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Abstract
This paper characterizes the robustness of exponential stability of fuzzy inertial neural net-
work which contains time delays or stochastic disturbance through the estimation of upper
limits of perturbations. By utilizing Gronwall-Bellman lemma, stochastic analysis, Cauchy
inequality, the mean value theorem of integrals, as well as the properties of integrations, the
limits of both time delays and stochastic disturbances are derived in this paper which can
make the disturbed system keep exponential stability. The constraints between the two types
of disturbances are provided in this paper. Examples are offered to validate our results.

Keywords Fuzzy logic · Time delay · Stochastic · Inertial neural network · Robustness

1 Introduction

Neural networks (NNs) have attracted an increasing amount of attention over the last decade,
due to their widespread applications of neural networks in image encryption technology [1],
signal processing [2], control theory [3, 4] and other fields [5–7]. With the deepening of
research on neural networks, many classic neural network models have been proposed, such
as Hopfiled neural network (HNN) [8], cellular neural network (CNN) [9, 10], recurrent
neural network [11], etc. These models mentioned above are all represented by linear or
nonlinear differential equations with first order derivatives. However, due to the biological
and physical application of second-order derivative terms, they can not be ignored while
analyzing the dynamic behaviors of system. The second derivative term is also called inertia
term, which is considered to be an effective method to generate chaos, bifurcation and other
complex dynamic behaviors.Moreover, inertial terms can also be used for unordered searches
of memory. In addition, the inertia term can also be used to describe the relationship between
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flux and current in physics [12]. Hence, in [13], Babcock and Westervelt considered the
inertia in connections of neurons for the first time, and described the embryonic form of
inertial neural networks (INNs) as a class of second-order differential equations. Due to
the existence of inertia terms, the analysis of properties, like stability, bifurcation, passivity,
dissipativity, and so on, are more complex than other kinds of NNs. Many scholars have
utilized the reduced order method (ROM) to reduce the complexity of INNs and obtained
some significant results [14–18].

Among the properties of INNs, stability is the prerequisite for the applications. However,
in the actual circuit simulation process, due to the limited conversion speed of amplifiers
and the random fluctuations during the operation of electronic equipment, time delays and
stochastic disturbances are inevitable which may destroy the stability of NNs. Different time
delays can also lead to different dynamic behaviors of INN. Different working mechanisms
of electronic devices can lead to different time delays, for example, time-varying delays [19],
distributed delays [20], constant delays [21] and so on. In addition, stochastic disturbance is
a class of complex and irregular perturbation, which is completely different from traditional
processes. It can cause uncertain oscillations during system operation to make the system
can not reach the designed performance. Some stability criteria of INNs disturbed by those
two disturbances are obtained in recent years, for example, in [22], the problems of finite
time stabilization and fixed time stabilization of stochastic INNs (SINNs) are explored by
designing feedback control laws inputs as well as using the stochastic analysis theory. Huang
et al. discussed the problem of global exponential stability by differential inequality analysis,
and some novel assertions to ensure the global exponential stability of delayed INNs (DINNs)
are obtained in [23]. In [24], Cui et al. obtained stability criteria for DINNwith random pulses
by usingmatrixmeasurementmethod aswell as stochastic theory.Wang andChen studied the
mean-square exponential stability of delayed SINNs (DSINNs) by constructing Lyapunov–
Krasovskii functionals in [25].

It is worth noting that the preceding works focuses on the stability of INNs perturbed by
time delays or stochastic disturbances in the absence of fuzzy logic. In the process of handling
practical problems by using NNs, there inevitably are some inconveniences, for example, the
vagueness. Hence, fuzzy logic as a powerful tool to deal with the fuzziness are widely used to
deal with the problem in [26–29]. Different with general NNs, fuzzy neural network (FNN)
has not only sum and product operations but also fuzzy MAX and fuzzy MIN operation in
their structures, this also greatly improves its ability of image recognition. In addition, neural
network models with fuzzy logic operations are recognized as universal approximators. In
order to ensure the designed FNNswithout inertial termsmeet the performance requirements,
some conditions are obtained in recent years [30–34]. Besides, in [35], Chen and Kong
combined the fuzzy logic and DINNs (FDINNs), and several delay-dependent conditions for
exponential stability of FDINNs are obtained.

Noting that the literature mentioned above all explore the problem of stability, and there
are few scholars to discuss the robustness of stability (RoS). Robustness refers to the ability
of systems to maintain their properties within a certain range of parameters or structures
changes. Besides, time delay and stochastic disturbances as two typical structural changes
exist in neural networks extensively. And, for an exponential stable system with disturbance,
its original decay coefficient and decay rate will be changedwhen certain intensities of distur-
bances are changed, it may destroy the stability of original system. So, it is worth exploring
how much intensity of disturbances can make perturbed system maintain the original feature
of stability of the original system. This is also a motivation for this article. At present, most
researches onROSonly focuses on first-order neural networks [30, 31, 36–40] and none of the
results have involved FINNs. However, in practical applications, due to the inherent special
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properties of electronic components, high-order neural network models are usually needed
to more accurately describe their dynamic behaviors in reality. Hence, it is very necessary to
study the RoS of FINN.

Therefore, based on the above discussions, the works and contributions of this paper are
listed below.

• FDINNandSDFINNmodels are proposed in this paper, and thosemodels are transformed
into two coupled first-order FINNs by using ROM. Compared with [16, 17], the ROM
used in this paper includes two positive variable parameters ηi , ξi , which further expands
the ROM used in [16, 17] which is only contain one variable parameter.

• In addition, in this paper, we have removed the limitation on the derivative of time delay
function ς(t) in [37–40, 43], which means that ς ′(t) ≤ δ < 1 not satisfied in this paper.

• The upper limits of time delay and max intensity of noise are obtained respectively
by applying Grownwall-Bellman lemma as well as inequality techniques to ensure the
perturbed FINNs keep exponential stability. The constraint relationship between distur-
bances is given when two types of disturbances are active simultaneously.

Finally, the structure of this paper is given below. In Sect. 2, the model considered is
given, and transform the second-order system into first-order system by using ROM, and
some assumptions and definitions are given. In Sect. 3, the upper limits of time delay to make
FDINNs keep exponential stability is derived by using Grownwall-Bellman lemma and other
inequality techniques. Moreover, stochastic FDINNmodel (SFDINN) is discussed in Sect. 4,
and limits of two types of perturbations are obtained, and the relationship between time delay
and noise are highlighted. Several numerical instances are given in Sect. 5 to verify the results
in this paper.

Notations R = (−∞,+∞). Z
+ represents the set which contains all positive integers.

R
n and R

n×m represent real valued n-dimensional vector and real valued n × m matrices,
respectively.

∧
and

∨
are fuzzyANDand fuzzyORoperations, respectively. |·| represent the

Euclidean norm and ||x(t)|| = ∑n
i=1 |xi (t)|. (�,F, {Ft }t≥0,P) is the complete probability

space which embraces all P-null sets, and filtration Ft≥0 is right continuous and satisfies the
usual conditions. B(t) is a Brownian movement which is defined in (�,F, {Ft }t≥0,P). E is
the operator of mathematical expectation. L2

F0
([−P, 0]; R

n) is a set of all C([−P, 0]; R
n)

valued stochastic variables � = {�(t) : −P ≤ t ≤ 0} which are F0 measurable and
sup−P≤t≤0 E||�(t)||2 ≤ ∞. ς(t) is time varying delay and 0 ≤ ς(t) ≤ P .

2 Primaries

Consider the following FINN model.

ÿi (t) = − ai ẏi (t) − bi yi (t) +
∑

j

ci j g j (y j ) +
∑

j

hi j g j (y(t))

+
∑

j

di jv j +
∧

j

ei j g j (yi (t)) +
∨

j

ki j g j (y j (t))

+
∨

j

Si jv j +
∧

j

Ti jv j + Ii , (1)

where i ∈ {1, . . . , n}, n is the number of neurons. The second derivative is the inertial term
of system (1). yi (t) ∈ R is the state of i th neuron. ai and bi are two positive constants. g j

is the j th activation function. ci j , hi j are connection weights between i th and j th neuron.
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ei j , ki j , Si j , Ti j represent fuzzy feedback MIN template, fuzzy feedback MAX template,
fuzzy feedforward MAX template and fuzzy feedforward MIN template, respectively. Ii
denotes the external input of i th neuron. In addition,

∑
j = ∑n

j=1,
∧

j = ∧n
j=1 and

∨
j = ∨n

j=1.

Let ȳi = ηi
dyi (t)
dt + ξi yi (t),, where ηi and ξi are positive constants and ηi �= 0, then

⎧
⎨

⎩

ẏi (t) = 1

ηi
ȳi (t) − ξi

ηi
yi (t),

˙̄yi (t) = ηi ÿi (t) + ξi ẏi (t).
(2)

Hence,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏi (t) = 1

ηi
ȳi (t) − ξi

ηi
yi (t),

˙̄yi (t) = (
ξi

ηi
− ai )ȳi (t) + (aiξi − biηi − ξ2i

ηi
)yi (t) + ηi

{∑

j

ci j g j (y j )

+
∑

j

hi j g j (y j (t)) +
∧

j

ei j g j (y j (t)) +
∨

j

ki j g j (y j (t))

+
∨

j

Si jv j +
∧

j

Ti jv j + Ii

}

.

(3)

Therefore, assume the (y∗, ȳ∗) is the equilibriumpoint of system (1), let ζi (t) = yi (t)−y∗
i ,

� j (ζ j (t)) = g(y j (t) − y∗
j ) − g j (y∗

j ), then system (3) can be rewritten in the following form
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ̇i (t) = 1

ηi
ζ̄i (t) − ξi

ηi
ζi (t),

˙̄ζi (t) = (
ξi

ηi
− ai )ζ̄i (t) + (aiξi − biηi − ξ2i

ηi
)ζi (t) + ηi

{∑

j

ci j� j (ζ j (t))

+
∑

j

hi j� j (ζ j (t)) +
∧

j

ei j� j (ζ j (t)) +
∨

j

ki j� j (ζ j (t))

}

.

(4)

Before achieving our main results, the following assumptions, definitions and lemmas are
needed.

Assumption 1 There exists a positive constant l such that

|� j (u) − � j (v)| ≤ l|u − v| (5)

holds, where u, v ∈ R.

Remark 1 According to the definition of � j (·), we can obtain that � j (0) = 0, which means
that � j (·) satisfies the linear growth condition, i.e., |� j (u)| ≤ l|u|. Furthermore, from the def-
inition of ||·||, we can get that ||�(u)−�(v)|| ≤ l||u−v||, where �(·) = (�1(·), · · · , �n(·))T .
Definition 1 [41] FINN (4) is said to be global exponential stable (GES), if there exist con-
stants � > 0 and ℘ > 0 such that

||ζ(t)|| + ||ζ̄ (t)|| ≤ � exp(−℘(t − t0))

(

||ζ(t0)|| + ||ζ̄ (t0)||
)

(6)

holds, where � represents the decay coefficient, ℘ is decay rate.

123



Robustness analysis of exponential stability of fuzzy… Page 5 of 25 119

In this paper, unless specified, assume that model (4) is exponential stable.

Lemma 1 Assume u and v are two states of model (4), then we have

∣
∣
∣
∣

∧

j

ei j� j (u) −
∧

j

ei j� j (v)

∣
∣
∣
∣ ≤

∑

j

|ei j |l|u − v|,
∣
∣
∣
∣

∨

j

ki j� j (u) −
∨

j

ki j� j (v)

∣
∣
∣
∣ ≤

∑

j

|ki j |l|u − v|.

3 The limit of time delay

In this section, we will explore the limit of time delays that make FDINN maintains expo-
nential stability. Firstly, the form of FDINN model is in below.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ̇i (t) = 1

ηi
ϕ̄i (t) − ξi

ηi
ζi (t),

˙̄ϕi (t) = (
ξi

ηi
− ai )ϕ̄i (t) + (aiξi − biηi − ξ2i

ηi
)ϕi (t)

+ ηi

{∑

j

ci j� j (ϕ j (t)) +
∑

j

hi j� j (ϕ j (t − ς(t)))

+
∧

j

ei j� j (ϕ j (t − ς(t))) +
∨

j

ki j� j (ϕ j (t − ς(t)))

}

,

(7)

where ς(t) is time varying delay function.

Remark 2 Due to the existence of time delay, the definition of exponential stability of (7) is
in the following form

||ϕ(t)|| + ||ϕ̄(t)|| ≤ � exp(−℘(t − t0)) sup
s∈[t0−P,t0]

(

||ϕ(s)|| + ||ϕ̄(s)||
)

.

Theorem 1 Let Assumption 1 holds, � > ln �/℘, then, FDINN is said to be exponentially
stable if P ≤ min{�/2, P̄}, and P̄ is the unique solution of the following transcendental
equation

�1 exp(2�2�) + � exp(−℘(� − P)) = 1, (8)

where �1 = �/℘ε5P�2 + 2P2�2, and �2 = �1 + ε5P�2.

Proof For simplicity, denote ϕi = ϕi (t), ϕ̄i = ϕ̄i (t), ϕ
ς
i = ϕi (t − ς(t)), ζi = ζi (t),

ζ̄i = ζ̄i (t), Wi = ϕi − ζi , W̄i = ϕ̄i − ζ̄i , ϕ = {ϕ1, . . . , ϕn} and ϕ̄ = {ϕ̄1, . . . , ϕ̄n(t)}, hence,
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we can obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẇi = 1

ηi
W̄i − ξi

ηi
Wi ,

˙̄Wi = (
ξi

ηi
− ai )W̄i + (aiξi − biηi − ξ2i

ηi
)Wi + ηi

{∑

j

ci j

(

� j (ϕ j ) − � j (ζ j )

)

+
∑

j

hi j

(

� j (ϕ
ς
j ) − � j (ζ j )

)

+
[∧

j

ei j� j (ϕ
ς
i ) −

∧

j

ei j� j (ζ j )

]

+
[∨

j

ki j� j (ϕ
ς
j ) −

∨

j

ki j� j (ζ j )

]}

.

(9)

Then, let ε1 = max
i=1,...,n

{1/|ηi |}, ε2 = max
i=1,...,n

{|ξi/ηi |}, ε3 = max
i=1,...,n

{|αi |}, ε4 =
max

i=1,...,n
{|βi | + l

∑
j [|η j |(|c ji | + |h ji | + |e ji | + |k ji |)]}, ε5 = max

i=1,...,n
{l ∑ j |η j |(|h ji | +

|e ji | + |k ji |)}, we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|Wi | ≤
∫ t

t0

1

|ηi | |W̄i | +
∣
∣
∣
∣
ξi

ηi

∣
∣
∣
∣|Wi |ds,

|W̄i | ≤
∫ t

t0

{

|αi ||W̄i | + |βi ||Wi | + |ηi |
[∑

j

|ci j |l|Wi |

+
∑

j

|hi j |l|ϕς
j − ζ j | +

∑

j

|ei j |l|ϕς
i − ζi |

+
∑

j

|ki j |l|ϕς
i − ζi |

]}

ds,

(10)

and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

||W || ≤ ε1

∫ t

t0
||W̄ ||ds + ε2

∫ t

t0
||W ||ds,

||W̄ || ≤ ε3

∫

||W̄ ||ds + ε4

∫ t

t0
||W ||ds + ε5

∫ t

t0
||ϕς − ϕ||ds.

(11)

Thus,

||W || + ||W̄ || ≤ �1

∫

||W || + ||W̄ ||ds + ε5

∫ t

t0
||ϕς − ϕ||ds, (12)

where �1 = max{ε1 + ε3, ε2 + ε4}.
Since

||ϕς − ϕ|| ≤
∫ t

t−ς

||ϕ̇||ds ≤
∫ t

t−ς

ε1||ϕ̄|| + ε2||ϕ||ds.

Therefore,
∫ t

t0
||ϕς − ϕ||ds =

∫ t0+ς

t0
||ϕς − ϕ||ds +

∫ t

t0+ς

||ϕς − ϕ||ds

≤
∫ t0+ς

t0

∫ s

s−ς

ε1||ϕ̄|| + ε2||ϕ||dqds
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+
∫ t

t0+ς

∫ s

s−ς

ε1||ϕ̄|| + ε2||ϕ||dqds.

and
∫ t

t0+ς

∫ s

s−ς

ε1||ϕ̄|| + ε2||ϕ||dqds ≤ς

∫ t

t0
ε1||ϕ̄||ds + ς

∫ t

t0
ε2||ϕ||ds

≤ς�2

∫ t

t0
||ϕ̄|| + ||ϕ||ds,

where �2 = max{ε1, ε2}.
Similarly,

∫ t0+ς

t0

∫ s

s−ς

ε1||ϕ̄|| + ε2||ϕ||dqds ≤
∫ t0+ς

t0−ς

∫ q+ς

q
ε1||ϕ̄|| + ε2||ϕ||dsdq

≤ 2ς2�2 sup
s∈[t0−ς,t0+ς ]

(||ϕ̄|| + ||ϕ||).

Then, when t > t0 + P ,

||W || + ||W̄ || ≤ �1

∫ t

t0
||W || + ||W̄ ||ds + ε5

∫ t

t0
||ϕς − ϕ||ds

≤ (�1 + ε5P�2)

∫ t

t0
||W || + ||W̄ ||ds + ε5P�2

∫ t

t0
||ζ̄ || + ||ζ ||ds

+ 2ς2�2 sup
s∈[t0−P,t0+P]

(||ϕ̄|| + ||ϕ||)

≤ (�1 + ε5P�2)

∫ t

t0
||W || + ||W̄ ||ds

+
[

�/℘ (ε5P�2) + 2P2�2

]

sup
s∈[t0−P,t0+P]

(||ϕ|| + ||ϕ̄||). (13)

By utilizing Grownwall inequality, when t0 + P ≤ t ≤ t0 + 2�, we have

||W || + ||W̄ ||
≤ �1 exp(�2(t − t0)) sup

s∈[t0−P,t0+P]
(||ϕ|| + ||ϕ̄||)

≤ �1 exp(2�2�) sup
s∈[t0−P,t0+P]

(||ϕ|| + ||ϕ̄||), (14)

where �1 = �/℘ε5P�2 + 2P2�2, and �2 = �1 + ε5P�2.
Note that P ≤ �/2, hence, when t0 − P + � ≤ t ≤ t0 − P + 2�,

||ϕ|| + ||ϕ̄|| ≤ ||W || + ||W̄ || + ||ζ || + ||ζ̄ ||
≤

(

�1 exp(2�2�) + � exp(−℘(� − P))

)

sup
s∈[t0−P,t0+P]

(||ϕ|| + ||ϕ̄||), (15)

SelectΘ(P) = �1 exp(2�2�)+� exp(−℘(�− P)). From the definition of ϑ , we could
find that Θ(P) is strictly increasing with respect to P . In addition, since � > ln l

℘
, hence,

Θ(0) < 1. Therefore, there exists a constant P̄ such that Θ(P̄) = 1, i.e. for all 0 < P ≤ P̄ ,
Θ(P) ≤ 1 holds.
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Let � = − lnΘ/�, hence, � > 0, when P ∈ [0, P̄]. Therefore, from (15), we have

sup
s∈[t0−P+�,t0−P+2�]

(

||ϕ|| + ||ϕ̄||
)

≤ exp(−��) sup
s∈[t0−P,t0−P+�]

(

||ϕ|| + ||ϕ̄||
)

. (16)

Thus, by using mathematical induction and the existence and uniqueness of (4), a constant
κ ∈ N

+, such that

sup
s∈[t0−P+κ�,t0−P+(κ+1)�]

(

||ϕ|| + ||ϕ̄||
)

≤ exp(−��) sup
s∈[t0−P+(κ−1)�,t0−P+κ�]

(

||ϕ|| + ||ϕ̄||
)

≤ . . .

≤ exp(−κ��)Z, (17)

where Z = sups∈[t0−P,t0−P+�]
(

||ϕ|| + ||ϕ̄||
)

.

And then, for all t > t0 − P + �,

||ϕ|| + ||ϕ̄|| ≤ Z exp(��) exp(−�(t − t0)) (18)

holds.
Clearly, (18) also holds for t0 ≤ t ≤ t0 − P + �. Thus, system (4) can maintain global

exponential stable. 	


Remark 3 The time delay is common in the process of system operation, and the system will
produce different dynamic behavior with different time delay. In the current studies [12, 15,
21], there is no upper bound on the time delay that the system can withstand to maintain
exponential stability.

4 The limit of time delay and the intensity of stochastic disturbance

In this section, we consider the following system with two types of disturbances:

dγ ′
i =

[

−aiγ
′
i (t) − biγi (t) +

∑

j

ci j g j (γ j ) +
∑

j

hi j g j (γ j (t − ς(t)))

+
∧

j

ei j g j (γ j (t − ς(t))) +
∨

j

ki j g j (γ j (t − ς(t)))

]

dt

+ �iγi (t)dB(t), (19)

where ς(t) is the time-varying delay function; B(t) is the Brownian movement defined in
complete probability space; �i is the intensity of Brownian movement.
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Similarly, let γ̄i = ηi
dγi (t)
dt + ξiγi (t), ηi �= 0, we can obtain that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dγi (t) =
[
1

ηi
γ̄i (t) − ξi

ηi
γi (t)

]

dt,

dγ̄i (t) =
{

(
ξi

ηi
− ai )γ̄i (t) + (aiξi − biηi − ξ2i

ηi
)γi (t)

+ ηi

[∑

j

ci j� j (γ j (t)) +
∑

j

hi j� j (γ j (t − ς(t)))

+
∧

j

ei j� j (γ j (t − ς(t))) +
∨

j

ki j� j (γ j (t − ς(t)))

]}

dt

+ �iγi (t)dB(t).

(20)

Then, we give the definition of exponential stability of SFDINN (20) in mean square.

Definition 2 [42] SFDINN (20) is said to be mean square exponentially stable if there are
two constants � > 0, ℘ > 0 such that

E

[

||γ (t)||2 + ||γ̄ (t)||2
]

≤ � exp(−℘(t − t0)) sup
s∈[t0−P,t0]

(

||γ (s)||2 + ||γ̄ (s)||2
)

(21)

holds.

In order to maintain exponential stability of SFDINN in mean square, we have the fol-
lowing theorem.

Theorem 2 Let Assumption 1 holds, � > ln 2�2/2℘, then, SFDINN (20) is said to be expo-
nential stability in mean square if |� | < �̄ and P < min{�/2, P̄}, �̄ and P̄ satisfy the
following two transcendental equations

2�̄ 2�2/℘ exp(2��3) + �2 exp(−2℘�) = 1, (22)

and

�2 exp(−2℘(� − P̄)) +
{

24��4[(2�2/℘ + 1)P̄2]

+ �̄ 2�2/℘

}

exp{2�[�̄3 + 48�ε25 P̄
2�4]} = 1, (23)

where

�̄3 = max{4�ε21 + 12�ε23 , 4�ε22 + 12�ε24 + 2�̄ 2}.

Proof For simplify, denote γi = γi (t), γ̄i = γ̄ (t), γ ς
i = γi (t − ς(t)), ζi = ζi (t), ζ̄i = ζ̄i (t),

γ = {γ1, . . . , γn}, γ̄ = {γ̄1, . . . , γ̄n}, ζ = {ζ1, . . . , ζn}, ζ̄ = {ζ̄1, . . . , ζ̄n}, Γi = γi − ζi and
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Γ̄i = γ̄i − ζ̄i From SFDINN (20), we can obtain that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dΓi =
[
1

ηi
Γ̄i − ξi

ηi
Γi

]

dt,

dΓ̄i =
{

(
ξi

ηi
− ai )Γ̄i + (aiξi − biηi − ξ2i

ηi
)Γi + ηi

[∑

j

ci j

(

� j (γ j ) − � j (ζ j )

)

+
∑

j

hi j

(

� j (γ
ς
j ) − � j (ζ j )

)

+
(∧

j

ei j� j (γ
ς
i ) −

∧

j

ei j� j (ζ j )

)

+
(∨

j

ki j� j (γ
ς
j ) −

∨

j

ki j� j (ζ j )

)]}

dt + �iγi d B(t).

(24)

Hence,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|Γi | ≤
∫ t

t0

[
1

|ηi | |Γ̄i | +
∣
∣
∣
∣
ξi

ηi

∣
∣
∣
∣|Γi |

]

ds,

|Γ̄i | ≤
∫ t

t0

{

|αi ||Γ̄i | + |βi ||Γi | + |ηi |
[∑

j

|ci j |l|γ j − ζ j |

+
∑

j

|hi j |l|γ ς
j − ζ j | +

∑

j

|ei j |l|γ ς
i − ζ j |

+
∑

j

|ki j |l|γ ς
j − ζ j |

]}

ds +
∫ t

t0
|�i ||γi |dB(s).

(25)

Therefore, for t < t0 + 2�,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

E||Γ ||2 ≤ 4�ε21

∫ t

t0
E||Γ̄ ||2ds + 4�ε22

∫ t

t0
E||Γ ||2ds,

E||Γ̄ ||2 ≤ 12�

{

ε23

∫ t

t0
E||Γ̄ ||2ds + ε24

∫ t

t0
E||Γ ||2ds

+ ε25

∫ t

t0
E||γ ς − γ ||2ds

}

+ 2� 2
∫ t

t0
E||γ (s)||2ds,

(26)

where � = max
i=1,2,...,n

|�i |.
Thus,

E

(

||Γ ||2 + ||Γ̄ ||2
)

≤ �3

∫ t

t0
E

(

||Γ̄ ||2 + E||Γ ||2
)

ds + 12�ε25

∫ t

t0
||γ ς − γ ||2ds

+ 4� 2
∫ t

t0
E

(

||ζ(s)||2 + ||ζ̄ (s)||2
)

ds, (27)

where �3 = max{4�ε21 + 12�ε23 , 4�ε22 + 12�ε24 + 4� 2}.
Since, when t < t0 + 2�,

∫ t

t0
E||γ ς − γ ||2ds =

∫ t0+ς

t0
E||γ ς − γ ||2ds +

∫ t

t0+ς

E||γ ς − γ ||2ds, (28)
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and

E||γ ς − γ ||2 ≤ 2ς
∫ t

t−ς

ε21E||γ̄ ||2 + ε22E||γ ||2ds. (29)

Therefore,
∫ t

t0+ς

E||γ ς − γ ||2ds ≤ 2ς
∫ t

t0+ς

∫ s

s−ς

�4E(||γ̄ ||2 + ||γ ||2)dθds

≤ 2ς2
∫ t

t0
�4E(||γ̄ ||2 + ||γ ||2)dθ

≤ 4ς2�4

∫ t

t0
E

(

||Γ ||2 + ||Γ̄ ||2
)

dθ+4ς2�4

∫ t

t0
E(||ζ ||+||ζ̄ ||)2dθ

≤ 4P2�4

∫ t

t0
E

(

||Γ ||2 + ||Γ̄ ||2
)

dθ

+ 4P2�2/℘�4 sup
s∈[t0−P,t0]

E(||ζ ||2 + ||ζ̄ ||2), (30)

and
∫ t0+ς

t0
E||γ ς − γ ||2ds ≤ 2ς

∫ t0+ς

t0

∫ s

s−ς

�4E(||γ̄ ||2 + ||γ ||2)dθds

≤ 2P2�4 sup
s∈[t0−P,t0+P]

E(||γ̄ ||2 + ||γ ||2). (31)

Hence,

E

(

||Γ ||2 + ||Γ̄ ||2
)

≤ �3

∫ t

t0
E

(

||Γ̄ ||2 + ||Γ ||2
)

ds + 12�ε25

∫ t

t0
E||γ ς − γ ||2ds

+ 4� 2
∫ t

t0
E

(

||ζ ||2 + ||ζ̄ ||2
)

ds

≤ �3

∫ t

t0
E

(

||Γ ||2 + ||Γ̄ ||2
)

ds

+ 12�ε25

{

4P2�4

∫ t

t0
E

(

||Γ ||2 + ||Γ̄ ||2
)

dθ

+ (4P2�2/℘�4 + 2P2�4) sup
s∈[t0−P,t0+P]

E(||γ ||2 + ||γ̄ ||2)
}

+ 4� 2
∫ t

t0
E

(

||ζ ||2 + ||ζ̄ ||2
)

ds

≤(�3 + 48�ε25 P
2�4)

∫ t

t0
E

(

||Γ ||2 + ||Γ̄ ||2
)

ds

+
[

24��4(2P
2�2/℘ + P2) + 2� 2�2/℘

]

× sup
s∈[t0−P,t0+P]

E(||γ ||2 + ||γ̄ ||2). (32)
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So, when t ≤ t0 + 2�, from the Gronwall inequality, we can obtain

E

(

||Γ ||2 + ||Γ̄ ||2
)

≤ A(�, P) exp(2B(�, P)�) sup
s∈[t0−P,t0+P]

E(||γ ||2 + ||γ̄ ||2), (33)

where A(�, P) = 24��4(2P2�2/℘ + P2) + 2� 2�2/℘, B(�, P) = �3 + 48�ε25 P
2�4.

Furthermore, when t0 − P + � ≤ t ≤ t0 − P + 2�, noting that P ≤ �/2, then

E

(

||γ ||2 + ||γ̄ ||2
)

≤ 2E

(

||Γ ||2 + ||Γ̄ ||2
)

+ 2E

(

||ζ ||2 + ||ζ̄ ||2
)

≤ 2

[

A(�, P) exp(2B(�, P)�) + �2 exp(−2℘(� − P))

]

× sup
s∈[t0−P,t0−P+�]

E(||γ ||2 + ||γ̄ ||2)

=: Q(�, P) sup
s∈[t0−P,t0−P+�]

E(||γ ||2 + ||γ̄ ||2), (34)

where Q(�, P) = A(�, P) exp(2B(�, P)�) + �2 exp(−2℘(� − P)).
From Assumption 1, we can obtain that Q(0, 0) < 1 and Q(∞, 0) > 1. Since, Q(�, 0)

is strictly increasing for � , hence, there exists a �̄ > 0 such that Q(�̄ , 0) = 1. Sim-
ilarly, Q(�, P) is also increasing for P when |� | ≤ �̄ , thus, exist a P̄ > 0 such that
Q(�/

√
2, P̄) = 1 holds. That means SFDINN is exponential stable in mean square when

|� | ≤ �̄ and P < min{�/2, P̄}.
Select Ω = − lnQ(�, P)/�, then we have

sup
t0−P+�≤t≤t0−P+2�

E

(

||γ ||2 + ||γ̄ ||2
)

≤ exp(−Ω�) sup
t0−P≤t≤t0−P+�

E

(

||γ ||2 + ||γ̄ ||2
)

.

(35)

The rest of the proof is similar with the Theorem 1, so it is omitted here. 	


Remark 4 The result in Theorem 2 in not a simple extension of the result of Theorem 1, there
is a mutual constraint relationship between the magnitude of the intensity of two disturbance
factors.

Remark 5 Table 1 provides a comparison of the existing literature with this paper. Elements
to be compared are time delay (T-D), stochastic disturbances (S-D), RoS, inertial terms (I-T),
fuzzy logic (F-L).

Remark 6 The Fig. 1 shows the detailed analysis steps of Theorems 1 and 2. In addition, due
to random perturbations in SFDINN, I t ô formula is essential, which also leads to the fact
that Theorem 1 is not a simple generalization of Theorem 2.
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Table 1 A brief comparison
between several existing
literature and this paper

I-T F-L T-D S-D RoS

Kumar et al. [15] ✔ – ✔ – –

Fang et al. [19] – ✔ ✔ ✔ ✔

Huang et al. [21] – – ✔ ✔ –

Aouiti et al. [22] ✔ – ✔ ✔ –

Cui et al. [24] ✔ – ✔ ✔ –

Du et al. [32] ✔ ✔ ✔ – –

Si et al. [38] – – – ✔ ✔

Wenxiang et al. [43] – ✔ – ✔ ✔

This paper ✔ ✔ ✔ ✔ ✔

Fig. 1 The analysis steps of this paper
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5 Examples

Example 1 Consider the following inertial neural network.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ̈1(t) = −a1ϕ̇1(t) − b1ϕ1(t) +
∑

j

c1 j� j (ϕ j (t)) +
∑

j

h1 j� j (ϕ j (t − ς(t)))

+
∧

j

e1 j� j (ϕ j (t − ς(t))) +
∨

j

k1 j� j (ϕ j (t − ς(t))),

ϕ̈2(t) = −a2ϕ̇2(t) − b2ϕ2(t) +
∑

j

c2 j� j (ϕ j (t)) +
∑

j

h2 j� j (ϕ j (t − ς(t)))

+
∧

j

e2 j� j (ϕ j (t − ς(t))) +
∨

j

k2 j� j (ϕ j (t − ς(t))),

(36)

where a1 = a2 = 2, b1 = b2 = 1, c = [0.2 − 0.2;−0.1 − 0.3], h = [−0.3 0.1;−0.2 0.2],
e = [0.2 − 0.1;−0.1 0.1], k = [0.1 − 0.1;−0.1 0.1].

Let η1 = η2 = 1, ξ1 = ξ2 = 1 and � = 0.15, (36) can be rewritten as the following form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ̇1(t) = 1

η1
ϕ̄1(t) − ξ1

η1
ϕ1(t),

˙̄ϕ1(t) = (
ξ1

η1
− a1)ϕ̄1(t) + (a1ξ1 − b1η1 − ξ21

η1
)ϕ1(t)

+ η1

{∑

j

c1 j� j (ϕ j (t)) +
∑

j

h1 j� j (ϕ j (t − ς(t)))

+
∧

j

e1 j� j (ϕ j (t − ς(t))) +
∨

j

k1 j� j (ϕ j (t − ς(t)))

}

,

ϕ̇2(t) = 1

η2
ϕ̄2(t) − ξ2

η2
ϕ2(t),

˙̄ϕ2(t) = (
ξ2

η2
− a2)ϕ̄2(t) + (a2ξ2 − b2η2 − ξ22

η2
)ϕ1(t)

+ η2

{∑

j

c2 j� j (ϕ j (t)) +
∑

j

h2 j� j (ϕ j (t − ς(t)))

+
∧

j

e2 j� j (ϕ j (t − ς(t))) +
∨

j

k2 j� j (ϕ j (t − ς(t)))

}

.

(37)

In addition, choose decay coefficient � = 1 and decay rate ℘ = 0.4. Then ε1 = ε2 = 1,
ε3 = −1, ε4 = 1.3, ε5 = 1, �1 = 2.3 and �2 = 1. Hence, from (15), we have

(P̄ + 3P̄2) exp(0.3(2.3 + P̄)) + exp(P̄ − 0.15) = 1. (38)

Therefore, P̄ = 0.0107, i.e., inertial neural network (36) is GES if P ≤ P̄ .
Figure2 shows the states of FINN (37) in initial values (−0.7,−0.1) and (0.1, 0.4) with

P = 0.001 < 0.0107. Hence, FDINN is GES. And, the value of ||ϕ(t)|| + ||ϕ̄(t)|| is shown
in Fig. 3.
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Fig. 2 The states of (37) with P = 0.001 in initial value (ϕ1(t0), ϕ2(t0)) = (−0.7,−0.1) and
(ϕ̄1(t0), ϕ̄2(t0)) = (0.1, 0.4)

Example 2 Consider the following SFDINN.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dγ ′
1(t) =

[

−a1γ
′
1(t) − b1γ1(t) +

∑

j

c1 j� j (γ j (t)) +
∑

j

h1 j� j (γ j (t − ς(t)))

+
∧

j

e1 j� j (γ j (t − ς(t))) +
∨

j

k1 j� j (γ j (t − ς(t)))

]

dt

+ �1γi (t)dB(t),

dγ ′
2(t) =

[

−a2γ
′
2(t) − b2γ2(t) +

∑

j

c2 j� j (γ j (t)) +
∑

j

h2 j� j (γ j (t − ς(t)))

+
∧

j

e2 j� j (γ j (t − ς(t))) +
∨

j

k2 j� j (γ j (t − ς(t)))

]

dt

+ �2γi (t)dB(t),

(39)

where the parameters are the same as those in Example 1.
Similarly, take same ηi and ξi in Example 1., then SFDINN (39) can be rewritten in the

following form,
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Fig. 3 The value of ||ϕ(t)|| + ||ϕ̄(t)||

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dγ1(t) =
[
1

η1
γ̄1(t) − ξ1

η1
γ1(t)

]

dt,

dγ̄1(t) =
{

(
ξ1

η1
− a1)γ̄1(t) + (a1ξ1 − b1η1 − ξ21

η1
)γ1(t)

+ η1

[∑

j

c1 j� j (γ j (t)) +
∑

j

h1 j� j (γ j (t − ς(t)))

+
∧

j

e1 j� j (γ j (t − ς(t))) +
∨

j

k1 j� j (γ j (t − ς(t)))

]}

dt

+ �1γ1(t)dB(t),

dγ2(t) =
[
1

η2
γ̄2(t) − ξ2

η2
γ2(t)

]

dt,

dγ̄2(t) =
{

(
ξ2

η2
− a2)γ̄2(t) + (a2ξ2 − b2η2 − ξ22

η2
)γ2(t)

+ η2

[∑

j

c2 j� j (γ j (t)) +
∑

j

h2 j� j (γ j (t − ς(t)))

+
∧

j

e2 j� j (γ j (t − ς(t))) +
∨

j

k2 j� j (γ j (t − ς(t)))

]}

dt

+ �2γ2(t)dB(t).

(40)
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Fig. 4 The state of SFDINN (40) with P = 0.001 and � = 0.003

Then, from (22) and (23), we can obtain the following two transcendental Equations

5�̄ 2 exp(0.3�3) + exp(−0.24) = 1, (41)

and

exp(−0.8(0.15 − P̄)) +
{

21.6P̄2 + 2.5�̄ 2
}

exp[2�(�̄3 + 7.2 P̄2)] = 1. (42)

After calculations, we can obtain �̄ = 0.0067, and P̄ = 0.0021, i.e. SFDINN (39) is
MSES when |� | ≤ �̄/

√
2 = 0.0047 and P ≤ min{�/2, P̄} = 0.0021.

Choose P = 0.001 < 0.0021 and� = 0.003 < 0.0047, then it can maintain exponential
stability as shown in Fig. 4. Figure5 shows the states of SFDINN (39) in the sense of mean
square with P = 0.001 < 0.0021 and � = 0.003 < 0.0047.

Figure6 shows the state of system (39) when P = 0.001 and � = 2. Since � is greater
than the result derived from Theorem 2, the system cannot continue to maintain exponential
stability, which is exactly what Fig. 7 shows. In Figs. 8 and9, we take P = 4 and � = 4.
At this time, the intensities of both perturbations are greater than the upper bound derived
from the Theorem 2, so the system is not exponentially stable. Therefore, it can be seen that
only when both perturbations satisfy the conditions, the disturbed system can still maintain
global exponential stability.

Remark 7 By Examples 1 and 2, we can see that the system will continue to maintain expo-
nential stability when both perturbations are in the range we have calculated. In addition,
Fig. 10 gives a brief calculation process for numerical examples.
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Fig. 5 The value of E||γ (t)||2 + E||γ̄ (t)||2 under P = 0.001 and � = 0.003

Fig. 6 The state of SFDINN (40) with P = 0.001 and � = 2
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Fig. 7 The value of E||γ (t)||2 + E||γ̄ (t)||2 under P = 0.001 and � = 2

Fig. 8 The state of SFDINN (40) with P = 4 and � = 4
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Fig. 9 The value of E||γ (t)||2 + E||γ̄ (t)||2 under P = 4 and � = 4

Remark 8 The ROM used in this paper contains two variable parameters ηi and ξi , which is
different from the [16, 17]. The choice of variable parameters also affects the norm of the
system, for example consider the following system model:

ÿ(t) = −0.0833ẏ(t) − 14.8157y(t) − 16.0714 tanh(y(t)). (43)

Use the ROM for the above systems, take z(t) = η ẏ(t) + ξ y(t), then, the system transforms
to a high dimensional system below:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẏ(t) = 1

η
z(t) − ξ

η
y(t),

ż(t) =
(

ξ

η
− 0.0833

)

z(t) + (0.0833ξ − 14.8157η

− ξ2

η
)y(t) − 16.0714η tanh(y(t)).

(44)

It can be found that when either or both η and ξ are 1, the transformed system is a special
case of system (44). Figure11 shows the states of system (44) under different η and ξ . As
can be seen from the Fig. 11, different selection of transformation parameters will lead to
changes in the state of z(t), which will also indirectly lead to changes in the norm of the
whole system. Figure12 illustrates this point. Therefore, according to the theorem in this
paper, it can be seen that when the norm of the whole system changes, the upper bound of the
perturbation it can withstand can be found to change accordingly. Hence, if only one or zero
variable transformation coefficients are considered in this paper, the results are conservative
and may not be applicable to all transformations.
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Fig. 10 A brief calculation process for numerical examples
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Fig. 11 The states of system (44) under different coefficients selections
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Fig. 12 The norm of system (44) under different coefficients selections
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6 Conclusion

Through the calculations of upper limits of perturbations, this paper analyzes the RoS of
FINNs. This paper derives upper limits of both time delays and stochastic disturbances
using the Gronwall-Bellman lemma and various inequality techniques to make the disturbed
FINN maintain exponential stability. Limitations between the two forms of disturbances are
provided. Examples are provided to validate our findings. Those conclusions reached here
provide a solid foundation for applications and designs of TSFCNN. Future study may focus
on combining the famous methods like LMI method, Lyapunov theory etc. to reduce the
conservative of this paper.
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