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Abstract
This brief investigates the extended dissipativity performance of semi-discretized com-
petitive neural networks (CNNs) with time-varying delays. Inspired by the computational
efficiency and feasibility of implementing the networks, we formulate a discrete counterpart
to the continuous-timeCNNs. By employing an appropriate Lyapunov–Krasovskii functional
(LKF) and a relaxed summation inequality, sufficient conditions ensure the extended dissi-
pative criteria of discretized CNNs are obtained in the linear matrix inequality framework.
Finally, to refine our prediction, two numerical examples are provided to demonstrate the
sustainability and merits of the theoretical results.

Keywords Competitive neural networks · Semi-discretization technique · Extended
dissipative analysis · Lyapunov–Krasovskii functional

1 Introduction

Over the past few decades, the study on the dynamical behavior of neural networks (NNs)
has acquired widespread consideration in the domain of computer vision, object detection,
image recognition, fixed-point computations, pattern classification, quantumcommunication,
and so on [1, 3–5]. As the structure of NNs is concerned, varying the connectivity and
learning algorithms produces distinct dynamic behaviors. Moreover, in the context of NNs,
the learning process is commonly perceived as the task of modifying the network architecture
and connection weights to achieve efficient dynamic behaviors. In general, there are three
main learning paradigms for NNs, namely supervised, unsupervised, and hybrid, fromwhich
the unsupervised learning algorithmhas efficient real-life applications since it does not require
an output associated with each input pattern to train the data set. Further, the unsupervised
learning algorithm explores the inherent structure or correlations among patterns within
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the data, categorizing them based on these correlations. Bearing this fact in mind, in [6]
the authors incorporate competitive architecture, typically a type of unsupervised machine
learning algorithm to update the neuron states in the NNs and as a result develop competitive
NNs (CNNs). The major key to the design of competitive networks is the idea of excitatory
and inhibitive influences on an artificial neuron. In most of the existing NNs, we might have
noticed that neurons with activation functions receive inputs (xi ) and generate outputs (yi ,
i ∈ Nn) accordingly, as shown in Fig. 1. Comparatively, neurons within CNNs engage in
inter-neuronal competition to attain activation. In CNNs, the output layer is designed with
lateral connection, where each neuron is fed back to itself in a self-excitatory manner and to
the other neurons in an excitatory or inhibitory manner, as shown in Fig. 2. As a consequence,
the output layer competeswith each other attributes to the prevalence of both feed-forward and
feed-backward connection layers. In such idealization, the synaptic weight is time-varying
and hence it can be modified by external stimulus. Consequently, the network operating
within this framework encompasses the dynamics of both neural activity levels, referred
to as short-term memory (STM), and the dynamics of synaptic modifications, denoted as
long-term memory (LTM). This type of unique structure formulation allows the network to
incorporate the dynamics of both neural activity levels and synaptic modification, making it
different from conventional NNs. In consequence, numerous reports based on the dynamics
of CNNs have been published recently [7–16].

In the parallel perspective, NNs are typically modeled and analyzed using continuous-
time differential equations. It is common practice to approximate these networks using
discrete-time difference equations in practical implementation. These approximations pro-
vide solutions at discrete time points that are expected to represent samples of the solutions
of the original differential equations. Such approximations are commonly used in numerical

Fig. 1 Learning Paradigm of
NNs

Fig. 2 Learning Paradigm of
CNNs
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integration techniques like Euler and Runge–Kutta methods for simulating continuous-time
networks on computers. Recently, in [17, 18], the authors discretized the continuous-time
NNs owing to their easier modeling and practical implementations. Additionally, there are
two major benefits to analyze NNs in the discrete-time context. First, the digital controller
can be implemented directly by using the proper technique rather than using the analog con-
troller. Secondly, the synthesized network is executed directly within the digital processor.
These two advantages make the discrete-time NNs easy to implement in reality [19, 21].
Even though there exist numerous techniques (such as Runge–Kutta and Euler schemes) in
the existing results, to discretize the continuous-time dynamical systems, these numerical
schemes can reveal fictitious steady-state responses. Also, it is important to note that the
dynamics resulting from the numerical discretization of differential equations can lead to
misleading steady-state solutions and asymptotic behavior. Moreover, these artifacts are not
inherent in the original form of the differential equations. To solve these limitations, more
recently in [19] and [21], the authors adopted the semi-discretization techniques to deter-
mine the discrete counterpart of impulsive Cohen–Grosberg and quaternion-valued NNs,
respectively, and endorsed that the resultant discrete-time network preserves the dynamics
of their continuous-time version. Inspired by these compelling facts and recognizing that all
the previously mentioned studies rely on continuous-time CNNs and no outcomes have been
reported yet regarding discrete-time CNNs (DT-CNNs), here we discretize the CNNs based
on semi-discretization technique.

Meanwhile, it has been recognized that the qualitative behavior of NNs is usually char-
acterized by an input–output relation and storage function consideration. The evaluation of
input–output correlation within the examined network is accomplished using an energy-like
function (referred to as the storage function) and input-power-like functions (referred to as
the supply rate) [20]. The concept of dissipativity is theoretically delineated by these storage
functions and supply rates, signifying that the growth of stored energy remains bounded by
the quantity of energy introduced by the external environment. In essence, dissipative systems
have the inherent capability to only dissipate and not generate energy. Consequently, dissipa-
tivity has gained recognition as a fundamental tool for analyzing and stabilizing large-scale
systems, including NNs [22–24]. However, when there is no sufficient information about
the external disturbance, then it leads to an unpredictable supply rate of the network, which
no longer produces satisfactory performance. To deal with these types of problems various
robust performances like H∞ and L2 − L∞ were introduced [25, 26]. In a generalization of
all the above robust performance, the authors introduced a novel performance index called
extended dissipativity, which contains passivity, dissipativity, H∞, and L2−L∞ performance
as its special case [27, 28]. In the existing literature, the study on robust performances like
passivity and dissipativity has been analyzed for CNNs due to their numerous applications
[29–31]. It is noteworthy to mention that there are only a few results available in the exist-
ing literature based on the robust performances of continuous-time CNNs and there are no
such results in DT-CNNs. In this paper, the generalized robust performance called extended
dissipativity performance is newly introduced to DT-CNNs, which increases the novelty of
this study.

Based on the aforementioned discussions and the fact that the numerical analog is essen-
tial to perform the computational task, in this paper semi-discretization criteria are used
to study the dynamics of DT-CNNs. Moreover, as mentioned earlier, obtaining the gener-
alized performance index is an effective tool for achieving less conservative results. With
this motivation in mind, this paper accomplishes the extended dissipativity performance for
the delayed DT-CNNs. In implementing the stability criterion, the arduous problem is to
construct an appropriate LKF of delayed DT-CNNs and to reach the tighter upper bounds
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of the estimated summation terms of LKF. In this paper, an appropriate system-dependent
LKF is considered such that it contains more system information. In particular, the LKF
is constructed based on both the STM and LTM state vectors, time-varying delay, and the
activation function of the DT-CNNs. In addition, the augmented LKF is constructed based
on the state vectors and delay bound components of the discretized CNNs which provide
various cross-terms of the augmented vectors. Consequently, to obtain the tighter bound, in
recent days the relaxed summation inequality which is obtained by the combination of tighter
summation inequality and the matrix bounding techniques has attracted high research inter-
est [32, 33]. For instance, in [32], the relaxed summation-based inequality was derived by
combining Wirtinger-based summation inequality and reciprocally convex matrix inequality
(RCMI). Similarly, this combination technique is used in [33], where the auxiliary function-
based summation inequality (AFSI) is combined with extended RCMI (ERCMI) [34] to
analyze the extended dissipativity of DT-CNNs. It is noteworthy that the inequalities AFSI
and ERCMI are the generalization of Wirtinger and Jensen summation inequalities.

This paper aims toprovidemore insight into investigating the extendeddissipativity criteria
for DT-CNNs through relaxed AFSI. The key contributions of this article are summarized as
follows:

(i) The discrete-time analog of the continuous-time CNNs is formulated using the semi-
discretization technique, where the corresponding system parameters of the DT-CNNs
are obtained accordingly from its continuous-time counterpart. It demonstrates the
appropriateness of the developed discrete-time counterparts of CNNs as mathemati-
cal models.

(ii) The concept of extended dissipativity has been introduced to the discretized CNNs with
time-varying delay. Accordingly, the established criteria not only ensure the discretized
network is stable but also satisfies the common input–output energy functions like pas-
sivity, dissipativity, H∞, and L2 − L∞ performances.

(iii) Finally, the effectiveness of DT-CNNs are investigated through simulation results.

The remaining part of this paper is systematized as follows. In Sect. 2, the discrete-time analog
of the CNNs is formulated using the semi-discretization technique, where the correspond-
ing system parameters of the DT-CNNs are obtained accordingly from its continuous-time
counterpart. Some preliminaries are given in Sect. 3. In Sect. 4, the sufficient conditions
ensuring the extended dissipativity are obtained in terms of LMIs. Section 5 demonstrate the
effectiveness of the proposed results with two numerical examples. Section 6 concludes the
work done in this paper.
Notations: The notation used in this paper are listed below:
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Symbol Meaning

AT (A−1) Transpose (Inverse) of the matrix A
vecn{yi (k)} [y1(k), y2(k), . . . , yn(k)]T
S
n(Sn+) Collection of n × n symmetric (positive definite) matrices

Nn Finite set of natural numbers {1, 2, . . . , n}
R
m×n Collection of all m × n real matrices

R
n Collection of all n-dimensional real vectors

Z
+ Collection of all non-negative integers

L2[0,∞) The space of square integral vector functions over [0, ∞)

diag{. . . } Block-diagonal matrix
A > 0 (≥ 0) The matrixA is positive definite (positive semi-definite)
A < 0 (≤ 0) The matrixA is negative definite (negative semi-definite)
0 and I Zero and identity matrices of appropriate dimensions, respectively
∗ Symmetric entry in a symmetric matrix
Z[a1, a2] {a1, a1 + 1, . . . , a2} for integers a1 and a2 with a1 < a2
C(Z[a, b], R

n) Banach space consisting of all continuous functions defined on [a, b]

2 System formulation

In this section, the discrete-time analog of the continuous-time CNNs is formulated by adapt-
ing the semi-discretization technique. Let us consider the following CNNs formulated by
continuous-time differential equations:
⎧
⎪⎪⎨

⎪⎪⎩

ε
dxSi (t)

dt
= −ai xSi (t) +

n∑

j=1
bi j f j (xSj (t)) +

n∑

j=1
ci j f j (xSj (t − ρ(t))) +

n∑

j=1
Di j xLi (t),

dxLi (t)

dt
= −αi xLi (t) +

n∑

j=1
βi j f j (xSj (t)), i ∈ Nn,

(1)

where the first system is called STM and the latter is called LTM; n indicates the number of
neurons; ε > 0 is the time scale of STM state; xSi (t) is the neuron current activity level in
the system; f j (xSj (t)) and f j (xSj (t − ρ(t))) denote the activation and delayed activation
functions of the j-th neuron, respectively; xLi (t) is the synaptic efficiency, ρ(t) is the time-
varying delay satisfying 0 ≤ ρ(t) ≤ ρ; ai > 0 is the self-feedback constant; bi j and ci j
denote the synaptic weights of activation functions; Di j denotes the strength of the external
stimulus; αi > 0 and βi j are scaling constants.

To obtain the discrete-time analog of the considered continuous-time CNNs (1), based on
the semi-discretization method we initiate by reformulating the network based on the step

size and obtain the following for t ∈
([

t

r

]

r ,

[
t

r

]

r + r

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ε
dxSi (t)

dt
= −ai xSi (t) +

n∑

j=1
bi j f j

(

xSj

([
t

r

]

r

))

+
n∑

j=1
ci j f j

(

xSj

([
t

r

]

r − ρ

([
t

r

]

r

)))

+
n∑

j=1
Di j xLi

([
t

r

]

r

)

,

dxLi (t)

dt
= −αi xLi (t) +

n∑

j=1
βi j f j

(

xSj

([
t

r

]

r

))

, i ∈ Nn,

where r > 0 is the positive constant denoting uniform discretization step size and

[
t

r

]

represents the integral part of t
r . For notation simplicity, let us assume

[
t

r

]

= k, k =
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0, 1, 2, . . . and xi

([
t

r

]

r

)

= xi (kr) � xi (k). Thus, the above system can be reformulated

as
⎧
⎪⎪⎨

⎪⎪⎩

ε
dxSi (t)

dt
=−ai xSi (t)+

n∑

j=1
bi j f j

(
xSj (k)

)+
n∑

j=1
ci j f j

(
xSj (k − ρ(k))

)+
n∑

j=1
Di j xLi (k),

dxLi (t)

dt
= −αi xLi (t) +

n∑

j=1
βi j fi

(
xSi (k)

)
, i ∈ Nn,

for t ∈ (kr , (k + 1)r), k = 0, 1, 2, . . . . The aforementioned system can be restated as
follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d

dt

[
xSi (t)e

ai
ε
t
]

= e
ai
ε
t

ε

[
n∑

j=1
bi j f j

(
xSj (k)

) +
n∑

j=1
ci j f j

(
xSj (k − ρ(k))

) +
n∑

j=1
Di j xLi (k)

]

,

d

dt

[
xLi (t)e

αi t
] = eαi t

[
n∑

j=1
βi j fi

(
xSi (k)

)
]

, i ∈ Nn, t ∈ (kr , (k + 1)r) , k = 0, 1, 2, . . . .

Now, by integrating the above over [kr , t), where t < (k + 1)r , we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xSi (t)e
ai
ε
t − xSi (k)e

ai
ε
kr = e

ai
ε
t − e

ai
ε
kr

ai

[
n∑

j=1
bi j f j

(
xS j (k)

) +
n∑

j=1
ci j f j

(
xS j (k − ρ(k))

)

+
n∑

j=1
Di j xLi (k)

]

,

xLi (t)e
αi t − xLi (k)e

αi kr = eαi t − eαi kr

αi

[
n∑

j=1
βi j fi

(
xSi (k)

)
]

, i ∈ Nn .

By using the continuity of xSi (t) and xLi (t), letting t → (k + 1)r , and after some simple
mathematical calculations, the above equations can be written as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xSi (k + 1) = xSi (k)e
−ai
ε

r + φi (r)

[
n∑

j=1
bi j f j

(
xSj (k)

) +
n∑

j=1
ci j f j

(
xSj (k − ρ(k))

)

+
n∑

j=1
Di j xLi (k)

]

,

xLi (k + 1) = xLi (k)e
−αi r + ϕi (r)

[
n∑

j=1
βi j f j

(
xSj (k)

)
]

.

For convenience, we let φi (r) = 1 − e
−ai
ε

r

ai
and ϕi (r) = 1 − e−αi r

αi
, since ai > 0, αi > 0,

and r > 0, we have φi (r) > 0 and ϕi (r) > 0. Moreover, the above model converges to the
continuous time CNNs (1) as r → 0+.

We assume that the external disturbance in both STM xS(k) and LTM xL(k) as ωS(k)
and ωL(k) ∈ L2[0,∞), respectively. Thus, the equivalent form of (2) together with external
disturbances can be written as follows:
⎧
⎪⎪⎨

⎪⎪⎩

ST M : xS(k + 1) = ĀxS(k) + B̄ f (xS(k)) + C̄ f (xS (k − ρ(k))) + D̄xL(k) + ωS(k),
yS(k) = ExS(k),

LT M : xL(k + 1) = ĀxL(k) + B̄ f (xS(k)) + ωL(k),
yL(k) = FxL(k),

(2)
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where yS(k) = vecn{ySi (k)} ∈ R
n and yL(k) = vecn{yLi (k)} ∈ R

n are the measured
output vectors; E and F ∈ R

n×n are the real constant matrices; xS(k) = vecn{xSi (k)} ∈ R
n ;

and xL(k) = vecn{xLi (k)} ∈ R
n are the STM and LTM state vectors of the DT-CNNs

(2); f (xSm (k)) = vecn{ fi (xSmi (k))} ∈ R
n denotes the activation functions, which are not

delay-dependent and f (xSm (k−ρ(k))) = vecn{ fi (xSmi (k−ρ(k)))} ∈ R
n denotes the delay-

dependent activation function of the i th neuron at kth instant; Ā = diag{ā1, . . . , ān} ∈ R
n×n

is the state feedback connection weight matrix with āi = e
−ai
ε

r ; B̄ ∈ R
n×n and C̄ ∈ R

n×n

with b̄i j = φi (r)bi j and c̄i j = φi (r)ci j are the connection and delayed connection weight
matrices, respectively; D̄ ∈ R

n×n represents the strength of the external stimulus with D̄i j =
φi (r)Di j ; Ā = diag{ᾱ1, . . . , ᾱn} ∈ R

n×n with ᾱi = e
−αi
ε

r ; and B̄ ∈ R
n×n is the matrix

with β̄i j = ϕi (r)βi j . The time-varying delay function ρ(k) is supposed to be bounded as
ρ1 ≤ ρ(k) ≤ ρ2. Further, the initial conditions for the discretized CNNs (2) are defined by
xS(℘) = ξS(℘) and xL(℘) = ξL(℘), where ξS and ξL ∈ C(Z[−ρ2, 0], R

n).

Remark 2.1 Contemporary consensus holds that our world is characterized by a “continuous”
flow of time and a seamlessly interconnected spatial arrangement. Consequently, the evolu-
tionary mechanics within CNNs are often described using non-linear differential equations
within the context of Euclidean space. Although this portrayal is conceptually clear, obtain-
ing the exact dynamical state behavior of continuous-time CNNs in a simulation context is
very hard. To surmount this hurdle, one can employ the time discretization technique, where
the sequences of points (referred to as trajectories) are generated through iterative mappings.
Obtaining discrete-time systems through the semi-discretization technique involves the fol-
lowing steps: (i) Divide the time domain into discrete intervals by using a uniform step
size, often denoted as ‘r’. This step size determines the time resolution at which the con-
tinuous system will be approximated. (ii) From the original continuous-time CNNs, derive
corresponding difference equations that approximate the system’s behavior within each dis-
crete interval. This involves approximating derivatives with finite differences. It should be
noted that the choice of the time step ‘r’ is crucial, smaller steps may lead to more accurate
approximations.

3 Preliminaries

This section considers the following definition, lemma and assumption for proving the main
results.

Assumption 3.1 For l ∈ Nn , the activation function fl(·) in (2) is considered to be bounded
and satisfy

F−
l ≤ fl(e1) − fl(e2)

e1 − e2
≤ F+

l , ∀ e1, e2 ∈ R, e1 	= e2,

where F−
l and F+

l are the known constants. For presentation convenience, in the following,

we denote F1 = diag{F−
1 F+

1 , . . . , F−
n F+

n } and F2 = diag

{
F−
1 + F+

1

2
, . . . ,

F−
n + F+

n

2

}

.

Lemma 3.2 [33] For given scalars a > 0 and b > 0, delay function d(k) with a ≤ d(k) ≤ b,
matrix R > 0, any matrix S, and a vector function ψ(·) : Z[a, b] → R

n, such that the
following inequality holds:
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l
k−a−1∑

i=k−b

ψT (i)Rψ(i) ≥ εT (k)

[
1

2

]T

RS

[
1

2

]

ε(k),

holds, where RS =
[
R̃ + (1 − α)S1 S

∗ R̃ + αS2

]

, S1 = R̃ − S R̃−1ST , S2 = R̃ − ST R̃−1S,

R̃ = diag{R, 3R, 5R}, α = α1

l
, 1 − α = α2

l
, α1 = b − d(k), α2 = d(k) −

a, εT (k) = [
ε̂T1 (k) ε̂T2 (k) ε̂T3 (k) ε̂T4 (k) ε̃T1 (k) ε̃T2 (k) ε̃T3 (k) ε̃T4 (k)

]
in which ε̂1(k) =

k−d(k)−1∑

i=k−b
ψ(i), ε̂2(k) =

−d(k)−1∑

j=−b

k−d(k)−1∑

i=k+ j
ψ(i), ε̂3(k) =

−d(k)−1∑

j=−b

k+ j∑

i=k−b
ψ(i), ε̂4(k) =

−d(k)−1∑

m=−b

m∑

j=−b

k+ j∑

i=k−b
ψ(i), ε̃1(k) =

k−a−1∑

i=k−d(k)
ψ(i), ε̃2(k) =

−a−1∑

j=−d(k)

k−a−1∑

i=k+ j
ψ(i), ε̃3(k) =

−a−1∑

j=−d(k)

k+ j∑

i=k−d(k)
ψ(i), ε̃4(k) =

−a−1∑

m=−d(k)

m∑

j=−d(k)

k+ j∑

i=k−d(k)
ψ(i). T

1 =
[
ı1 ı1 − 2

l1 + 1
ı2 ı1 −

6

l1 + 1
ı3+ 12

(l1 + 1)(l1 + 2)
ı4
]
,T

2 =
[
ı5 ı5− 2

l2 + 1
ı6 ı5− 6

l2 + 1
ı7+ 12

(l2 + 1)(l2 + 2)
ı8
]
,

for ıi = [0n×(i−1)n In 0n×(8−i)n]T .
Definition 3.3 [35] Let �i ∈ S

2n+ (i ∈ N4) such that �i = diag{�i1, �i2}, satisfies the
following assumption:

{
�1 ≤ 0, �3 > 0, �4 ≥ 0,
(||�1|| + ||�2||) ||�4|| = 0.

(3)

Denote J (k) = Y T (k)�1Y (k) + 2Y T (k)�2W (k) + WT (k)�3W (k). For prescribed sym-
metric matrices �i , i ∈ N4 satisfying the assumption in (3), the discretized system (2) is

said to attain the extended dissipative performance under zero initial state, if
d∑

i=0
J (i) ≥

sup
0≤k≤d

Y T (k)�4Y (k) holds for any d ≥ 0, Y (·) =
[
yS(·)
yL(·)

]

and W (·) =
[

ωS(·)
ωL(·)

]

.

4 Extended dissipativity of delayed DT-CNNs

In this section, based on the augmented LKF, the sufficient condition ensuring the extended
dissipativity performance for the discretized CNNs (2) is obtained in terms of LMIs. The
notations used for the matrices involved in this section are presented in Appendix A.

Theorem 4.1 Let the Assumption 3.1 holds. For given scalars ρ1 and ρ2, the semi-discretized
CNNs (2) attains the extended dissipativity performance, if there exist positive definite real
matrices Pi ∈ R

2n×2n, Q̃i , Q̂i , Ri , S, and Ti ∈ R
n×n (i ∈ N2), positive diagonal matrices

1 and 2, non-singular matrices ZS and ZL , any matrices V and X, with appropriate
dimension, such that the following LMIs hold:

⎡

⎣
�̂1 �̂S2V T �̂L2XT

∗ −T̃1 0
∗ ∗ −T̃2

⎤

⎦ < 0,

⎡

⎣
�̂2 �̂S1V �̂L1X
∗ −T̃1 0
∗ ∗ −T̃2

⎤

⎦ < 0, (4)

eP1e
T − ET�41E > 0, eP2e

T − FT�42F > 0, (5)
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where �̂1 = �̂ − �̂STS�̂T
S − �̂S2T̃1�̂T

S2 − �̂LTL�̂T
L − �̂L2T̃2�̂T

L2, �̂2 = �̂ − �̃STS�̃T
S −

�̃S1T̃1�̃T
S1 − �̃LTL�̃T

L − �̃L1T̃2�̃T
L1 in which �̂ = �1 P̂1�T

1 + �2 P̂2�T
2 + �3 Q̂�T

3 +
�4 R̂�T

4 + �5 Ŝ�T
5 + ι5(ρ

2
12T1)ι

T
5 + ι17(ρ

2
12T2)ι

T
17 − �6 F̂1�T

6 − �7 F̂2�T
7 + �8(ZS)�S +

(�8(ZS)�S)
T + �9(ZL)�L + (�9(ZL)�L)T − ι1(ET�11E)ιT1 − ι13(FT�12F)ιT13 −

2ι1(ET�21)ι
T
12 − 2ι13(FT�22)ι

T
24 − ι12�31ι

T
12 − ι24�32ι

T
24.

Proof To prove the main result based on Lyapunov stability theory, let us consider the LKF

V (k) =
5∑

l=1
Vl(k) for the semi-discretized CNNs (2), where

V1(k) =�
T
S (k)P1�S(k) + �

T
L (k)P2�L(k),

V2(k) =
2∑

l=1

k−1∑

i=k−ρl

χT (i)Qχ(i),

V3(k) =
k−1∑

i=k−ρ(k)

χT (i)Rχ(i) +
−ρ1∑

i=−ρ2+1

k−1∑

j=k+i

χT ( j)Rχ( j),

V4(k) =
k−1∑

i=k−ρ(k)

f T (xS(i))S f (xS(i)) +
−ρ1∑

i=−ρ2+1

k−1∑

j=k+i

f T (xS( j))S f (xS( j)),

V5(k) =ρ12

−ρ1−1∑

i=−ρ2

k−1∑

j=k+i

[
ηS( j)
ηL( j)

]T [
T1 0
0 T2

] [
ηS( j)
ηL( j)

]

,

in which �
T
S (k) =

[

xTS (k)
k−ρ1−1∑

i=k−ρ2

xTS (i)

]

, �
T
L (k) =

[

xTL (k)
k−ρ1−1∑

i=k−ρ2

xTL (i)

]

, χT (k) =
[
xTS (k) xTL (k)

]
, R = diag{R1, R2}, Q = diag{Q̂l , Q̃l}, ηS(k) = xS(k + 1) − xS(k),

ηL(k) = xL(k + 1) − xL(k), and ρ12 = ρ2 − ρ1.
Now, we calculate the finite difference of V (k) together with the solution of the desired

estimation error states xS(k) and xL(k) as �V (k) =
5∑

l=1
�Vl(k), where the finite difference

of Vl(k) (l ∈ N5), can be computed as follows:

�V1(k) =�
T
S (k + 1)P1�S(k + 1) + �

T
L (k + 1)P2�L(k + 1)

− �
T
S (k)P1�S(k) − �

T
L (k)P2�L(k)

=ϒT (k)
{
�1 P̂1�

T
1 + �2 P̂2�

T
2

}
ϒ(k). (6)

Next, we can determine the forward difference of V2(k) as follows:

�V2(k)=xTS (k)(Q̂1 + Q̂2)xS(k)+ xTL (k)(Q̃1 + Q̃2)xL(k)−
2∑

l=1

(
xTS (k − ρl)Q̂l xS(k − ρl)

)

−
2∑

l=1

(
xTL (k − ρl)Q̃l xL(k − ρl)

)

=ϒT (k)
{
�3 Q̃�T

3

}
ϒ(k). (7)
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The finite difference of V3(k) can be computed as follows:

�V3(k) ≤χT (k)(ρ12 + 1)Rχ(k) − χT (k − ρ(k))Rχ(k − ρ(k))

=ϒT (k)
{
�4 R̂�T

4

}
ϒ(k). (8)

Now, we can compute �V4(k) as

�V4(k) ≤ f T (xS(k))(ρ12 + 1)S f (xS(k)) − f T (xS(k − ρ(k)))S f (xS(k − ρ(k)))

=ϒT (k)
{
�5 Ŝ�T

5

}
ϒ(k). (9)

Now, �V5(k) can be computed as

�V5(k) =ηTS (k)(ρ2
12T1)ηS(k) + ηTL (k)(ρ2

12T2)ηL(k) − ρ12

k−ρ1−1∑

i=k−ρ2

ηTS (i)T1ηS(i)

− ρ12

k−ρ1−1∑

i=k−ρ2

ηTL (i)T2ηL(i). (10)

By utilizing Lemma 3.2, the first summation term of �V5(k) can be obtained for any matrix
V as follows:

ρ12

k−ρ1−1∑

i=k−ρ2

ηTS (i)T1ηS(i) ≥
[

η̂S1(k)
η̃S2(k)

]T [
T̃1 + ρ1(k)U1 V

∗ T̃1 + ρ2(k)U2

] [
η̂S1(k)
η̃S2(k)

]

, (11)

where T̃1 = diag{T1, 3T1, 5T1}U1 = T̃1−V T̃−1
1 V T ,U2 = T̃1−V T T̃−1

1 V , ρ1(k) = ρ̂1(k)

ρ12
,

ρ2(k) = ρ̂2(k)

ρ12
, η̂TS1(k) =

[
ε̂TS1 ε̂TS1− 2

ρ̂2(k)+1 ε̂
T
S2 ε̂TS1− 6

ρ̂2(k)+1 ε̂
T
S3 + 12

α2(k)
ε̂TS4

]
, η̃TS2(k) =

[
ε̃TS1 ε̃TS1 − 2

ρ̂1(k)+1 ε̃
T
S2 ε̃TS1 − 6

ρ̂1(k)+1 ε̃
T
S3 + 12

α1(k)
ε̃TS4

]
in which ρ̂2(k) = ρ2−ρ(k), ρ̂1(k) =

ρ(k)−ρ1, ε̂S1 =
k−ρ(k)−1∑

i=k−ρ2

ηS(i), ε̂S2 =
−ρ(k)−1∑

i=−ρ2

k−ρ(k)−1∑

j=k+i
ηS( j), ε̂S3 =

−ρ(k)−1∑

i=−ρ2

k+i∑

j=k−ρ2

ηS( j),

ε̂S4 =
−ρ(k)−1∑

i=−ρ2

i∑

j=−ρ2

k+ j∑

l=k−ρ2

ηS(l), ε̃S1 =
k−ρ1−1∑

i=k−ρ(k)
ηS(i), ε̃S2 =

−ρ1−1∑

i=−ρ(k)

k−ρ1−1∑

j=k+i
ηS( j), ε̃S3 =

−ρ1−1∑

i=−ρ(k)

k+i∑

j=k−ρ(k)
ηS( j), and ε̃S4 =

−ρ1−1∑

i=−ρ(k)

i∑

j=−ρ(k)

k+ j∑

l=k−ρ(k)
ηS(l).

Now, using a simple mathematical calculation, (11) can be rewritten as follows:

ρ12

k−ρ1−1∑

i=k−ρ2

ηTS (i)T1ηS(i) ≥ ϒT (k)

{

�S(k)TS�
T
S (k) +

2∑

i=1

ρi (k)�Si (k)Ui�
T
Si (k)

}

ϒ(k),

(12)

where �S(k) = [
�S1(k) �S2(k)

]
.

By following the similar steps as above and utilizing the Lemma 3.2, for any matrix X , the
lower bounds for the second summation term of �V5(k) can be computed as follows:

ρ12

k−ρ1−1∑

i=k−ρ2

ηTL (i)T2ηL(i) ≥ ϒT (k)

{

�L(k)TL�T
L (k) +

2∑

i=1

ρi (k)�Li (k)Yi�
T
Li (k)

}

ϒ(k),

(13)
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where T̃2 = diag{T2, 3T2, 5T2},�L(k) = [
�L1(k) �L2(k)

]
, inwhichY1 = T̃2−XT̃−1

2 XT ,

Y2 = T̃2 − XT T̃−1
2 X .

By substituting (13) and (12) in (10), the following upper bound for�V5(k) can be obtained:

�V5(k) ≤ϒT (k)
{
ι5(ρ

2
12T1)ι

T
5 + ι17(ρ

2
12T2)ι

T
17 − �S(k)TS�

T
S (k)

−
2∑

i=1

ρi (k)(�Si (k)Ui�
T
Si (k)

−�Li (k)Yi�
T
Li (k)) − �L(k)TL�T

L (k)
}

ϒ(k). (14)

By considering the Assumption 3.1, there exist diagonal matrices 1 > 0 and 2 > 0 such
that the following inequality holds:

[
xS(k)

f (xS(k))

]T [
F11 −F21

−F21 1

] [
xS(k)

f (xS(k))

]

≤ 0, (15)

[
xS(k − ρ(k))
f (xS(k − ρ(k)))

]T [
F12 −F22

−F22 2

] [
xS(k − ρ(k))

f (xS(k − ρ(k)))

]

≤ 0. (16)

Adding the above zero inequalities (15) and (16), we get

ϒT (k)
{
�6 F̂1�

T
6 + �7 F̂2�

T
7

}
ϒ(k) ≤ 0. (17)

In addition to this, for any non-singular matrices ZS and ZL , the subsequent zero equalities
hold from (2):

(xS(k + 1))T 2ZS

(
ĀxS(k) + B̄ f (xS(k)) + C̄ f (xS (k − ρ(k))) + D̄xL(k)

+ ωS(k) − xS(k + 1)
)

= 0,

(xL(k + 1))T 2ZL

(
ĀxL(k) + B̄ f (xS(k)) + ωL(k) − xL(k + 1)

)
= 0.

The above equations can be equivalently represented as

ϒT (k)
{
�8(2ZS)�S + �9(2ZL)�L

}
ϒ(k) = 0, (18)

where�S = [ Ā− In 0n×3n − In 0n×6n In D̄ 0n×11n B̄ C̄] and�L = [0n×12n Ā−In 0n×3n −
In 0n×6n In B̄ 0n×n].
For any real symmetric matrices �i for i ∈ N3, the supply rateJ (k) is considered as follows:

J (k) =Y T (k)�1Y (k) + 2Y T (k)�2W (k) + WT (k)�3W (k)

=ϒT (k)
{(

ι1(E
T�11E)ιT1 + ι13(F

T�12F)ιT13 + 2ι1(E
T�21)ι

T
12 + 2ι13(F

T�22)ι
T
24

+ ι12�31ι
T
12 + ι24�32ι

T
24

)}
ϒ(k). (19)

Adding up the finite difference of Vl(k) (l ∈ N5) derived in (6)–(9), and (14), along with
inequality (17), equations (18), (19), and by performing some elementary algebraic calcula-
tions, we get

�V (k) − J (k) ≤ ϒT (k){�(k)}ϒ(k), (20)
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where �(k) = �̂ − �S(k)TS�T
S (k) −

2∑

i=1
ρi (k)�Si (k)Ui�

T
Si (k) − �L (k)TL�T

L (k) −
2∑

i=1
ρi (k)�Li (k)Yi�T

Li (k).

Assume the LMIs listed in (4) are true. Then, the following inequalities are obtained by
utilizing the Schur complement lemma:

�̂1 + �̂S2(V
T T̃−1

1 V )�̂T
S2 + �̂L2(X

T T̃−1
2 X)�̂T

L2 < 0, for ρ(k) = ρ1, (21)

�̂2 + �̃S1(V T̃−1
1 V T )�̃T

S1 + �̃L1(XT̃
−1
2 XT )�̃T

L1 < 0, for ρ(k) = ρ2. (22)

In accordance with the convex combination method [36], the above two inequalities (21) and
(22) are valid for any ρ1 ≤ ρ(k) ≤ ρ2 if and only if the inequality �(k) < 0 is satisfied.
Hence, from the inequalities (20) and �(k) < 0, we conclude that

�V (k) − J (k) < 0, k = 0, 1, 2 . . . . (23)

On the other hand, to establish the extended dissipativity criteria, for the discretized CNNs
(2), we considered (23) under zero initial condition, described by

V (k) <

k−1∑

i=0

J (i). (24)

To complete the proof, it remains to verify the inequality in Definition 3.3. From the LMI
conditions (5), one can ensure that

Y T (k)�4Y (k) =xTS (k)ET�41ExS(k) + xTL (k)FT�42FxL(k)

≤xTS (k)(eP1e
T )xS(k) + xTL (k)(eP2e

T )xL(k) ≤ V (k). (25)

Combining the inequalities (24) and (25), we have the following

Y T (k)�4Y (k) <

k−1∑

i=0

J (i). (26)

If �4 = 0, the inequality in Definition 3.3 holds since
d∑

i=0
J (i) > 0, d ≥ 0. If �4 	= 0, it

is evident from assumption (3) that �1 = 0, �2 = 0 and �3 > 0, which leads to J (k) =
WT (k)�3W (k) ≥ 0. As a result, for any integer d ≥ 0with 0 ≤ k ≤ d , we have the following
inequality:

d∑

i=0

J (i) ≥
k−1∑

i=0

J (i) ≥ V (k) ≥ Y T (k)�4Y (k).

By taking the supremum over 0 ≤ k ≤ d , we obtain the extended disipativity condition. This
completes the proof.

Remark 4.2 Theorem 4.1 provides an intuitive criterion for determining the robust perfor-
mance of the considered DT-CNNs (2). Here, to reduce the conservatism of the stability
performance, the augmented LKF is constructed, which provides valuable structural insights
into the DT-CNNs. One of the key challenges in estimating the forward difference of the
constructed LKF is bounding the summation terms through summation-based inequalities.
On the other hand, the matrix-based inequality, like the RCMI technique has been widely
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used to avoid the occurrence of the variable delay terms in the finite difference of the LKF.
The combination of summation-based and matrix-based inequalities provides a powerful
tool for the stability analysis of the dynamical systems [32]. Due to this consideration, in
this paper, the relaxed AFSI [33] is used which is the generalization of well-known Jensen
summation inequality and Wirtinger-based summation inequality. As a result, the LMIs (4)
and (5) obtained from the Theorem 4.1 essentially reduce the conservatism of the proposed
result.

Remark 4.3 It is worth pointing out that the analyzed extended dissipative criterion is a
composite index consisting of other robust performances. By tuning the weighting matrices
in Definition 3.3, some well-known performance indices can be obtained as follows:

(i) When �1 = −I2n , �2 = 02n , �3 = γ 2 I2n , and �4 = 02n, the extended dissipativity in
Definition 3.3 reduces to H∞ performance.

(ii) When �1 = 02n , �2 = I2n , �3 = γ I2n , and �4 = 02n , we obtain passivity perfor-
mance.

(iii) The strict (�1, �2, �3)− dissipativity can be obtained by setting �4 = 02n . Moreover,
(�1, �2, R) − dissipativity is obtained by setting �3 = R − γ I2n and �4 = 02n .

(iv) When �1 = 02n , �2 = 02n , �3 = γ 2 I2n , and �4 = I2n , the L2 − L∞ performance is
deduced from Definition 3.3.

5 Illustrative example

In this section, two numerical examples are provided to illustrate the validity and merits of
the theoretical findings. In the existing literature, almost all results concerning the stability
of CNNs are dealt with continuous-time analog. Generally, in the discretization process,
the derived discrete-time analogs (2) of CNNs should faithfully preserve the convergence
characteristics of the continuous-time CNNs (1). In order to demonstrate this effectiveness,
in this paper, for the first example, we adopt the same system parameters as in continuous-
time CNNs [15] and for the second example, we adopt the parameters as in [14]. From the
simulation results, it is evident that the semi-discretized CNNs have the similar dynamical
behaviors as in their continuous-time counterparts.

Example 5.1 In this example, we consider the same system parameters of continuous-time
CNNs in [15]. The corresponding system parameters of DT-CNNs (2) are obtained by semi-
discretization techniques for the step size r = 0.7 as follows:

Ā =
[
0.4317 0

0 0.4025

]

, B̄ =
[
0.5209 −0.0568

−2.2980 1.0111

]

, C̄ =
[−0.7104 0.9471
−1.3788 −1.1490

]

,

D̄ =
[
0.0947 0

0 0.1149

]

, Ā =
[
0.6126 0

0 0.7047

]

, B̄ =
[−0.6641 0

0 0.6497

]

, E = G = 0.5I ,

F = H = 0.4I . Let the activation function be fi (k) = tanh(0.1 k) for i ∈ N2, for which
the Assumption 3.1 yields the bounds F1 = diag{0, 0} and F2 = diag{0.1, 0.1}. The time-
varying delay parameter ρ(k) and the disturbance input ωS(k) and ωL(k) are assumed as

ρ(k) = 3 + cos( kπ2 ), ωS(k) =
[

0.01
1+k2

0.01
1+k2

]T
, and ωL(k) =

[
0.04
1+k2

0.04
1+k2

]T
, respectively.

Accordingly, the bounds of time-varying delay can be taken as ρ1 = 2 and ρ2 = 4.

Based on the above-mentioned system parameters, the state trajectories of STM xSi (k)
and LTM xLi (k), i ∈ N2 of discretized CNNs (2) are obtained as given in Fig. 3. From the
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Fig. 3 Simulation results for the discretized CNNs (2) for Example 1

Fig. 4 Simulation results for the CNNs (2) under different initial conditions

simulation results, it is evident that the discretized CNNs converge together with the external
disturbances ωS(k) and ωL(k) ∈ L2[0,∞). Moreover, in order to prove the sustainability
of theoretical results, the simulation figures are obtained for distinct initial conditions under
the interval [−2, 2] in Fig. 4.

Based on the above parameters and by choosing the appropriate values of the weighting
matrices �i , i ∈ N4, we obtain the following dynamic performance:

(i) H∞ performance: By choosing the weighting matrices �1 = −I4, �2 = −04, �3 =
γ 2 I4, and �4 = 04, the extended dissipativity criteria becomes H∞ Performance. For
different values of upper delay bound ρ2, Table 1 lists the minimum H∞ level of γ by
fixing the ρ1.

(ii) Passivity performance: The extended dissipativity index reduces to passivity perfor-
mance by choosing �1 = 04, �2 = I4, �3 = γ I4, and �4 = 04. The minimum
performance level for passivity performance is listed in Table 1 for different values of
ρ2.
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Table 1 Minimum robust
performance level γ for ρ1 = 2
and various ρ2

Performances ρ2 = 4 ρ2 = 6 ρ2 = 8 ρ2 = 10

Passivity 2.7846 2.8738 3.1467 3.6456

H∞ 2.4875 2.5632 2.7479 2.9867

L2 − L∞ 1.8740 1.9741 2.0137 2.1541

Table 2 Maximum dissipativity
level γ for ρ1 = 2 and various ρ2

Performance ρ2 = 4 ρ2 = 6 ρ2 = 8 ρ2 = 10

γ -Dissipativity 5.8142 5.6540 5.3255 5.0174

(iii) L2 − L∞ performance By letting the matrices �1 = 04, �2 = 04, �3 = γ 2 I4, and
�4 = I4, we obtain the L2 − L∞ performance. Table 1 displays the minimum L2 − L∞
performance level γ for various ρ2 and fixed ρ1.

(iv) (�1, �2, R) − dissipativity We obtain the dissipativity performance by choosing the
matrices �1 = I4, �2 = 0.1I4, �3 = 0.5I4 − γ I4, and �4 = I4. Further, the maximum
performance level γ of (�1, �2, R) − dissipativity is obtained in Table 2 for different
upper delay bound ρ2 and fixed lower delay bound ρ1.

Hence, from Table 1, one can observe that the larger value of ρ2, we obtained the larger
performance index γ . On the parallel perceptive, for the sameρ2, one can see that the obtained
performance level γ using the Theorem 4.1 is smaller. Hence from Table 2, it is clear that the
obtained performance level γ is inversely propositional to the upper delay bound ρ2, which
verifies the advantage of the presented method.

Example 5.2 Consider the continuous-time CNNs (1) with the same parameters as in the
numerical example section of [14]. By employing the semi-discretization technique, which
is demonstrated in the system formulation, we obtain the DT-CNNs (2) of the corresponding
continuous-time CNNs in [14], where the discretized coefficient matrices are obtained with
discretization step size 0.9s as follows:

Ā =
[
0.7634 0

0 0.8353

]

, B̄ =
[
1.9718 −0.0789

−0.1235 2.8828

]

, C̄ =
[−1.5775 −0.3944
−0.2471 −1.6473

]

, D̄ =
[
1.8930 −0.2366
0.3706 0.4942

]

, Ā =
[
2.4596 0

0 2.4596

]

, B̄ =
[−0.2335 0.0018
0.0073 −0.1095

]

, E = G = I ,

F = H = I . Here, the activation function is chosen as fi (k) = tanh(k) for i ∈ Nn ,
and based on the Assumption 3.1 the corresponding lower and upper bounds are taken as
F1 = diag{0, 0} and F2 = diag{0.5, 0.5}, respectively. The time-varying delay parameter
ρ(k) and the disturbance inputωS(k) andωL(k) are assumed as same in Example 5.1. Further,
by solving the LMI conditions (4) and (5) in Theorem 4.1, using Matlab Yalmip toolbox, we
can obtain the required feasibility matrices.

Based on the above-mentioned parameters the simulation results for the state responses of
the discretized CNNs (2) are obtained as shown in Fig. 5 for several initial conditions between
the interval [−1, 1]. This clearly demonstrates the superiority of the DT-CNNs in (2) over
the existing continuous-time CNNs. Further, from the simulation results, it is evident that
the constructed discretized CNNs (2) exhibit similar dynamical behaviors as in its original
continuous-time CNNs and hence this illustrates the validity of our proposed results.

123



  122 Page 16 of 20 B. Adhira, G. Nagamani

Fig. 5 Simulation results for the discretized CNNs (2) for Example 2

Remark 5.3 When discretizing continuous-time NNs, two critical concerns come to the
forefront: (i) formulating discrete-time analogs of continuous-time NNs along the spatial
coordinates only, and (ii) ensuring that these discrete-time analogs accurately capture the
dynamics of their continuous-time counterparts. Addressing the first concern, according to
numerical analysis theory, there exist numerousmethods to derive discrete-time analogs from
continuous-time dynamical CNNs (1). However, as emphasized in literature [21], discretiza-
tion might fail to uphold the continuous-time dynamics, even with a small sampling period.
To overcome this limitation in this paper, the technique of semi-discretization is utilized to
achieve an accurate representation of the dynamic performance exhibited by the continuous-
time CNNs. Further, to address the second concern (ii), in the aforementioned examples, we
employed the identical system parameters of the continuous-time CNNs. As a result, from
the figures, we can guarantee that the dynamics for both the continuous and DT-CNNs are
uniform.

6 Conclusion

In this paper, the discrete-time analog of continuous-timeCNNs has been formulated by using
the semi-discretization technique. The extended dissipativity performance has been examined
for the semi-discretized CNNs. In addition, the novel LKFs and relaxed AFSI have been
utilized to obtain a tighter upper bound of the summation terms in the forward difference
of LKF. Further, in order to ensure that the constructed DT-CNNs retain the dynamics of
the corresponding continuous-time analog, in numerical simulation, we adopted the same
parameters in continuous-time CNNs [14, 15] and verified the effectiveness of theoretical
results. It should be noted that the fractional-order model is recognized for its enhanced
accuracy in representing natural phenomena compared to the integer-order model. As a
result, it would be interesting to extend our findings to discrete-time fractional-order NNs.
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Appendix A

The following notations will be used in the subsequent sections:

ιm=
[
0n×(m−1)n In 0n×(26−m)n

]T ,m ∈ N26, ϒ
T (k) =

[
ϒT

S (k) ϒT
L (k) f T (xS(k)) f T (xS(k−

ρ(k)))
]
, ϒT

S (k) =
[
xTS (k) xTS (k − ρ1) xTS (k − ρ(k)) xTS (k − ρ2) ηTS (k)

k−ρ(k)−1∑

i=k−ρ2

xTS (i)

k−ρ1−1∑

i=k−ρ(k)
xTS (i)

−ρ(k)−1∑

i=−ρ2

k−ρ(k)−1∑

j=k+i
xTS ( j)

−ρ1−1∑

i=−ρ(k)

k−ρ1−1∑

j=k+i
xTS ( j)

−ρ(k)−1∑

i=−ρ2

k+i∑

j=k−ρ2

xTS ( j)

−ρ1−1∑

i=−ρ(k)

k+i∑

j=k−ρ(k)
xTS ( j) ωT

S (k)
]
, ϒT

L (k) =
[
xTL (k) xTL (k − ρ1) xTL (k − ρ(k)) xTL (k −

ρ2) ηTL (k)
k−ρ(k)−1∑

i=k−ρ2

xTL (i)
k−ρ1−1∑

i=k−ρ(k)
xTL (i)

−ρ(k)−1∑

i=−ρ2

k−ρ(k)−1∑

j=k+i
xTL ( j)

−ρ1−1∑

i=−ρ(k)

k−ρ1−1∑

j=k+i
xTL ( j)

−ρ(k)−1∑

i=−ρ2

k+i∑

j=k−ρ2

xTL ( j)
−ρ1−1∑

i=−ρ(k)

k+i∑

j=k−ρ(k)
xTL ( j) ωT

L (k)
]
. Let �1 = [ξ1 ξ2] �2 = [ξ3 ξ4], in

which ξ1 = [ι1+ι5 ι2−ι4+(ι6+ι7)], ξ2 = [ι1 ι6+ι7], ξ3 = [ι17+ι13 ι14−ι16+(ι18+ι19)],
ξ4 = [ι13 ι18 + ι19], �3 = [ι1 ι13 ι2 ι4 ι14 ι16],�4 = [ι1 ι13 ι3 ι15],�5 = [ι25 ι26], �6 =
[ι1 ι25], �7 = [ι3 ι26], �8 = ι1 + ι5, �9 = ι13 + ι17, �̂S = [

�̂S1 �̂S2
]
, �̃S = [

�̃S1 �̃S2
]
,

�̂L = [
�̂L1 �̂L2

]
, �̃L = [

�̃L1 �̃L2
]
, α̃ = (ρ12+1)(ρ12+2),αi (k) = (ρ̂i (k)+1)(ρ̂i (k)+2),

i ∈ N2, P̂1 = diag{P1,−P1}, P̂2 = diag{P2,−P2}, Q̂ = diag{Q̂1 + Q̂2, Q̃1 +
Q̃2,−Q̂1,−Q̂2,−Q̃1,−Q̃2}, R̂ = diag{(ρ12 + 1)R,−R}, Ŝ = diag{(ρ12 + 1)S,−S},

F̂1 =
[

F11 −F21

−F21 1

]

, F̂2 =
[

F12 −F22

−F22 2

]

, TS =
[
T̃1 V
∗ T̃1

]

, TL =
[
T̃2 X
∗ T̃2

]

,

e = [In 0n], �T
S1(k) =

⎡

⎢
⎢
⎢
⎢
⎣

ιT3 − ιT4
ιT3 − ιT4 − 2

ρ̂2(k)+1

(
ρ̂2(k)ιT3 − ιT6

)

ιT3 − ιT4 − 6
ρ̂2(k)+1

( − ιT6 − ρ̂2(k)ιT4
)

+ 12
α2(k)

( − ιT10 − ρ̂2(k)(ρ̂2(k)+1)
2 ιT4

)

⎤

⎥
⎥
⎥
⎥
⎦
,

�T
S2(k) =

⎡

⎢
⎢
⎢
⎢
⎣

ιT2 − ιT3
ιT2 − ιT3 − 2

ρ̂1(k)+1

(
ρ̂1(k)ιT2 − ιT7

)

ιT2 − ιT3 − 6
ρ̂1(k)+1

( − ιT7 − ρ̂1(k)ιT3
)

+ 12
α1(k)

( − ιT11 − ρ̂1(k)(ρ̂1(k)+1)
2 ιT3

)

⎤

⎥
⎥
⎥
⎥
⎦
,

�̂T
S1 =

⎡

⎢
⎢
⎢
⎢
⎣

ιT3 − ιT4
ιT3 − ιT4 − 2

ρ12+1

(
ρ12ι

T
3 − ιT6

)

ιT3 − ιT4 − 6
ρ12+1

( − ιT6 − ρ12ι
T
4

)

+ 12
α̃

( − ιT10 − ρ12(ρ12+1)
2 ιT4

)

⎤

⎥
⎥
⎥
⎥
⎦
, �̂T

S2 =

⎡

⎢
⎢
⎢
⎣

(
ιT2 − ιT3

)

(
ιT2 − ιT3

) − 2
( − ιT7

)

(
ιT2 − ιT3

) − 6
( − ιT7

)

+6
( − ι11

)

⎤

⎥
⎥
⎥
⎦
,
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�̃T
S1 =

⎡

⎢
⎢
⎢
⎣

(
ιT3 − ιT4

)

(
ιT3 − ιT4

) − 2
( − ιT6

)

(
ιT3 − ιT4

) − 6
( − ιT6

)

+6
( − ιT10

)

⎤

⎥
⎥
⎥
⎦
, �̃T

S2 =

⎡

⎢
⎢
⎢
⎢
⎣

ιT2 − ιT3
ιT2 − ιT3 − 2

ρ12+1

(
ρ12ι

T
2 − ιT7

)

ιT2 − ιT3 − 6
ρ12+1

( − ιT7 − ρ12ι
T
3

)

+ 12
α̃

( − ιT11 − ρ12(ρ12+1)
2 ιT3

)

⎤

⎥
⎥
⎥
⎥
⎦
,

�T
L1(k) =

⎡

⎢
⎢
⎢
⎢
⎣

ιT15 − ιT16
ιT15 − ιT16 − 2

ρ̂2(k)+1

(
ρ̂2(k)ιT15 − ιT18

)

ιT15 − ιT16 − 6
ρ̂2(k)+1

( − ιT18 − ρ̂2(k)ιT16
)

+ 12
α2(k)

( − ιT22 − ρ̂2(k)(ρ̂2(k)+1)
2 ιT16

)

⎤

⎥
⎥
⎥
⎥
⎦
,

�T
L2(k) =

⎡

⎢
⎢
⎢
⎢
⎣

ιT14 − ιT15
ιT14 − ιT15 − 2

ρ̂1(k)+1

(
ρ̂1(k)ιT14 − ιT19

)

ιT14 − ιT15 − 6
ρ̂1(k)+1

( − ιT19 − ρ̂1(k)ιT15
)

+ 12
α1(k)

( − ιT23 − ρ̂1(k)(ρ̂1(k)+1)
2 ιT15

)

⎤

⎥
⎥
⎥
⎥
⎦
,

�̂T
L1 =

⎡

⎢
⎢
⎢
⎢
⎣

ιT15 − ιT16
ιT15 − ιT16 − 2

ρ12+1

(
ρ12ι

T
15 − ιT18

)

ιT15 − ιT16 − 6
ρ12+1

( − ιT18 − ρ12ι
T
16

)

+ 12
α̃

( − ιT22 − ρ12(ρ12+1)
2 ιT16

)

⎤

⎥
⎥
⎥
⎥
⎦
, �̂T

L2 =

⎡

⎢
⎢
⎢
⎣

(
ιT14 − ιT15

)

(
ιT14 − ιT15

) − 2
( − ιT19

)

(
ιT14 − ιT15

) − 6
( − ιT19

)

+6
( − ιT23

)

⎤

⎥
⎥
⎥
⎦
,

�̃T
L1 =

⎡

⎢
⎢
⎢
⎣

(
ιT15 − ιT16

)

(
ιT15 − ιT16

) − 2
( − ιT18

)

(
ιT15 − ιT16

) − 6
( − ιT18

)

+6
( − ιT22

)

⎤

⎥
⎥
⎥
⎦
, �̃T

L2 =

⎡

⎢
⎢
⎢
⎢
⎣

ιT14 − ιT15
ιT14 − ιT15 − 2

ρ12+1

(
ρ12ι

T
14 − ιT19

)

ιT14 − ιT15 − 6
ρ12+1

( − ιT19 − ρ12ι
T
15

)

+ 12
α̃

( − ιT23 − ρ12(ρ12+1)
2 ιT15

)

⎤

⎥
⎥
⎥
⎥
⎦
.
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