 0.5,
0.7, 1, 5, 7, 10}, {1, 5, 7, 10, 50, 70, 100} and {0.001, 0.005, 0.007, 0.01, 0.05, 0.07, 0.1},
respectively, on all datasets.

When analyzing one parameter, keep the default values of the other three parameters.
Figure1 takes the ORL, 100 leaves, and COIL20 datasets as examples to show that the
variation inNMI values ofCAGL-SGBDvarieswith the four parameters on the three datasets.
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Fig. 1 Variations in NMI versus the four parameters

As shown in Fig. 1, the proposed method is less sensitive to the changes in these four
parameters on the three datasets except that it is more sensitive to the changes in λ3 on the
100 leaves dataset.

5.6 Ablation Study

In this subsection, we conduct an ablation study on the proposed model. Specifically, we
learn a consensus affinity graph through the following two approaches: (1) Only consider the
structure graph fusion, namely, λ4 = 0, simplified as CAGL-SG; (2) Only consider the block
representation, namely, λ1 = λ2 = λ3 = 0, simplified as CAGL-BD. For the first approach,
we have

min
S,w(v),Z(v),E(v)

nv∑

v=1

{w(v)‖S − Z(v)‖2F + Tr(Z(v)LSZ(v)T )+

2λ1Tr(X(v)L(v)
Z X(v)T ) + λ2‖Z(v)‖∗ + λ3‖E(v)‖2,1}

s.t . X(v) = X(v)Z(v) + E(v),Z(v)1 = 1,Z(v) ≥ 0, si1 = 1,S ≥ 0, w(v) ≥ 0 (45)

For the second approach, we have

min
S,w(v)

nv∑

v=1

{w(v)‖S − Z(v)‖2F + Tr(Z(v)LSZ(v)T )} + λ4‖S‖
k

s.t . si1 = 1,S ≥ 0,S = ST , w(v) ≥ 0 (46)

where Z(v) is initialized by the KNN graph in both Eqs. (45) and (46). Table 8 reports the
clustering results of Eqs. (45), (46) and (10) on theMSRC,ORL,HW, 100 leaves andCOIL20
datasets.

As shown in Table 8, the clustering performance of Eq. (46) is very poor on some datasets.
The model in Eq. (46) directly fuses {Z(v)}nv

v=1, which are obtained by the KNN graph, into a
consistent affinity matrix S and enforces S to have a block diagonal representation. However,
the S learned by Eq. (46) cannot capture the local and global structural information of the
data well and cannot resist noise; therefore, the clustering performance is not good. Equation
(45) obtains better clustering results than Eq. (46) on all datasets, which indicates that the
structure graph fusion may play a more important role than block diagonal representation
in improving the quality of the consensus affinity matrix. The results of Eq. (10) are better
than those of Eqs. (45) and (46), indicating that the joint learning of structure graph fusion
and block diagonal representation are beneficial to improving the quality of the consensus
affinity matrix. Thus, CAGL-SGBD is superior to CAGL-SG and CAGL-BD.
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Fig. 2 Visualization results of the consensus affinity matrix learned by CAGL-SGBD on all datasets

5.7 Visualization

The visualization results of the consensus affinity matrix learned by the proposed method on
the six datasets are demonstrated in Fig. 2.

The consensus affinity matrix learned by the proposed method on the MSRC, ORL, HW,
100 leaves and BBCSport datasets all exhibit obvious block-diagonal structures, and the
number of blocks is equal to the number of corresponding classes. In Fig. 2d, since there are
100 blocks on the 100 leaves dataset, each block is so small that the block structure on the
diagonal appears to be a straight line. Although the consensus affinity matrix learned on the
COIL20 dataset has no obvious block-diagonal structure, the data points are all concentrated
on the diagonal.

We also use t-SNE to visualize the learned consensus affinity matrix, as shown in Fig. 3.
It can be seen that data points belonging to the same category are close, while the data points
belonging to different categories are far away. On the COIL20 dataset, our proposed method
can achieve the most perfect clustering results.

5.8 Convergence Analysis

In this subsection, we conducted convergence analysis to verify the convergence property of
the proposed method. We calculate the log objective function value and the primal residual
(computed as max(‖X(v) − X(v)Z(v) − E(v)‖∞, ‖Z(v) − A(v)‖∞, ‖Z(v) − B(v)‖∞, ‖Z(v) −
C(v)‖∞, ‖Z(v) − D(v)‖∞, ‖S − M‖∞)) at each iteration. Since our algorithm tends to con-
verge at approximately 50 iterations on the benchmark datasets, we expand the number of
iterations to 150 to intuitively demonstrate the convergence of the proposed method at 100
iterations. Figure4 illustrates the log objective function value and the value of primal residual
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Fig. 3 Visualization of the consensus affinity matrix learned by CAGL-SGBD on all datasets using t-SNE

Fig. 4 Convergence curves of the proposed algorithm

changes with the number of iterations on the six datasets. The results empirically confirm
the convergence behavior of the proposed algorithm within 100 iterations.

6 Conclusion

In this paper, we propose a newMVCmethod CAGL-SGBD. The proposedmethod can auto-
matically learn the graph structure information of intraviews, the complementary information
of interviews and the structured representation of consensus affinity graphs by structure graph
fusion, consensus affinity graph learning and k-block diagonal representation, respectively.
Extensive experimental results on six benchmark datasets sufficiently show that CAGL-
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SGBD is effective, can compete with other advanced MVC methods, and obtains the best
performance on the MSRC, HW, 100 leaves and COIL20 datasets. The results of the ablation
study show that jointly learning the structure graph fusion and block diagonal representation
can greatly improve the clustering performance. The visualization experimental results on
the MSRC, ORL, HW, 100 leaves, and BBCSport datasets show that the consensus affinity
matrix learned by CAGL-SGBD displays an explicit block-diagonal structure. In the future,
we will consider how to address the graph structure and structured representation problem
of large-scale multiview data.
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