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Abstract
Deep neural networks, particularly convolutional neural networks, are vulnerable to adversar-
ial examples, undermining their reliability in visual recognition tasks. Adversarial example
detection is a crucial defense mechanism against such attacks but often relies on empirical
observations and specialized metrics, posing challenges in terms of data efficiency, gener-
alization to unknown attacks, and scalability to high-resolution datasets like ImageNet. To
address these issues, we propose a prototypical network-based method using a deep residual
network as the backbone architecture. This approach is capable of extracting discriminative
features of adversarial and normal examples from various known adversarial examples by
constructing few-shot adversarial detection tasks. Then the optimal mapping matrix is com-
puted using the Sinkhorn algorithm from optimal transport theory, and the class centers are
iteratively updated, enabling the detection of unknown adversarial examples across scenar-
ios. Experimental results show that the proposed approach outperforms existing methods
in the cross-adversary benchmark and achieves enhanced generalization on a subset of Ima-
geNet in detecting both new adversarial attacks and adaptivewhite-box attacks. The proposed
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approach offers a promising solution for improving the safety of deep neural networks in
practical applications.

Keywords Adversarial example detection · Few-shot learning · Prototypical network · New
adversarial attacks

1 Introduction

The increasing deployment of deep learning-based AI systems in real-world scenarios has
raised serious concerns about their security [8, 76, 88]. Adversarial examples, specifically
crafted to evade AI system’s security measures, pose a significant threat to the trustwor-
thiness and reliability of these systems [12, 31, 45, 51, 87, 95, 101]. Numerous defense
mechanisms have been proposed to mitigate the potential impact of adversarial examples on
AI systems [10, 59, 71, 96]. However, the constant emergence of new attack methods has
rendered previous defenses ineffective. For instance, the Carlini & Wagner (C&W) attack
[12] and backward pass differentiable approximation (BPDA) attack [6] have successfully
compromised defense mechanisms that were previously considered robust. This has resulted
in an ongoing arms race between attack and defense.

In the face of the complexities of practical application scenarios and the threat ofmalicious
attackers, adversarial examplesmaynot be limited to small L p-normadversarial perturbations
[94]. Attackers can modify images on a large scale while maintaining semantic similarity
[36, 43, 73, 81], or generate adversarial examples through spatial transformations such as
rotation or translation [24, 94]. Furthermore, unrestricted adversarial attacks have become a
new research focus in recent years [9, 85]. These developments pose significant challenges
to existing defense methods.

Adversarial example detection aims to identify adversarial perturbations in image inputs,
providing deep neural network (DNN)models with enhanced security without compromising
their ability to recognize normal examples. Various techniques exist for detecting adversarial
examples, including using distinct behavioral features [26, 34] or leveraging observed behav-
ioral differences in a DNNmodel’s middle layer [25, 56]. Another approach assumes unique
statistical properties between adversarial and normal examples to train a classifier [32, 59].
However, these methods demand a large number of adversarial examples, resulting in high
time and sample complexity, and generally only detect the same type of adversarial examples.
Although some studies have explored unknown adversarial example detection [27, 49, 61,
92], challenges persist in detecting emerging attacks such as semantic attack (SA), spatial
transformation attack (STA), AutoAttack (AA), and composite adversarial attack (CAA). As
these attacks rapidly evolve, adversarial example detection faces limitations, necessitating
the ability to identify unknown and new types of adversarial examples.

Meta-learning adversarial detection (MetaAdvDet) is a representative method for detect-
ing unknown adversarial examples using meta-learning techniques [57]. The MetaAdvDet
method uses the model agnostic meta-learning (MAML) [28] approach to study the problem
of adversarial example detection from a fast adaptation perspective. However, according to
[74], feature reuse is the main factor for the success of MAML in few-shot learning. Inspired
by [41], the vulnerability of the model caused by adversarial examples is due to the presence
of non-robust features, and models trained by standard training methods are able to exploit
such highly predictive features. Therefore, we aim to extract these features from adversarial
examples and use them to differentiate from those of normal examples to detect adversarial

123



Enhancing Generalization in Few-Shot Learning for Detecting… Page 3 of 25    85 

Fig. 1 Overall framework of the proposed PAD approach. The approach consists of two distinct stages: meta-
training (upper half of the figure) and meta-testing (lower half of the figure), both utilizing the same feature
extraction backbone network fθ . Upper: The backbone network is trained on known adversarial example
detection tasks in multi-task format. Lower: The learned backbone network fθ is employed to extract features
of all samples on unknown adversarial example detection tasks. For each test task, the support set is used to
compute the initial class center. After applying the CL2N transformation and MAP algorithm, the query set
labels Ŷ can be computed. More details can be found in Algorithms 1 and 2

examples. To achieve this, we use a prototypical network [83] to learn the corresponding fea-
ture representations from the adversarial and normal examples, which are clustered around
their respective class prototypes in the feature space. The class prototypes are obtained by
computing the average of a small number of labeled examples in the feature space. Since
the unknown adversarial attack method can use multiple methods to generate adversarial
examples, which may differ significantly from the features of the adversarial examples in
the training stage, we further process the features extracted from the backbone network in
the meta-testing stage and update the class centers using the maximum A posteriori (MAP)
algorithm [39].

The overall framework of the method is shown in Fig. 1. Each task represents a small data
collection process, including normal examples and one type of randomly selected adversarial
examples, simulating new attack scenarios [57]. The meta-training stage trains the feature
extraction backbone network on multiple known adversarial example types, while the meta-
testing stage tests the detection method’s performance on unknown adversarial example
types. The method, referred to as PAD (ProtoNet Adversarial Detection), uses a prototypical
network to train an end-to-end feature extraction network, processes extracted features of
unknown adversarial examples, and predicts using the optimal mapping matrix. It can detect
unknown adversarial examples under few-shot conditions. Specifically, our contribution is
as follows:

(1) Due to the high time complexity associated with the two-layer optimization employed
by the MAML method during training [5], it is customary to utilize a shallow backbone

123



   85 Page 4 of 25 W. Liu et al.

network. The use of a deeper network can incur a substantial training time overhead. In
this regard, we propose the use of residual networks for feature extraction from both nor-
mal and adversarial examples within our PADmethod. The network design incorporates
a 7 × 7 convolutional kernel while removing average pooling in the initial layer. Sub-
sequently, we calculate the Euclidean distance between unknown adversarial examples
and class prototypes to facilitate discrimination between adversarial and normal exam-
ples. This approach greatly improves the method’s performance for detecting unknown
adversarial examples.

(2) We propose applying feature transformation to the features extracted from the backbone
network, in conjunction with an iterative algorithm based on optimal transport theory for
updating class centers, which further enhances the detection performance of unknown
adversarial examples.

(3) Our proposedmethod exhibits a significant improvement in detecting unknownadversar-
ial examples compared to existing few-shot learning algorithms on the cross-adversary
benchmark for MNIST and CIFAR-10 datasets under both 1-shot and 5-shot settings.

(4) We extend the proposed method to the ImageNet dataset and conduct experiments to
evaluate its performance in detecting two new adversarial attacks, AA and CAA. The
results of the experiments clearly demonstrate the superiority of the method.

2 RelatedWork

2.1 Adversarial Attack

An adversarial attack involves introducing specific perturbations to create adversarial exam-
ples, designed to prompt deep neural networks to produce erroneous predictions without
affecting human judgment. Adversarial attacks are classified into L p and non-L p attacks,
based on their algorithms [53, 89]. Most current attack algorithms utilize L p-norm per-
turbation imperceptibility metrics to generate adversarial examples that lead to incorrect
decision-making in the target model [1, 33].

The L p-norm adversarial example is denoted by xadv = x + δ, wherein δ is derived by
solving Eq.1:

max
δ∈�

L ( fθ (x + δ), ytrue ) , s.t.� = {
δ : ‖δ‖p < ε

}
(1)

L denotes the model’s loss function, typically characterized as cross-entropy loss, with p
taking values 0, 1, 2, and ∞, each corresponding to distinct L p-norm adversarial examples
[80]. L0 measures the number of pixels that can be perturbed; L2 measures the Euclidean
distance between x and xadv; L∞ measures the maximum alterable distance across all pix-
els. Perturbations based on the L p-norm constraint are inadequate for measuring perceptual
similarity [80]. Adversarial examples can be generated by altering color [36, 78], texture [7],
spatial location [24, 94], and other factors, thus inducing model misclassification while pre-
serving semantic or structural information. In the absence of L p-norm restrictions, an attacker
may introduce extensive and conspicuous modifications to an image, prompting model mis-
classification without affecting normal human perception. Such examples are referred to as
unrestricted adversarial examples [1, 9, 85]. Bhattad et al. [7] demonstrate that adversarial
training methods based on L p-norm examples are not resilient to these adversarial examples.

Vulnerability assessment evaluates the target model’s susceptibility to performance degra-
dation when confronted with sophisticated perturbations, emphasizing metrics like attack
success rate or robust accuracy. AA and CAA represent two novel adversarial attack method-
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ologies. AA is an L p attack, while CAA additionally encompasses non-L p attacks. AA
combines improved PGD methods with FAB [18] and Square Attack [4], forming a collec-
tion of attacks commonly used for evaluating robustness. CAA defines a sequential step,
creating a powerful strategy against defense models by automatically searching for optimal
attack combinations among 32 algorithms and parameters.

2.2 Adversarial Defense

Adversarial defense methods fall into two categories. The first aims to enhance model robust-
ness, aligning themodel’s perceptionwith human perception and ensuring accurate prediction
of adversarial examples. Adversarial training is a key method for improving robustness but
faces challenges from robustness trade-offs [99] andgradientmasking issues [89].An increase
in adversarial robustnessmay reduce accuracy for normal examples [90], and L∞-norm-based
adversarial training models may lack robustness against L1-norm or L2-norm adversarial
examples [53, 85, 89].

Another defense strategy is adversarial example detection, which identifies adversarial
perturbations in input samples during the model’s prediction phase. If detected, the sample is
rejected; otherwise, it is processed by the target model. The detection of adversarial examples
serves as a critical defense mechanism against adversarial attacks, adding an extra layer of
security for practical deployment ofDNNmodels. The detection task need to address the chal-
lenge of identifying potentially malicious samples given the acknowledgment of the model’s
vulnerability. The detector’s focus lies on the detection capability of the detector, specifically
its ability to accurately distinguish between adversarial and normal samples. Detection meth-
ods are classified as supervised or unsupervised based on their use of adversarial example
information [2]. Supervised detection methods include network invariant [13, 25, 56, 64, 72],
auxiliary model [44, 82, 104] and statistical methods [17, 26, 32, 49, 50, 59]. Unsupervised
methods are further divided into network invariant [58], auxiliary model [3, 68, 86], statisti-
cal [34, 35, 102], object-based [29], denoiser [63, 84], and feature-squeezing methods [52,
97]. Additionally, few-shot learning detection methods, such as the meta-learning approach
employed by [57], named MetaAdvDet, address the challenge of detecting new adversarial
attacks with limited examples by modeling detection as a few-shot learning problem and
utilizing a double-network framework for rapid adaptation to new attacks.

The MetaAdvDet method innovatively utilizes a meta-learning approach to detect adver-
sarial examples. However, it primarily relies on the fast adaptation ability of the MAML
algorithm itself, which remains deficient in explaining the nature of adversarial examples,
thus limiting the room for further improvement of its method. Our method utilizes a metric
learning-based approach to conduct research around feature extraction of adversarial and
normal examples, which addresses some of the shortcomings in [57] and improves the gen-
eralization for detecting unknown adversarial examples. The motivation and experimental
focus of our proposed method are quite different from [57], mainly in the following three
aspects.

Firstly,whileMetaAdvDet tackles the problemof detecting unknownadversarial examples
by emphasizing the algorithm’s ability to adapt quickly, our approach builds on the work of
[41], which examines adversarial examples from a feature-based perspective. As a result, our
choice of algorithms fundamentally differs from that of MetaAdvDet.

Secondly, althoughMetaAdvDet proposes a framework for detecting unknown adversarial
examples, it provides limited results in terms of detecting such examples. In contrast, our
method not only reports the detection results of the twomissing types of adversarial examples
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identified in [57], but also extends these results to a subset of the ImageNet dataset. This
significantly surpasses the capabilities of existing methods.

Thirdly, the cross-domain and cross-architecture test results presented in [57] are not
directly relevant to the detection of unknown adversarial examples. In contrast, our proposed
method places a greater emphasis on detecting unknown adversarial examples. The design
of the backbone network and the selection of modules are based on the feature extraction
of adversarial examples as the starting point, enabling us to provide more comprehensive
detection results for unknown adversarial examples.

3 Approach

3.1 Overview

Figure 1 illustrates the proposed method’s framework, including meta-training and meta-
testing stages. Each task consists of a support set and a query set. In the meta-training stage,
the support set is used to calculate the class prototype, and adversarial examples are identified
based on the distance between the prototype and the query set features. Themeta-testing stage
involves the backbone network extracting features from unknown adversarial examples in
each task’s support and query sets. These features undergo Center and L2-normalize (CL2N)
transformation [93] and the MAP algorithm (lines 6–11 in Algorithm 2) [39] to update
the class center. After iterative steps, probabilities for normal and adversarial examples in
the query set are obtained. The meta-testing stage’s support set contains 1-shot or 5-shot
adversarial examples, enabling the framework to detect new adversarial attacks with few-
shot examples.

3.2 Backbone Network

In few-shot learning, a deeper backbone network can reduce intra-class variation [16]. Influ-
enced by the non-local global self-attention mechanism of transformers, recent convolutional
network architectures have embraced the concept of using large convolutional kernels [22,
55]. The motivation behind this choice, as discussed in [22], lies in the increased effective
receptive fields (ERFs) and the introduction of more shape bias. Our ablation experiments
also indicate that smaller kernel sizes are less effective at identifying adversarial exam-
ples. Thus, our prototypical network employs ResNet-10, a simplified version of ResNet-18
[16], with a 7 × 7 kernel size in the first convolutional layer, as opposed to MetaAdvDet’s
3-layer convolutional network. Adversarial perturbations with small L p-norm resemble hid-
den image perturbations in steganalysis [14]. Pooling operations in residual networks may
hinder the extraction of noise-like perturbation features, leading to their removal after the
first convolutional layer. The designed backbone network structure is illustrated in Fig. 2.

3.3 Task Construction

An adversarial example dataset is created by applying adversarial attackmethods to a selected
dataset and dividing it into training and test sets. Meta-training tasks are derived from the
training set, while meta-testing tasks come from the test set. Each task, containing one
adversarial example type, is split into support and query sets with normal and adversarial
examples. Support set sample number depends on a specified shot, such as 1-shot or 5-shot. To

123



Enhancing Generalization in Few-Shot Learning for Detecting… Page 7 of 25    85 

Fig. 2 Feature extraction backbone network architecture

simulate unknown attack detection scenarios, meta-testing tasks require distinct adversarial
types, maintaining the same support set sample number as in the meta-training stage, and
using a query set to evaluate the detector’s performance.

3.4 Meta-training Stage

The original dataset is denoted as D = Dtrain ∪ Dtest, and the set of adversarial attack
algorithms is represented by A = {A1,A2, . . . ,An}, where n is the total number of attack
operations. The adversarial example datasets for the meta-training and meta-testing stages
are given byDmeta_train = Dadv ∪Dtrain = A (Dtrain)∪Dtrain andDmeta_test = D′

adv ∪Dtest =
A′ (Dtest) ∪ Dtest, respectively, with the condition that A ∩ A′ = ∅, A,A′ ⊆ A.

The adversarial example detection task is a 2-way s-shot learning task, as category
labels are divided into normal and adversarial examples. Meta-training tasks Dtask are
formed by random sampling from Dmeta_train. Each task Tt includes a support set St =
{(x1, y1) , . . . , (x2 s, y2 s)} and a query set Qt = {

(x1, y1) , . . . ,
(
x2q , y2q

)}
. The variable y

represents category labels, and Stj denotes the set of samples with label j in the support set,
which contains s samples per class, while the query set has q samples per class.

Denote the backbone network as fθ , extracting feature f from input sample x as f =
fθ (x) , f ∈ R

D with learnable parameter θ . The extracted feature is obtained after applying
the ReLU function in the backbone network, ensuring non-negative feature components.
Denote o j, j∈{0,1} as the class prototype of task Tt , with o j ∈ R

D . Each class prototype is
computed by averaging the support set sample features as follows:

o j = 1

s

∑

(x,y)∈Stj
fθ (x) × 1{y = j} (2)

Given a distance function d : R
D × R

D → [0,+∞), a distribution over classes for a
query point x is obtained by applying a softmax over distances between the features and class
prototypes as follows:

pθ (y = j | x) = exp
(−d

(
fθ (x), o j

))

∑
j ′ exp

(−d
(
fθ (x), o j ′

)) (3)

Learning proceeds by minimizing the negative log-probability J (θ) = − log pθ (y =
j | x) of the true class label. The metric employed for measuring distance is the squared
Euclidean distance. By adopting a negative value for this metric, the distance is transformed
into a measure of similarity. This means that the smaller the distance, the higher the similarity
score between the sample and the prototype. The meta-training algorithm is illustrated in
Algorithm 1. The similarity scores corresponding to j = 0 and j = 1 are represented as
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“scores”. The cross-entropy function is then calculated between these scores and the true
label.

Algorithm 1 PAD meta-training procedure

Require: The multitask format dataset Dtask, total task Ktrain, backbone network fθ and its parameters θ ,
max iterations N , cross entropy loss L, learning rate λ.

Ensure: the learned network fθ .
1: sample Ktrain tasks Tt∈{1,2,··· ,Ktrain} from Dtask
2: for i ter ← 1 to N do
3: for t ← 1 to Ktrain do
4: St and Qt ← support set and query set of Tt
5: o j ← 1

s
∑

(x,y)∈Stj fθ (x) � compute prototype

6: L ← 0
7: for each (x, y) ∈ Qt do
8: scores ← [−d ( fθ (x), o0) , −d ( fθ (x), o1)] � compute scores
9: L ← L + 1

2q CELoss (scores, y) � compute loss
10: end for
11: θ ← θ − λ∇L � update
12: end for
13: end for
14: return fθ

3.5 Meta-testing Stage

Unknown adversarial example detection tasks D′
task are randomly sampled from Dmeta_test.

The backbone network fθ , obtained in the meta-training stage, is employed to extract fea-
tures from the support and query sets. The support set contains labeled samples with extracted
features denoted as FS , while the query set contains unlabeled samples with extracted fea-
tures denoted as FQ . For each f ∈ FS ∪ FQ , l(f) represents the label of the corresponding
sample, while o j, j∈{0,1} signifies the class center corresponding to class j . Given that feature
transformations have a positive impact on few-shot learning tasks [93], the feature vector f
undergoes a CL2N feature transformation as per Eq.4, resulting in f̂ .

f̄S = 1

s

∑

(x,y)∈S
fθ (x), f̄Q = 1

q

∑

(x,y)∈Q
fθ (x),

f̂ ← f − f

‖ f − f ‖2
,∀f ∈ Fs, f = f̄S; ∀f ∈ FQ, f = f̄Q

(4)

The prototype network approach assumes the existence of an embedding space where
samples cluster around a single class center, i.e., the prototype. Therefore, clustering can be
used to classify the query set. Let P = (

pi j
)
2q×2 represent the probability matrix, with each

element pi j signifying the likelihood that an unlabeled sample i is assigned to class center o j .

Define M = (
mi j

)
2q×2 as the cost matrix, where mi j = ∥∥fi − o j

∥∥2
2 denotes the Euclidean

distance between sample i and class center o j . The optimization objective of the clustering
problem is formulated as:

min
p̃i, j ,õ j

2q∑

i=1

1∑

j=0

pi jmi j (5)
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Different approaches to solving Eq.5 can be derived by applying various assumptions
to the probabilities pi j and class center o j in the above optimization objective. Three such
methods will be introduced.

(1) Nearest Class Mean (NCM) method. The original prototype network classifies query
set samples with the NCM method, where distances between query set samples and the
prototype are calculated to predict class membership. In Eq.5, the class center o j remains
constant, computed solely from the support set samples. Given the distance function d :
R

D × R
D → R

+, the optimal solution to Eq.5, taking into account the normalization of
probabilities, results in:

pi j∗ = 1

2q
, j∗ = argmin

j
d(fi , o j ) (6)

However, few-shot learning’s inherent sample scarcity leads to biases in class center
computation, as only a few samples are used.Reference [54] identifies twobias types affecting
class center estimation and theorizes that using a larger sample set can improve the lower
bound of the expected performance. Consequently, incorporating more unlabeled samples
within the unsupervised clustering framework can diminish bias in class center estimation.

(2) K-means method. If Eq.5 satisfies the condition specified in Eq.7, then it represents
the optimization objective of the K-means algorithm, an unsupervised clustering method.
The samples in the query set are uniformly distributed, inversely related to the total number
of samples in the set, as indicated by the equation

∑1
j=0 pi j = 1

2q . Notably, since pi j ∈
{0, 1/2q}, each sample is assigned to only one class center, reflecting a hard assignment
approach. In optimizing the objective Eq.5, the support set is employed to initialize the class
center. The K-means algorithm then iteratively refines the class center estimation. Upon
updating the class center, Eq. 6 is applied for prediction.

1∑

j=0

pi j = 1

2q
, pi j ∈

{
0,

1

2q

}
,∀i ∈ {1, ..., 2q}, j ∈ {0, 1} (7)

(3) MAP method. The hard assignment approach employed by the K-means method
renders the inference process non-differentiable [75]. Furthermore, adversarial examples
derived from normal samples show varying distances from the original class after neural
network transformations, depending on the type of perturbation. This variance necessitates
a soft assignment method, shifting the constraint from pi j ∈ {0, 1/(2q)} to pi j ≥ 0. This
adjustment ensures all samples contribute to the current class center calculation, reducing
detection errors in scenarios with high intra-class variance and low inter-class variance.

Our approach to detecting adversarial examples aligns with the typical few-shot learning
setup, where all the classes within the query sets are equally likely. This is known as the
uniform prior on the class distribution, which represents an equal probability scenario of
encountering either an attack or normal environment. The equation

∑2q
i=1 pi j = 1

2 symbolizes
this uniform class prior, indicating equal likelihood of both adversarial and normal classes
appearing in the query set. Defining r and c as r = [ 1

2q , ..., 1
2q ]T and c = [ 12 , ..., 1

2 ]T, and
coupled with the soft allocation condition pi j ≥ 0, we reformulate the optimization objective
as follows:

dM(r, c) = min
P∈U(r,c)

< P,M >= min
P∈U(r,c)

∑

i j
pi jmi j ,where

U(r, c) =
{
P ∈ R

2q×2
+ | P12 = r,PT12q = c

} (8)

The symbol 1d denotes a d-dimensional vector of ones. The Eq.8 quantifies the cost of
transitioning from the marginal distribution r to c via a transport matrix P. Here, U (r, c)
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denotes all possible transport schemes. This process results in the distance dM(r, c), leading
to the optimal transport scheme P∗ as per optimal transport theory. The Sinkhorn iterative
algorithm, noted for its efficiency, is particularly effective in solving this problem.The optimal
transport matrix P∗ can be obtained as follows:

P∗ = Sinkhorn (M, r, c, λ)

= argmax
P∈U(r,c)

∑

i j
pi jmi j − 1

λ
h (P)

(9)

The entropy of P, denoted as h (P), can be expressed as:

h (P) = −
∑

i j

pi j log pi j (10)

As λ increases, the influence of information entropy diminishes, and the cost matrix exerts
a stronger impact on the final result. Based on Theorem 2 of [20], the solution of Eq.9 is
unique and assumes the following form:

P∗ = diag (u) exp (−λM) diag (v) (11)

The vectors u and v can be determined using Sinkhorn’s fixed point iteration algorithm,
which can then be substituted into Eq.11 to obtain P∗. In calculating the cost matrix M in
Eq.11, the class centers are first initialized using the samples from the support set. After
obtaining P∗, the class centers are re-estimated according to Eq.12 [39] using the MAP
method.

o j ← o j + α
(
μ j − o j

)
(12)

Where μ j is calculated by Eq.13.

μ j =
∑2q

i=1 p
∗
i j fi + ∑

f∈fS ,l(f)= j f

s + ∑2q
i=1 p

∗
i j

(13)

After N iterations, the rows of P∗ indicate class probabilities, with the maximum value
determining the class label assigned to unlabeled samples, denoted as Ŷ.

Transductive learning typically outperforms inductive learning in few-shot learning tasks,
as evidenced by several leading methods cited in references [39, 40, 77, 100] that lever-
age the Sinkhorn algorithm, a transductive method. Eq.8 imposes a priori constraints on
the number of samples in each class. In comparison, the NCM and K-means classifiers do
not adequately integrate prior knowledge and constraints necessary for adversarial example
detection. Therefore, the MAP algorithm, informed by the Sinkhorn algorithm and enriched
with a priori knowledge, stands out as a more effective option for detecting adversarial exam-
ples during the meta-testing phase (refer to Sect. 4.5 for ablation experiments with different
class-center calculation methods). Additionally, the inclusion of the entropy regularization
term in the optimization objective facilitates faster convergence.

For the query set of Ktest tasks, labels are predicted and evaluation metrics are computed.
Subsequently, the evaluation metrics for the entire task are averaged to obtain the final
evaluation result of the detector. The meta-testing algorithm is shown in Algorithm 2.

3.6 Threat Model

In the weakest defense setting, the defender is aware of the attack and can use the generated
adversarial examples for training, i.e., the same type of adversarial examples are employed
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Algorithm 2 PAD meta-testing procedure

Require: the multitask format dataset D′
task, total tasks Ktest , the backbone network fθ , regularization hyper-

parameter λ, learning rate α, max iterations N , ground truth Yt,t∈{1,··· ,Ktest}.
Ensure: average F1 score over all tasks
1: for t ← 1 to Ktest do
2: St and Qt ← support set and query set of Tt
3: extract features fS and fQ from St and Qt

4: f̂S ← CL2N (fS) , f̂Q ← CL2N
(
fQ

) � CL2N transformation

5: o j ← 1
s

∑
f̂∈f̂S ,l

(
f̂
)
= j

f̂ � initializing class centers

6: for i ter ← 1 to N do
7: mi j = ∥∥fi − o j

∥∥2 � compute cost matrix
8: P∗ = Sinkhorn (M, r, c, λ) � compute mapping matrix
9: calculate μ j according to Equation 13
10: o j ← o j + α

(
μ j − o j

) � estimate class center
11: end for
12: Ŷt ← argmax P∗ � get prediction

13: scoret ← F1
(
Ŷt ,Yt

)

14: end for
15: F1 score← 1

Ktest

∑Ktest
t=1 scoret

16: return F1 score

for both training and testing. This is referred to as attack-aware black-box detection [61].
Traditional supervised adversarial example detection algorithms are evaluated under this
setting. In real attack scenarios, it is challenging for the defender to know the adversary’s
strategy. However, a limited number of adversarial examples can be labeled based on the
system’s actual response or manual means. Consequently, this paper assesses the detector’s
capability under this setting.

We consider two different threat models according to the adversary’s knowledge of the
defender [11, 14, 68]: oblivious adversaries and adaptive white-box adversaries.

Under the oblivious attack, adversaries are unaware of the detector and generates adver-
sarial examples using an unprotected target model. This paper evaluates the detector’s
performance in two cases: the cross-adversary benchmark and new adversarial attack sce-
narios. The benchmark employs the setting of [57] and includes less common attack types,
such as EAD [15], SA [37], and STA [24], simulating unknown adversarial scenarios. Addi-
tionally, two new adversarial attacks, AA [19] and CAA [62], are incorporated to assess the
detector’s detection capability. This paper adopts the searched strategies of [62], CAA-L∞,
CAA-L2, and CAA-unrestricted, as shown in Table 1.

Under the adaptive white-box attack, adversaries possess full knowledge of the origi-
nal classification model’s parameters, training strategy, and the detector. Consequently, the
adversary can target both the original classification model and the detector, leading to mis-
classification and detector evasion. Building upon the concept from [11], we combine the
original classification model and the detector into a single model. We then employ C&W
attack to generate white-box adversarial examples, with the combined model represented as
follows:

G(x)i =
{
ZC (x)i if i ≤ N

2 × ZDK (x) × max j ZC (x) j if i = N + 1
(14)

ZC (x)i represents the logits output of the classification layer in the original classification
model. Diverging from [57], which only attacks the master network of the meta-learner
in MetaAdvDet before fine-tuning, this paper employs a more potent attack setting, i.e.,
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dynamically generating adversarial examples for the fine-tuned model on each task. DK

denotes the fine-tuned detection model for the K th task, and ZDK (x) signifies the logits of
input examples classified as adversarial by this model. If ZDK (x) exceeds 0.5, the output
class of G (x)i will be N + 1; otherwise, it will match the original classifier output.

4 Experiment

4.1 Datasets and Settings

4.1.1 Datasets

In the experiments, we utilized three widely-used datasets: MNIST [48], CIFAR-10 [46], and
ImageNet [21]. Due to computational resource limitations and time constraints, we used a
subset of ImageNet, the ImageNette dataset [38], which consists of 10 categories with 9469
training images and 3925 test images. The MNIST and CIFAR-10 retain their default image
sizes, while ImageNet images are uniformly scaled to 224×224×3.

4.1.2 Target Models

For MNIST and CIFAR-10, we employed a 4-layer convolutional network (Conv-4)1 as the
target model. It is trained for 100 epochs on the training set using the Adam optimizer with a
learning rate of 0.001, resulting in test set accuracies of 98.87% and 82.83%, respectively. For
the ImageNet dataset, we utilized the ResNet-50 network with the same training parameters
as in the MNIST and CIFAR-10 datasets, achieving a test set accuracy of 80.36%. Target
models are trained without data augmentation techniques, employing only label smoothing
with a smoothing factor of 0.1.

4.1.3 Attack Parameter Settings

We employed 15 attack methods from the CleverHans library [69] for the meta-training stage
and the cross-adversary benchmark, using the default settings from [57]. The JSMA attack on
ImageNet and AA are implemented using the ART toolbox [67], while CAA employed the
algorithm provided by [62]. For AA on CIFAR-10 and ImageNet, ε = 0.03, while ε = 0.05
on MNIST, maintaining a consistent maximum of 100 iterations for both. Based on the
attack strategies searched by [62], CAA-L∞ and CAA-L2 are conducted on CIFAR-10 and
ImageNet, while CAA-unrestricted is conducted on ImageNet with the parameters detailed
in Table 1. For the adaptive white-box attack, a confidence level of 0.3 and a maximum of
100 iterations are used.

4.1.4 Detector Parameter Settings

Our detector employs a prototypical network approach suitable for deeper residual networks,
such as ResNet-10, while MetaAdvDet employs a 3-layer convolutional network (Conv-3),

1 Adversarial examples, as created for the cross-adversary benchmark in [57], are generated against the
conv-4 architecture. As elucidated in [79], adversarial examples tailored for different architectures, manifest
distinct traits. In crafting our adversarial example datasets on MNIST and CIFAR-10, we retained the conv-
4 architecture as the target to ensure dataset consistency and comparability in detection outcomes, thereby
eliminating any potential bias introduced by the target model’s architecture.
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where a deeper residual network might degrade performance, as observed in our experi-
ments. The adversarial example detection task applies a two-way setting for the detector to
distinguish adversarial examples from normal ones, with one or five samples (s) per cate-
gory in the support set and 35 and 15 samples (q) in the query set during the meta-training
and meta-testing stages, respectively. The total number of tasks is set to Ktrain = 20,000 for
meta-training and Ktest = 1000 for meta-testing. The number of max iterations in the meta-
training stage is set to 10. The prototypical network training utilizes the Adam optimizer, a
default learning rate of 0.001, and a cross-entropy loss function. Following the settings in
[39], the hyperparameters for the meta-testing stage are set to λ = 0.1, α = 0.2, and N = 20,
respectively.

4.1.5 Evaluation Indicators

In our experiments, we employ three evaluation metrics–detection accuracy, F1 score, and
AUC–to comprehensively assess the detector’s performance, rather than relying on a single
metric. Contrary to [57], which designates normal samples as positive (label 1 for normal,
label 0 for adversarial), we define positive samples as adversarial examples when calculating
AUC, while other metrics follow the reverse. The final metrics, including detection accuracy,
F1 score, and AUC, are obtained by averaging the results across all tasks in the meta-testing
stage.

4.1.6 Methods of Comparison

To exhibit the efficacy of our proposed approach, a fair comparison is essential using the
adversarial example dataset constructed in Sect. 4.1.1. The compared methods must detect
new adversarial examples with limited samples. Consequently, they should be end-to-end,
data-driven learning methods amenable to fine-tuning during the testing stage.

The Baseline and Baseline++ methods [16] use the backbone network structure from
Sect. 3.2 and are trained on a balanced adversarial example dataset randomly sampled from
Dmeta_train with equal numbers of adversarial and normal examples. Baseline and Baseline++
differ in that Baseline uses a linear layer after the backbone network as the classifier, while
Baseline++ uses cosine distance. Both methods are trained for 50 epochs, the parameters of
the backbone network are fixed duringfine-tuning, and only the parameters of the classifier are
trained. An SGD optimizer is used, with a learning rate of 0.01, and fine-tuning is performed
with 20 iterations on the support set during the meta-testing stage. For MetaAdvDet, the
default settings from [57] are employed for CIFAR-10 and ImageNet. A decaying learning
rate setting is applied to MNIST, where the inner layer update learning rate is initialized
to 1 and the outer layer update learning rate is set to 0.1 for the 1-shot setting, and to 0.1
and 0.01, respectively, for the 5-shot setting. The learning rate decays every 700 iteration
steps to 1/10 of the original. PACA utilizes a two-stream architecture that leverages pixel
artifacts and confidence artifacts for detecting adversarial examples subjected to both few-
perturbation and large-perturbation attacks [14]. We further improve the PACA method to
detect adversarial examples under few-shot conditions, using a pre-trained model provided
by the authors with the default settings from [14]. During the testing stage, the entire network
is fine-tuned on the support set with an update number of 20.
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Table 2 Attack success rate of
unknown adversarial attacks on
different datasets

Adversarial attack Attack success rate (%)

MNIST CIFAR-10 ImageNet

EAD [15] 100.0 100.0 100.0

NFA [42] 100.0 100.0 99.3

DFA [66] 100.0 100.0 99.9

SA [43] 87.9 57.1 68.5

STA [94] 94.8 98.8 80.1

AA [19] 40.2 100.0 99.3

CAA-L∞ [62] – 100.0 99.9

CAA-L2 [62] – 100.0 27.0

CAA-unrestricted [62] – – 99.9

LBFGS [98] 96.2 95.96 86.9

4.2 Attack Results Against Target Models

The construction of the adversarial example datasets involves only those samples that are
correctly classified by the target model and successfully attacked by the adversary. The attack
success rates on the validation and test sets are presented in Table 2. The results suggest that
the attacks included in the cross-adversary benchmark achieve high attack success rates on
all datasets, except for STA and SA. It is observed that AA is less effective on MNIST.
Moreover, L2-norm attacks, such as LBFGS and CAA-L2, have low attack success rates on
ImageNet.

4.3 Performance Under the Oblivious Attack

Table 3 presents the results of various methods in the cross-adversary benchmark. Our pro-
posed methods achieve optimal detection results across all datasets and settings. On MNIST,
all methods achieve high detection performance under the 5-shot setting, while MetaAd-
vDet lags behind the Baseline method under the 1-shot setting. Baseline and Baseline++
demonstrate poor detection results on the complex CIFAR-10 and ImageNet datasets, with
detection rates hovering around 50%, equivalent to a random detector. After transitioning
from the 1-shot to the 5-shot setting, MetaAdvDet achieved a substantial improvement in
detection performance by over 10%, slightly surpassing PACAon ImageNet, but significantly
lower than both PACA and PAD on CIFAR-10.

The AUC results for the detection of the five attacks in the cross-adversary benchmark and
the two new adversarial attacks AA, CAA are shown in Figs. 3, 4 and 5. The results in Fig. 3
demonstrate that PAD outperforms all other methods on MNIST. Additionally, MetaAdvDet
exhibits a significant gap with the other methods in detecting STA and AA.

The detection results on CIFAR-10 are presented in Fig. 4. PAD surpasses other methods
in detecting the five attacks in the cross-adversary benchmark, though its performance on AA
andCAA-L∞ isweaker thanBaseline++,MetaAdvDet, andPACA.Thisweaker performance
on L∞ attacks is likely due to the detector’s awareness of the attacks, suggesting that the
three detection methods may be overfitting. Additionally, PAD outperforms MetaAdvDet in
detecting CAA-L2 attacks, with a gap of around 5% compared to PACA.
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Table 3 Detection results (%) of various methods in the cross-adversary benchmark in [57]

Dataset Method F1 (%) Accuracy (%) AUC (%)

1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

MNIST Baseline 97.9 98.6 97.8 98.5 99.4 99.8

Baseline++ 91.8 94.7 92.9 95.4 98.2 99.3

MetaAdvDet 92.9 98.1 93.1 98.1 95.7 99.8

PACA 98.3 99.3 98.4 99.3 99.7 99.9

PAD(ours) 99.6 99.9 99.6 99.9 99.7 100.0

CIFAR-10 Baseline 50.0 51.4 52.9 55.5 55.0 58.8

Baseline++ 48.5 48.9 53.4 55.4 55.4 59.5

MetaAdvDet 60.5 72.2 60.3 71.9 67.0 78.6

PACA 74.1 79.0 75.3 79.0 82.1 85.9

PAD(ours) 85.3 88.9 85.2 88.9 88.7 92.8

ImageNet Baseline 54.0 61.3 57.3 61.6 61.3 67.8

Baseline++ 43.1 45.2 52.9 53.5 58.4 60.3

MetaAdvDet 57.2 76.8 61.7 77.0 70.8 84.5

PACA 66.8 76.0 65.0 75.4 69.4 81.2

PAD(ours) 79.1 88.4 79.1 88.4 83.2 93.4

The best results are indicated in bold

Fig. 3 AUC (%) score of unknown adversaries from the cross-adversary benchmark and novel adversaries
under 1-shot and 5-shot settings on MNIST. a 1-shot; b 5-shot

Figure5 presents the detection results on ImageNet. PAD demonstrates inferior perfor-
mance compared to MetaAdvDet in detecting SA; however, it surpasses all other methods in
detecting a variety of unknown and new attacks. Although PACA outperforms state-of-the-
art detection approaches [14] in detecting EAD with few-perturbation and low confidence
levels, PAD and MetaAdvDet are superior in the few-shot detection task presented in this
study, with PAD exceeding PACA by over 20%.

The results from three datasets reveal that the presented method enhances robust gen-
eralization, accurately characterizes the adversarial subspace [61], and excels in detecting
unknown attacks.
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Fig. 4 AUC (%) score of unknown adversaries from the cross-adversary benchmark and novel adversaries
under 1-shot and 5-shot settings on CIFAR-10. a 1-shot; b 5-shot

Fig. 5 AUC (%) score of unknown adversaries from the cross-adversary benchmark and novel adversaries
under 1-shot and 5-shot settings on ImageNet. a 1-shot; b 5-shot

4.4 Performance Under the AdaptiveWhite-Box Attack

A targetedwhite-box C&Wattack is executed on a set of tasks, constructed using themethod-
ology described in Sect. 3.3. These tasks involve random samples from the C&W adversarial
example dataset combined with normal test samples. During the attack against each task,
normal samples from the query set serve as initial inputs, with target labels differing from
both the ground truth and the target model’s predicted label.

Samples successfully attacked against the combined model are utilized as adversarial
examples for task construction, with the detection model fine-tuned on each task to detect
these samples. The detection results are presented in Table 4. The table illustrates that the
attacked PAD model, when provided with a small number of labeled attacked adversarial
examples, improves detection performance across all datasets, achieving optimal detection
results.
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Table 4 Detection results (%) of various methods under the adaptive white-box attack scenario

Dataset Method F1 (%) Accuracy (%) AUC (%)

1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

MNIST Baseline 99.3 99.2 99.3 99.2 100.0 100.0

Baseline++ 70.9 82.0 71.4 78.3 81.1 90.0

MetaAdvDet 99.5 99.8 99.6 99.8 100.0 100.0

PACA 95.0 94.1 94.9 93.6 99.6 100.0

PAD(ours) 99.9 100.0 99.9 100.0 100.0 100.0

CIFAR-10 Baseline 50.3 52.5 53.5 54.9 54.8 58.6

Baseline++ 47.1 48.5 52.2 53.6 53.2 56.7

MetaAdvDet 60.9 69.9 61.4 69.9 68.2 76.6

PACA 77.5 82.4 77.9 82.3 86.1 90.5

PAD(ours) 90.3 91.5 90.3 91.5 92.4 94.1

ImageNet Baseline 51.6 56.5 54.8 59.0 57.0 63.0

Baseline++ 50.2 54.0 52.8 54.2 57.5 60.6

MetaAdvDet 57.4 70.9 58.1 71.0 64.9 78.3

PACA 64.5 73.6 62.2 73.0 67.5 79.8

PAD(ours) 78.1 88.5 78.1 88.5 82.5 93.1

The best results are indicated in bold

Table 5 Ablation study results of PADmodules in the cross-adversary benchmark onCIFAR-10 and ImageNet

Modules CIFAR-10 (F1 (%)) ImageNet (F1 (%))

Network’s first layer CL2N MAP 1-Shot 5-Shot 1-Shot 5-Shot

(3×3 conv)×3+avgpool × × 66.8 61.8 65.7 82.1

(3×3 conv)×3 × × 53.1 64.5 68.0 81.0

(7×7 conv)×1+avgpool × × 75.0 72.2 67.0 85.2

(7×7 conv)×1 × × 80.8 87.4 71.6 85.3

(7×7 conv)×1 � × 84.2 88.3 76.9 87.2

(7×7 conv)×1 × � 85.2 88.5 78.2 87.5

(7×7 conv)×1 � � 85.3 88.9 79.1 88.4

Best results are indicated in bold

4.5 Ablation Study

To assess the effectiveness of each PAD module, ablation experiments are conducted on
CIFAR-10 and ImageNet using F1 scores (Table 5) under the cross-adversary benchmark.
The table illustrates the impact of the first convolutional layer’s structure, CL2N, and MAP
usage. One convolution with a kernel size of 7×7 in the first layer outperforms three 3×3
convolutions, regardless of average pooling. Notably, removing average pooling significantly
improves CIFAR-10 detection results, indicating larger kernel sizes and unpooled structures
benefit the detector’s generalization. MAP enhances the detector’s performance under the
1-shot setting, with CL2N providing a slight additional improvement.

In Table 6, we present a comparative analysis of the impacts of various class-center cal-
culation methods on the CIFAR-10 and ImageNet datasets. The NCM approach directly
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Table 6 Ablation study results with different class-center calculation methods in the cross-adversary bench-
mark on CIFAR-10 and ImageNet

Class-center calculation methods CIFAR-10 (F1 (%)) ImageNet (F1 (%))

1-Shot 5-Shot 1-Shot 5-Shot

NCM 84.2 88.3 76.9 87.2

K-means 84.7 88.4 78.2 88.1

MAP 85.3 88.9 79.1 88.4

Best results are indicated in bold

Fig. 6 Ablation study results of backbone networks with different depths. a CIFAR-10; b ImageNet

leverages support set samples for the computation of class centers. Conversely, the K-means
method employs the assignment probability computation method described in Eqs. 5–7. This
method initializes the class centers using the support set and subsequently updates them
through an iterative process resembling the expectation–maximization (EM) algorithm. On
the other hand, theMAPmethod utilizes Sinkhorn’s algorithm to compute assignment proba-
bilities and updates class centers through Eqs. 12 and 13. An examination of the table reveals
that the MAP algorithm consistently yields the most optimal detection performance.

To investigate the impact of backbone network depth on detection performance, we incre-
mentally increase the feature backbone depth from Conv-3 to Conv-4, ResNet-10, 18, 34, 50,
and 101. AUC scores for CIFAR-10 and ImageNet are presented in Fig. 6. The detection per-
formance exhibits a clear trendwith increasing network depth, where it plateaus at ResNet-10
and subsequently declines, except in the 5-shot CIFAR-10 setting. Experiments reveal that
deeper networks in MetaAdvDet do not improve performance but increase training costs;
thus, they are omitted. PAD is suitable for deeper structures, and ResNet-10 outperforms
other architectures across various datasets and settings.

4.6 Time Cost

Regarding the complexity of implementation, we focus on the time costs involved in three
phases: the preparation of adversarial examples, model training, and model inference. For
the inference phase, our method consists of two primary processes: feature extraction and
MAP. The complexity of the feature extraction is equivalent to that of a standard CNN. In
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contrast, the complexity of the MAP process is closely related to the Sinkhorn algorithm and
depends on both the feature dimension and the number of samples. All timing measurements
were conducted using a single Nvidia Tesla V-100 GPU. Given that the principal objective of
our research is the enhancement of detection performance, we did not engage in comparative
analyses regarding the time consumption of our method against other approaches.

1. Adversarial Examples Generation Time: The generation of adversarial example datasets
is generally completedwithin a few hours. Exceptions include EAD, JSMA, and LBFGS
types due to their higher time demands. We employed identical parameters for EAD and
JSMA as those in the MetaAdvDet source code for consistency. To reduce computa-
tional demands, we adjusted only the attack strength for generating LBFGS adversarial
examples on ImageNet. On CIFAR-10, adversarial examples took 20.5h (EAD), 15.5h
(JSMA), and 57.3h (LBFGS) to generate. On ImageNet, these times were 89.5h (EAD),
32.2h (JSMA), and 22.7h (LBFGS).

2. Detector Training Time: In the meta-training stage, each task in the 1-shot setting
includes 72 samples from both support and query sets, increasing to 80 samples in
the 5-shot setting. The training times per epoch for MNIST, CIFAR-10, and ImageNet
adversarial example datasets were 5.41, 7.32, and 74.43min (1-shot) and 6.08, 7.51, and
81.64min (5-shot), respectively.

3. Inference Time: At the meta-testing stage, each task consists of 32 samples (1-shot) and
40 samples (5-shot). Inference times per task for MNIST, CIFAR-10, and ImageNet
were 9.22 ms, 9.47 ms, and 10.14 ms (1-shot) and 23.69 ms, 24.92 ms, and 27.63 ms
(5-shot), respectively. The MAP algorithm primarily dictates the inference time.

5 Conclusions, Limitations, and FutureWork

While much work focuses on detecting known adversarial examples by treating them as
noise, this paper considers adversarial examples as features, proposing an end-to-end detec-
tion method called PAD to enhance the detector’s generalization capability across various
scenarios. PAD employs a convolution with a larger kernel size and omits the poolingmodule
in the first layer, maximizing feature extraction across varying resolutions. The prototypical
network is trained on a set of tasks containing known adversarial examples. After applying the
CL2N feature transformation, the features of the support set, which come from the unknown
adversarial example detection tasks, are used as initial class centers. The optimal-transport
inspired MAP algorithm is then used to update the class centers and calculate probabilities,
significantly improving few-shot detection performance. Extensive comparative experiments
demonstrate PAD’s improved generalization to unknown attacks and robustness against adap-
tive white-box attacks, given a limited number of labeled adversarial examples.

During meta-testing stage, our method detects adversarial examples through feature
extraction and the MAP process. Feature extraction, akin to an ordinary DNN, requires one
forward propagation. The MAP process, more time-intensive, computes the optimal match,
impacting inference efficiency. The MAP method assumes a uniform class prior, which may
hinder performance on class-imbalanced tasks, as shown in few-shot learning experiments
[103]. Furthermore, our adversarial example detection tasks, containing only one adversar-
ial type per task, may struggle when multiple types are mixed in a single task, potentially
affecting class center computation and detection effectiveness. The proposed method, which
depends exclusively on image information, demonstrates diminished effectiveness against
known attack types, such as L-infinity. In contrast, the PACAmethod, leveraging both image
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data and confidence scores from the target classifier, exhibits superior performance in detect-
ing known adversarial examples on CIFAR-10 dataset.

Future research will explore incorporating additional information beyond the image to
enhance the detector’s generalizability, without compromising known adversarial example
detection. For the purposes of consistency in benchmark testing, adversarial examples tailored
to CNN architectures were employed. The rising prominence of transformer architectures
in robustness research presents an intriguing direction, especially considering the distinct
perturbations against transformers compared to CNNs [79]. By integrating the transformer
architecture into our detection backbone, we anticipate improvements in feature extraction
capabilities and the provision of adaptive defenses against white-box attacks. In addition,
it is important for the detector to be able to detect adversarial examples across different
architectures. This requires using adversarial examples generated against one architecture
for meta-training and those generated against another architecture for meta-testing.
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