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Abstract
Deep learning model is a multi-layered network structure, and the network parameters that
evaluate the final performance of the model must be trained by a deep learning optimizer.
In comparison to the mainstream optimizers that utilize integer-order derivatives reflecting
only local information, fractional-order derivatives optimizers, which can capture global
information, are gradually gaining attention. However, relying solely on the long-term esti-
mated gradients computed from fractional-order derivatives while disregarding the influence
of recent gradients on the optimization process can sometimes lead to issues such as local
optima and slower optimization speeds. In this paper, we design an adaptive learning rate
optimizer called AdaGL based on the Grünwald–Letnikov (G–L) fractional-order derivative.
It changes the direction and step size of parameter updating dynamically according to the
long-term and short-term gradients information, addressing the problem of falling into local
minima or saddle points. To be specific, by utilizing the globalmemory of fractional-order cal-
culus, we replace the gradient of parameter update with G–L fractional-order approximated
gradient, making better use of the long-term curvature information in the past. Furthermore,
considering that the recent gradient information often impacts the optimization phase signif-
icantly, we propose a step size control coefficient to adjust the learning rate in real-time. To
compare the performance of the proposed AdaGL with the current advanced optimizers, we
conduct several different deep learning tasks, including image classification on CNNs, node
classification and graph classification on GNNs, image generation on GANs, and language
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modeling on LSTM. Extensive experimental results demonstrate that AdaGL achieves stable
and fast convergence, excellent accuracy, and good generalization performance.

Keywords Deep learning · Optimization algorithm · Adaptive learning rate ·
Fractional-order derivative

1 Introduction

As a hot research direction for processing neural networks, Deep Learning [1] has received
considerable attention in recent years. A deep learning model is a multi-layered neural net-
work structure, which consists of an input layer, multiple hidden layers, and an output layer to
simulate the multi-level learning process of the human brain. It has demonstrated significant
advantages in computer vision, natural language processing, and other fields, and is widely
applied in video stabilization, object recognition, image processing, and other areas [2–4].
Each layer of a deep neural network contains a large number of parameters, which determine
the accuracy of the network’s output and reflect the effectiveness of the model. In order to
obtain excellent deep learning models, it is necessary to use deep learning optimizers to
optimize and update the parameters during model training.

Because the deep neural networks have the characteristics of non-convexity, nonlinearity,
deep hierarchical hidden structures, and a large number of parameters, the optimization prob-
lem in deep learning is quite complicated. An excellent optimizer can make the parameters
converge to the target point with a low loss value and improve the speed and accuracy of the
model to complete the task. At present, optimizers in deep learning can bemainly categorized
into first-order methods and second-order methods [5, 6].

First-order optimization algorithms are based on Gradient Descent (GD), which was orig-
inally a fundamental method in optimization theory and later extended to the field of deep
learning. Stochastic Gradient Descent (SGD) [7] is the most basic method in practical deep
learning tasks. In each iteration, one or more samples (less than the total number of sam-
ples) are selected randomly, and the gradient of model parameters is calculated to update the
parameters, aiming to minimize the loss function value of the model. As shown in Fig. 1, the
basic SGD method has some main drawbacks [8]: (1) The gradients may be highly sensitive
to certain directions in the parameter space; (2) It can get stuck in local minima or saddle
points where the gradient is zero; (3) It applies the same update step size for each parameter
without considering the gradient variation information, resulting in poor optimization.

Given several shortcomings of SGD, many researchers have put forward some improved
optimization algorithms. Stochastic Gradient Descent with Momentum (SGDM) [9] is a

Fig. 1 SGD is sensitive to some directions (left) and can fall into local minima or saddle points (right)
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popular variant that analogizes the concept ofmomentum inphysics, considering the influence
of historical gradient directions. If the gradient direction at the current moment is similar to
that at the historical moment, SGDM accelerates the learning speed of parameters. It solves
some problems in SGD [10]. However, SGDM, like SGD, still uses a fixed constant as the
learning rate, so that all parameters change in the same step size, regardless of the gradient
behavior. In recent years, adaptive learning rate optimizers have gained popularity in deep
neural networks optimization, which can adjust the update step size dynamically according
to the requirements of parameter update during the whole iteration process. Adam [11] is one
of the most widely used adaptive learning rate optimizers, which can increase or decrease
the update step size utilizing the gradient information. If the loss surface is regarded as
a rugged hillside, Adam behaves like a frictional heavy ball and can find the target value
faster. However, Adam tends to converge to the sharp local minima with poor generalization
performance, rather than the expectedflatminima, resulting in inferior performance compared
to SGD-like optimizers in some tasks [12, 13].

Second-order optimization algorithms, such as Newton’s method and the Conjugate Gra-
dient method [14], require second-order derivatives to find the optimal parameter values.
They utilize both gradient information and the trend of gradient changes, to some extent,
to avoid local optima problems. However, the complexity of deep neural networks limits
the practical application of second-order optimizers due to the high computational cost and
memory requirements.

The mainstream optimizers mentioned above are all based on integer-order derivatives to
obtain gradient information, which have limitations. Specifically, during the training process,
they only use the gradient information of the current point to guide the optimization direction,
which is calculated by the integer-order derivatives directly and lacks the global state and
contextual information. This often leads to local optima issues.

Fractional-order derivative is a natural extension of integer-order derivative opera-
tion, where the order of derivative calculation is extended from integers to fractions.
Fractional-order calculus has achieved excellent performance in various fields, such as data
preprocessing, control systems, and time series prediction [15–17]. Recently, there has been
a trend of applying fractional-order calculus methods to neural network optimization. Com-
pared with the traditional integer-order derivative, the fractional-order derivative possesses
the advantage of global memory characteristics in both time and space domains, and expands
the search area around the target point [18]. So that additional information can be obtained
to avoid the local optima problems caused by integer-order derivatives. Herrera-Alcántara
[19] presented optimizers that introduce a fractional derivative gradient of the objective func-
tion in the parameter update rule, as well as an implementation for the Tensorflow backend.
Yu et al. [20] designed a FracM optimizer based on fractional-order calculus and SGDM
algorithm, using the fractional-order difference of momentum and gradient to adjust the
optimization direction. Zhou et al. [21] proposed FCGD_G–L algorithm, which uses the
Grünwald–Letnikov fractional-order derivative [22] to replace the first-order derivative in
SGD and Adam, and adds a disturbance factor to improve the robustness of the algorithm.
These are all successful algorithms using fractional-order calculus for deep learning opti-
mization. However, these algorithms only use the historical long-term estimated gradients
based on fractional-order calculations to adjust the parameter update step size, ignoring the
great influence of the recent real gradients, which sometimes leads to poor optimization speed
and accuracy. This is the focus of our research.

In this paper, we propose a novel adaptive learning rate optimizer called AdaGL, based
on the classical Grünwald–Letnikov (G–L) fractional-order derivative. AdaGL can guide
the parameter update direction and step size on the basis of both long-term and short-term

123



106 Page 4 of 20 S. Chen et al.

gradients information, enabling it to escape local minima and saddle points and converge to
the flat target value quickly. Specifically, we start from the classical definition of the G–L
fractional-order derivative in mathematics and replace the parameter update gradient with
the fractional-order approximated gradient to incorporate the long memory and global cor-
relation characteristics. Moreover, a step size control coefficient is designed to increase or
decrease the update step size adaptively according to the real-time change of the short-term
gradients. Theoretical analysis demonstrates the effectiveness of the proposed algorithm in
addressing the problem of getting trapped in local minima and saddle points. We have also
carried out extensive experiments on various deep learning tasks, including image classifica-
tion, node classification, graph classification, image generation, and language modeling. The
experimental results show that the proposed AdaGL optimizer can converge quickly, with
excellent accuracy and good generalization performance.

In summary, the main contributions of our work are as follows:

• Based on the ability of G–L fractional derivatives to capture the historical global memory
characteristics of the objective function,we derive theG–L fractional-order approximated
gradient theoretically to replace the gradient of parameter updating in the neural networks,
so that the curvature information of the objective function can be fully utilized.

• Considering the significant influence of recent gradient information during the optimiza-
tion stage, we introduce a step size control coefficient, which can feedback and adjust
the parameter update step size using the short-term gradients change. This allows us to
jump out of the unexpected sharp minima and saddle points and accelerate the learning
process.

• Combining G–L fractional-order approximated gradient and step size control coefficient,
we propose an adaptive learning rate optimizer named AdaGL. It comprehensively uti-
lizes both past long-term and current short-term gradients information to regulate the
adaptive learning rate, preventing the optimizer from getting trapped in local minima and
saddle points and ensuring rapid and stable convergence to flat optimal points.

• To evaluate the performance of the proposed AdaGL optimizer, we conduct experiments
on a variety of deep learning classic architectures and datasets, comparing it with other
popular optimizers. Our experiments include image classification with CNNs architec-
tures (ResNet [23] and DenseNet [24]), node classification and graph classification with
Graph Convolutional Networks (GCN) [25], image generation withWasserstein Genera-
tive Adversarial Networks (WGAN) [26], and language modeling with Long Short-Term
Memory (LSTM) [27]. AdaGL achieves advanced performance in these tasks, improving
the convergence speed and accuracy of the network models.

The rest of this paper is organized as follows: Sect. 2 introduces the related work and pre-
liminary mathematical preparation. Section3 provides a detailed description of the proposed
optimizer. Section4 presents experimental validations of the proposed algorithm. Section5
concludes the paper and discusses future work.

2 Preliminaries

In order to find the optimal parameters, the most fundamental method adopted in most
deep learning neural networks is SGD. From all the n samples in the training set, select
m (m ≤ n) independent and identically distributed small batch samples

{
x (1), . . . , x (m)

}

randomly, where x (i) corresponds to the target y(i). In t th iteration, the defined objective
optimization function L is applied to calculate the gradients of each parameter θ in the
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network on the mini-batch samples, and then average their gradients to obtain the estimated
gradient gt :

gt ← 1

m
�θ

∑
i L

(
f
(
x (i); θt−1

)
, y(i)

)
(1)

Then, in the negative gradient direction, the parameter values are updated by using the
learning rate hyperparameter and the gradient:

θt ← θt−1 − ηgt (2)

where θt−1 and θt are the previous and updated parameter values respectively, and η is a fixed
learning rate hyperparameter.

SGDM is a widely used extension of SGD that incorporates past gradient information in
each dimension to maintain a momentum m, which is defined as the Exponential Moving
Average (EMA) of the gradients. The parameters are updated as:

mt ← βmt−1 + gt

θt ← θt−1 − ηmt (3)

wheremt is the momentum obtained in the t th iteration (m0 = 0), and β is a hyperparameter
for controlling the decay rate of the momentum.

Inspired by fractional calculus, FracM was put forward, which calculates the momentum
and gradient in SGDM in fractional-order derivative instead of the traditional first-order
derivative. The parameter update is defined as follows:

GL D
α
t mt = βGL D

α
t mt−1 +GL Dα

t gt

= β (mt−1 + α1mt−3 + α2mt−5 + α3mt−7)

+ (gt + α1gt−2 + α2gt−4 + α3gt−6)

mt−1 ← GL D
α
t mt

θt ← θt−1 − ηmt−1 (4)

where GL Dα
t represents performing a G–L fractional-order operation with a fractional order

α in the t th iteration, and αk(k = 1, 2, 3) is the default coefficient of the G–L fractional
order.

The optimization algorithms described above use a fixed constant as the learning rate,
causing all parameters to be updated with the same step size. In recent years, the adaptive
learning rate algorithms have been widely used in deep learning tasks, which assign an
adaptive step size to each parameter based on the current state.

Duchi et al. [28] proposed the first popular adaptive learning rate optimizer called Ada-
Grad. AdaGrad divides the learning rate by the square root of the accumulated sum of squared
gradients for each parameter, enabling dynamic adjustment of the learning rate. The param-
eter update rule is as follows:

Gt ← βGt−1 + g2t

θt ← θt−1 − ηgt√
Gt + δ

(5)

where δ is a numerical stability constant added in the denominator to prevent division by
zero.

However, AdaGrad accumulates the squared gradients continuously, leading to a sharp
decline in the adaptive learning rate and hindering the learning process. To address this
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drawback, RMSProp [29] was proposed as an improvement to AdaGrad. RMSProp uses the
EMA to calculate the cumulative squared gradients, focusing only on the gradient information
within a recent time window. The decay rate hyperparameter β is used to control the length
of the time window. The parameter update rule is defined as:

Gt ← βGt−1 + (1 − β) g2t

θt ← θt−1 − ηgt√
Gt + δ

(6)

Adam can be regarded as the combination of SGDM and RMSprop, which adaptively
adjusts the learning rate based on two vectors known as the first-order moment and the
second-order moment. The first and second moments are defined by the EMA of the gradient
and the squared gradient, respectively. However, these moments can be biased towards zero,
especially during the initial iterations. To address this, a bias correction is applied. For the
t th iteration, the parameter update in the Adam is defined as follows:

mt ← β1mt−1 + (1 − β1) gt

vt ← β2vt−1 + (1 − β2) g
2
t

m̂t ← mt

1 − β t
1

v̂t ← vt

1 − β t
2

θt ← θt−1 − ηm̂t√
v̂t + δ

(7)

where β1 and β2 are the decay rate hyperparameters for the first-order moment mt and the
second-order moment vt respectively, and m0 = 0, v0 = 0.

During the later stages of training, when the gradients decrease significantly, Reddi et
al. [30] observed that the adaptive learning rate of Adam increases, leading to potential
divergence in parameter update. To address this issue, they proposed the AMSGrad. AMS-
Grad modifies the parameter update by using the maximum value of the past second-order
moments, applying more friction to the optimization process to prevent overshooting the
target value. The parameter update rule is defined as:

ṽmax
t ← max

(
ṽmax
t−1 , v̂t

)

θt ← θt−1 − ηm̂t√
ṽmax
t + δ

(8)

DiffGrad [31] is another improvement upon Adam. Unlike AMSGrad, which relies on
long-term gradients information, diffGrad focuses on short-term gradients variations. It intro-
duces a diffGrad Friction Coefficient (DFC) to control the adaptive learning rate. The DFC
at the t th iteration, denoted as ξt , and the parameter update rule is defined as follows:

ξt = AbsSig (�gt ) = AbsSig (gt−1 − gt ) = 1

1 + e−|gt−1−gt |

θt ← θt−1 − ηξt m̂t√
v̂t + δ

(9)

Nevertheless, DFC compresses the step size of parameter update to 0.5–1 times, which
further reduces the momentum and leads to slow convergence speed.
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Zhou et al. [21] based on the definition of G–L fractional-order calculus, designed two
optimizers called FCSGD_G–L and FCAdam_G–L by combining SGD and Adam, respec-
tively. The gradients for both optimizers with a fractional order α are defined as:

G
α Dα

θt−1
L (θt−1) = gt +

10∑

i=1

c [i − 1]wi gt−i (10)

where c [·] is the perturbation coefficient of 0 or 1, wi =
(
1 − α+1

i+1

)
wi−1 and w0 = 0.

Parameter update of FCSGD_G–L is defined as:

θt ← θt−1 − ηGα Dα
θt−1

L (θt−1) (11)

Parameter update of FCAdam_G–L is defined as:

mt ← β1mt−1 + (1 − β1)
G
α Dα

θt−1
L (θt−1)

vt ← β2vt−1 + (1 − β2)
[
G
α Dα

θt−1
L (θt−1)

]2

m̂t ← mt

1 − β t
1

v̂t ← vt

1 − β t
2

θt ← θt−1 − ηm̂t√
v̂t + δ

(12)

3 Algorithm

The first-order optimization algorithms only utilize the local neighborhood information of
the parameters to be updated, which leads to a risk of getting trapped in local minima. The
second-order optimization algorithms make better use of the curvature information of the
function but are constrained by computational complexity, which limits their widespread
adoption. In this section, we introduce the G–L fractional-order derivative method and use it
to approximate the gradient, thereby supplementing the long-term state information lacking
in the first-order optimizers. We then introduce a step size control coefficient that reflects
short-term gradients changes, allowing the parameter update step size to be flexibly adjusted
in real-time according to the current short-term state information. Finally, we combine these
techniques to create our new adaptive learning rate optimizer AdaGL, which can accelerate
convergence and prevent falling into the local optima.

3.1 G–L Fractional-Order Derivative

For a continuous function f (x), the definition of the integer-order derivative with order n is
as follows:

f (n) (x) = dn f (x)

dxn
= lim

h→0

1

hn

n∑

r=0

(−1)r
n (n − 1) . . . (n − r + 1)

r ! f (x − rh) (13)

Fractional-order derivative is a classical concept in mathematics, which can be regarded as
a generalized form of integer-order derivative. By extending the derivative order from integer

123



106 Page 8 of 20 S. Chen et al.

to arbitrary rational number, the definition of fractional-order derivative can be obtained. The
Grünwald–Letnikov (G–L) fractional-order derivative of a function f (x) with order α is
defined as:

G−L D
α
t f (x) = lim

h→0

1

hα

t−t0
h∑

j=0

(−1) j
� (α + 1)

� ( j + 1) � (α − j + 1)
f (x − jh) (14)

where h is the step size, and t , t0 represents the upper and lower bounds of the steps respec-
tively, and �(·) denotes the Gamma function.

When the step size h is small enough, the limit operation in Eq. 14 can be neglected. In
the optimization process of neural networks, the step size h for parameter update is not a
continuous value. We set h to its minimum value, that is h = 1. Therefore, in this case, the
definition of the G–L fractional-order derivative can be approximated as follows:

G−L D
α
t f (x) ≈ 1

hα

t−t0
h∑

j=0

(−1) j
� (α + 1)

� ( j + 1) � (α − j + 1)
f (x − jh)

=
t−t0∑

j=0

(−1) j
� (α + 1)

� ( j + 1) � (α − j + 1)
f (x − j) (15)

Equation15 is an infinite expansion formula.Nevertheless,whenperforming computations
on a computer, it is necessary to convert Eq. 15 into a finite series expansion. Some studies
have shown that when the fractional-order derivative formula is expanded to 10 terms, the
effect of the fractional orderα on the fractional-order derivative isminimal [32]. At this point,
the properties of the fractional-order derivative can be well expressed in neural networks.
Therefore, we set the number of expansion terms in the G–L fractional-order derivative
formula to 10, resulting in:

G−L D
α
t f (x) =

10∑

j=0

(−1) j
� (α + 1)

� ( j + 1) � (α − j + 1)
f (x − j) (16)

3.2 Step Size Control Coefficient

In the adaptive learning rate optimization algorithms, the most critical thing is the control
mode of learning rate. The goal of deep neural networks optimization is to find a flatminimum
with low loss. An adaptive learning rate optimizer should have the ability to escape local
minima and saddle points and stay away from sharp minima. To adjust the adaptive learn-
ing rate appropriately and ensure that the parameters are iteratively updated in the desired
direction, we introduce a step size control coefficient.

Inspired by some common and popular activation functions in deep learning, we compare
and select the softsign activation function y = x/(1+|x |) [33] experimentally. We scale and
shift it to obtain the step size control coefficient Ct in the t th iteration:

Ct = 0.5 |�gt |
1 + |�gt | + 0.6 = 1.1 − 1

2 (1 + |gt−1 − gt |) (17)

The step size control coefficient utilizes the short-term gradients behavior to control the
learning rate. Its function image is shown in Fig. 2. By observing the formula and image
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Fig. 2 Function image of the step size control coefficient

Fig. 3 Step size control
coefficient dynamically adjusts
the parameter update speed by
short-term gradients change

of the step size control coefficient, we can find that it is a function with a value range of
[0.6,1.1). This ensures that the adaptive learning rate does not decay too much, avoiding a
serious slowdown of the learning process. Meanwhile, the step size control coefficient has
the potential to increase the rate of moving away from unexpected regions. To illustrate this
more visually, as shown in Fig. 3, when the instantaneous change of the gradient is small,
i.e., |gt−1 − gt | is small, it indicates that the algorithm may be close to a flat minimum of
the objective. In this case, the parameter update step size adaptively decreases, increasing
the possibility of further exploration. On the other hand, when the instantaneous change of
gradient is large, i.e., |gt−1 − gt | is large, it suggests that the algorithm may have reached a
local (or sharp) minimum or a saddle point. In this case, the parameter update step size does
not decrease or may increase slightly, providing the momentum to escape from that region
and continue searching for better optima.

3.3 AdaGL Optimizer

When Eq. 16 is applied to the training process of deep neural networks, for the objective
optimization function L , the G–L fractional-order approximated gradient of the parameter θ

with order α can be written as:

G−L D
α
t L (θt−1) =

10∑

j=0

(−1) j
� (α + 1)

� ( j + 1) � (α − j + 1)
gt− j (18)

We adopt a similar approach to the Adam algorithm, replacing the gradient with the biased
first order momentmt and second order moment vt calculated using the G–L fractional-order
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Algorithm 1 AdaGL Optimizer
Require: objective L , learning rateη, fractional orderα, initial parameter θ0, decay rate hyparameters {β1, β2},

numerical stability constant δ
1: Initialize: first moment m0 = 0, second moment v0 = 0
2: for t = 1 to . . . do
3: gt ← 1

m �θ
∑

L
(
θt−1

)

4: G−L D
α
t L

(
θt−1

) = ∑10
j=0 (−1) j �(α+1)

�( j+1)�(α− j+1) gt− j

5: mt ← β1mt−1 + (1 − β1)G−L Dα
t L

(
θt−1

)

6: vt ← β2vt−1 + (1 − β2)
[
G−L D

α
t L

(
θt−1

)]2

7: m̂t ← mt
1−βt

1
, v̂t ← vt

1−βt
2

8: Ct = 1.1 − [
2

(
1 + ∣∣gt−1 − gt

∣∣)]−1

9: θt ← θt−1 − ηCt m̂t√
v̂t+δ

10: end for
11: Return θt

approximated gradient in Eq. 18. To address the issue of initial biases towards zero during
the early iterations, bias corrections are separately applied, resulting in m̂t and v̂t :

mt ← β1mt−1 + (1 − β1)G−L Dα
t L (θt−1)

vt ← β2vt−1 + (1 − β2)
[
G−L D

α
t L (θt−1)

]2

m̂t ← mt

1 − β t
1

v̂t ← vt

1 − β t
2

(19)

Finally, by applying the step size control coefficient calculated in Eq. 17, the parameter
update formula of our proposed AdaGL optimizer is obtained:

θt ← θt−1 − ηCt m̂t√
v̂t + δ

(20)

In Eq. 20, the modified first and second order moments contain the long-term memory
characteristics of fractional-order gradients, while the step size control coefficient reflects
the short-term variations of the real gradients. The combination of these two components
enables the AdaGL optimizer to have both global and local perspectives. By utilizing the
long-term gradients to maintain the overall direction and the short-term gradients to make
fine adjustments in the details, the parameters are able to find the correct iterative direction
more effectively and descend rapidly.

The pseudocode of the proposed AdaGL is provided in Algorithm 1.

4 Experiments

In this section, we perform various deep learning tasks to evaluate and compare the perfor-
mance of the proposed AdaGL optimizer with other popular optimizers. The experiments
include:

(1) Image classification (CIFAR10 dataset [34]) with CNNs frameworks of ResNet and
DenseNet;
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Table 1 Network architecture and dataset settings in experimental tasks

Task Network architecture Dataset

Image classification ResNet & DenseNet CIFAR10

Node classification GCN Cora, Citeseer, Pubmed

Graph classification GCN MUTAG, PTC-MR, BZR, COX2, PROTEINS, NCI1

image production WGAN CIFAR10

Language modeling LSTM Penn TreeBank

(2) Node classification (Cora, Citeseer and Pubmed datasets [35]) and graph classification
(MUTAG [36], PTC-MR [37], BZR [38], COX2 [38], PROTEINS [39] and NCI1 [40]
datasets) with GCN;

(3) Image generation (CIFAR10 dataset) with WGAN;
(4) Language modeling (Penn TreeBank dataset [41]) with LSTM.

The settings for each task are described in Table 1.
The compared optimizers include:

(1) SGD-like optimizers: SGD, MSVAG [42], FracM and FCSGD_G–L;
(2) Adaptive learning rate optimizers: Adam, Yogi [43], AdaBound [44], AdaMod [45],

RAdam [46], diffGrad, AdaBelief [47], AdaDerivative [48] and FCAdam_G–L.

4.1 Image Classification with CNNs

First, using the CIFAR10 dataset, we conduct image classification experiments on the popular
Convolutional Neural Networks frameworks, ResNet34 and DenseNet121.

The CIFAR10 dataset consists of 60,000 images, including 50,000 images for training and
10,000 images for validation. The size of all images is 32× 32× 3. The ResNet architecture
introduces skip connections between layers, allowing the output of one previous layer to be
directly connected to the input of a later layer. This residual connection in ResNet enables
the learning target to be the residual between the output and input. This design facilitates the
training of deeper CNNs and achieves higher accuracy. The DenseNet architecture follows
a similar idea as ResNet but establishes dense connections between all preceding layers and
subsequent layers, leading to improved performance compared to ResNet.

The hyperparameters for the experiments are set as follows: epoch is 200, the batch size
is 128, the initial learning rates are set to 0.1 for SGD, FracM and FCSGD_G–L, and 0.001
for other optimizers. The learning rates for all optimizers are reduced by a factor of 10 in the
150th epoch. For all optimizers in the experiment, use the default optimal parameter settings
in the source code. The decay rate hyperparameter β for momentum-based optimizers is 0.9,
and the moment decay rate hyperparameters β1 and β2 for adaptive learning rate optimizers
are 0.9 and 0.999 respectively. The fractional order α is 1.5. The numerical stability constant
δ is 1e−8 and weight decay is 5e−4.

Figure 4 shows the train and test accuracy curves on ResNet34 and DenseNet121. Table 2
presents the mean and standard deviation (in %) of the test accuracy for each optimiza-
tion algorithm. The experiments verify the fast and stable convergence performance of our
proposed optimizer. In comparison to SGD-like optimizers, our method ultimately achieves
superior performance than traditional SGD, especially on DenseNet121. However, it does
not surpass the classification accuracy achieved by two SGD improvements, FracM and
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Fig. 4 Train and test accuracy curves of optimizers for ResNet34 & DenseNet121 on CIFAR10

Table 2 Test accuracy values of
optimizers for ResNet34 &
DenseNet121 on CIFAR10 (in %)

Optimizer ResNet34 DenseNet121

SGD 93.62 ± 0.49 93.39 ± 0.57

FracM 94.88 ± 0.08 95.63 ± 0.09

FCSGD_G–L 94.68 ± 0.06 95.10 ± 0.11

Adam 92.69 ± 0.15 93.02 ± 0.14

diffGrad 93.35 ± 0.09 94.05 ± 0.11

FCAdam_G–L 93.35 ± 0.09 93.20 ± 0.12

AdaGL (Ours) 93.73 ± 0.11 94.15 ± 0.14

The best results among different optimizers are highlighted in bold

FCSGD_G–L. In addition, compared with other adaptive learning rate optimizers, our opti-
mizer performs the best on the test set, achieving approximately 1.04% and 1.13% accuracy
improvements over Adam on ResNet34 and DenseNet121, respectively.

Previous studies have indicated that, in image classification tasks on the CIFAR10 dataset,
although adaptive learning rate algorithms converge faster than SGD-like algorithms, SGD-
like algorithms typically yield better final accuracy results [49, 50]. For classification tasks in
Computer Vision, adaptive learning rate optimizers tend to find sharp minima rather than flat
minima, leading to poorer generalization performance compared to SGD-like optimizers. Our
proposed AdaGL outperforms SGD on the test set (other adaptive learning rate optimizers
do not surpass SGD), validating its ability to control step size to some extent for finding
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Table 3 Statistical information of the graph benchmark datasets

Task Dataset Graphs Avg. nodes Avg. edges Classes

Node classification Cora 1 2708 5429 7

Citeseer 1 3327 4732 6

Pubmed 1 19,717 44,338 3

Graph classification MUTAG 188 17.93 19.79 2

PTC-MR 344 14.29 14.69 2

BZR 405 35.75 38.36 2

COX2 467 41.22 43.45 2

PROTEINS 1113 39.06 72.82 2

NCI1 4110 29.87 32.30 2

flat minima. However, its search capability is still slightly inferior to the latest non-adaptive
learning rate optimizers.

4.2 Node Classification and Graph Classification with GCN

Research on the performance of different optimizers on Graph Neural Networks (GNNs) is
still limited. In this section, we conduct node classification and graph classification exper-
iments on multiple graph benchmark datasets to evaluate the performance of the current
popular optimizers and our proposed optimizer.

Table 3 provides the statistical information of the graph benchmark datasets used in the
experiments. For both experiments, we employ a three-layer standard GCN as the model.
GCN is one of the most classic architectures in GNNs. It utilizes a first-order Chebyshev
polynomial approximation and defines graph convolutional operations by mapping graph
signals to the spectral domain. This allows GCN to handle non-Euclidean spatial data that
traditional CNNs struggle with.

First, we consider the node classification task on the Cora, Citeseer and Pubmed datasets.
All of them are citation network datasets used for semi-supervised document classification.
They are undirected graphs where nodes represent papers and edges represent citation rela-
tionships. In the experiments, we use standard splits for 10 runs of experimental evaluation,
that is, in each class 20 nodes are used for training, 500 nodes are used for validation, and
1000 nodes are used for testing.We train 200 epochs in each run. The initial learning rates are
set to 0.07 for Cora, 0.1 for Citeseer, and 0.12 for Pubmed. The optimal accuracy of each run
is recorded separately, and the mean and the standard deviation (in %) are calculated. Table 4
provides a comparison of the performance between our optimizer and existing optimizers.

By observing the experimental results in Table 4, we can see that our proposed optimizer
achieves the best accuracy on both Cora and Pubmed datasets, although it does not achieve
the best performance on the Citeseer dataset, it still performs well compared to other adaptive
learning rate optimization algorithms.

Next, we conduct graph classification experiments to further evaluate the performance of
the proposed optimization algorithm. The goal of graph classification tasks is to learn the
mapping function between graphs and corresponding category labels to correctly predict the
class of unlabeled graphs. We choose six benchmark datasets from bioinformatics for graph
classification: MUTAG, PTC-MR, BZR, COX2, PROTEINS and NCI1. They are all datasets
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Table 4 Node classification on
3-layer GCN: mean ± standard
deviation of accuracy over 10
runs (in %)

Optimizer Cora Citeseer Pubmed

SGD 81.73 ± 0.45 71.97 ± 0.57 77.40 ± 1.49

FracM 81.08 ± 0.66 71.75 ± 0.84 73.56 ± 2.56

FCSGD_G–L 78.57 ± 1.57 71.55 ± 0.95 57.57 ± 4.24

Adam 81.32 ± 0.36 68.73 ± 0.71 79.33 ± 0.32

Adamod 74.47 ± 1.19 56.01 ± 1.03 75.66 ± 0.64

RAdam 79.78 ± 0.72 68.06 ± 1.25 77.22 ± 0.33

diffGrad 81.65 ± 0.49 69.60 ± 0.46 79.34 ± 0.33

AdaBelief 81.91 ± 0.60 70.39 ± 0.67 78.88 ± 0.52

AdaDerivative 81.77 ± 0.68 70.51 ± 0.69 78.87 ± 0.41

FCAdam_G–L 81.73 ± 0.27 69.59 ± 0.62 79.47 ± 0.36

AdaGL (ours) 81.91 ± 0.35 69.74 ± 0.72 79.53 ± 0.43

The best results among different optimizers are highlighted in bold

Table 5 Graph classification on 3-layer GCN: mean ± standard deviation of accuracy over 10 runs (in %)

Optimizer MUTAG PTC-MR BZR COX2 PROTEINS NCI1

SGD 88.24 ± 5.34 64.96 ± 8.17 85.27 ± 5.46 81.63 ± 4.47 59.59 ± 2.89 67.10 ± 1.74

FracM 84.37 ± 8.44 66.96 ± 7.09 84.54 ± 5.56 81.84 ± 3.82 59.59 ± 2.89 66.52 ± 1.72

FCSGD_G–L 86.19 ± 8.18 65.36 ± 9.92 83.04 ± 7.01 81.84 ± 4.57 59.59 ± 2.89 65.94 ± 2.72

Adam 93.03 ± 4.24 65.75 ± 6.15 86.73 ± 5.17 84.64 ± 3.43 76.82 ± 1.90 72.51 ± 4.05

Adamod 88.30 ± 8.74 67.44 ± 8.35 88.37 ± 3.36 84.20 ± 2.90 76.64 ± 2.78 74.22 ± 2.66

RAdam 90.40 ± 4.63 65.36 ± 8.88 86.07 ± 4.93 84.64 ± 4.14 74.49 ± 4.20 71.68 ± 5.01

diffGrad 92.57 ± 4.18 65.30 ± 8.25 88.06 ± 4.13 84.82 ± 3.13 76.63 ± 2.50 73.94 ± 2.80

AdaBelief 90.40 ± 3.99 65.98 ± 7.72 85.51 ± 5.82 84.23 ± 4.99 76.81 ± 2.48 73.80 ± 2.36

AdaDerivative 92.57 ± 4.18 65.47 ± 7.84 87.60 ± 3.80 83.97 ± 4.99 77.08 ± 2.51 73.72 ± 3.10

FCAdam_G–L 92.51 ± 3.62 67.59 ± 6.60 86.31 ± 4.02 85.05 ± 3.83 77.07 ± 3.03 73.55 ± 2.48

AdaGL (Ours) 92.63 ± 5.37 68.27 ± 6.94 88.79 ± 5.01 85.50 ± 4.96 77.24 ± 3.21 74.04 ± 2.60

The best results among different optimizers are highlighted in bold

about chemical molecules or compounds, where nodes represent atoms and edges represent
chemical bonds. The task is to judge the types or properties of compounds. In the experiments,
we split the datasets into 90% training set and 10% test set randomly, and conduct 10-fold
cross validation. For each fold, we train the model for 300 epochs with an initial learning
rate chosen from the optimal values searched in the range of {0.007, 0.01, 0.015, 0.022}.
The batch size is set to 64. We record the best accuracy achieved in each fold and calculate
the mean and standard deviation over the 10-fold cross validation (in %). Table 5 provides a
comparison of the performance between our optimizer and existing optimizers.

As can be seen from Table 5, in the graph classification experiments on the bioinformatics
datasets, our method achieves the second-best classification accuracy on the MUTAG and
NCI1 datasets, while it achieves the best performance on the other four datasets.

4.3 Image Generation withWGAN

We perform image generation tasks on the CIFAR10 dataset using a WGAN model with the
original CNNgenerator.WGAN is a classic generativemodel that improves uponmany issues
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Table 6 Mean ± standard
deviation of FID (Lower is better)
and IS (Higher is better) over 5
runs with WGAN on CIFAR10

Optimizer FID (lower is better) IS (higher is better)

SGD 453.54 ± 0.61 1.04 ± 0.01

MSVAG 449.73 ± 0.55 1.03 ± 0.01

FracM 363.92 ± 0.12 1.11 ± 0.01

FCSGD_G–L 368.84 ± 0.08 1.04 ± 0.02

Adam 98.02 ± 0.09 3.20 ± 0.02

RAdam 80.50 ± 0.08 3.61 ± 0.04

diffGrad 74.32 ± 0.13 3.73 ± 0.05

AdaBelief 82.05 ± 0.21 2.31 ± 0.01

FCAdam_G–L 89.91 ± 0.08 3.88 ± 0.03

AdaGL (ours) 70.99 ± 0.06 3.96 ± 0.05

The best results among different optimizers are highlighted in bold

Fig. 5 Real images (left) and fake samples generated on WGAN trained by AdaGL optimizer (right)

in the original GAN. The original GAN suffers from training difficulties, heavy reliance on
the design of the generator and discriminator, and lack of sample diversity, among other
problems. WGAN successfully alleviates these limitations.

In the experiment, we train the model for 100 epochs and generate 64,000 fake images
from noise. We calculate the Inception Score (IS) [51] for fake images, as well as the Frechet
Inception Distance (FID) [52] between the fake images and the real images. Both IS and
FID are widely used metrics for evaluating the performance of generative models. IS (higher
is better) measures the diversity and realism of the generated images, while FID (lower is
better) reflects both the quality and diversity of the generated images.

For each optimizer, we use the optimal hyperparameter settings from the source code.
We conduct 5 runs experiments, and the results are shown in Table 6. Compared to other
optimizers, our proposed AdaGL optimizer significantly outperforms them on the WGAN,
achieving the lowest FID and the highest IS. Figure 5 shows real images and fake samples
generated by the WGAN trained with our proposed AdaGL optimizer.
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Fig. 6 PPL (lower is better) curves with different layers LSTM on Penn TreeBank

4.4 LanguageModeling with LSTM

In the language modeling experiment, we use 1-layer, 2-layer and 3-layer LSTM on the Penn
TreeBank dataset to verify the performance of the proposed optimizer. The Penn TreeBank
dataset is a classic English language model dataset consisting of 900,000 words of English
text, commonly used for Natural Language Processing tasks. LSTM is a variant of the Recur-
rent Neural Networks (RNNs) model that can effectively handle time series data, particularly
in long sequences where it outperforms classical RNNs.

Our experiment runs 200 epochs with a batch size of 20. The initial learning rates are
set to 30 for SGD, MSVAG and FCSGD_G–L, 1 for FracM, and the optimal values from
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Table 7 Test PPL (lower is better) with different layers LSTM on Penn TreeBank

Optimizer 1-Layer LSTM 2-Layer LSTM 3-Layer LSTM

SGD 85.07 67.42 63.55

MSVAG 84.68 68.83 65.03

FracM 85.87 70.53 67.35

FCSGD_G–L 84.58 67.77 64.46

Adam 84.28 67.27 64.28

Yogi 86.59 71.33 67.51

AdaBound 84.78 67.53 63.58

diffGrad 81.18 64.68 59.98

AdaBelief 84.21 66.29 61.23

AdaDerivative 90.40 75.25 71.70

FCAdam_G–L 85.16 64.71 60.26

AdaGL (ours) 79.83 63.85 59.13

The best results among different optimizers are highlighted in bold

0.001 and 0.01 for other optimizers. We use perplexity (PPL) as the evaluation metric for
performance. The experimental results are shown in Fig. 6 and Table 7.

Observing the experimental results, the following conclusions can be drawn: Regardless of
whether it is a 1-layer, 2-layer, or 3-layer LSTMmodel, the proposed optimizer demonstrates
fast convergence speed and achieves the lowest PPL during both training and testing stages,
outperforming other optimizers. Furthermore, when comparing different numbers of layers,
differences in the extent of improvement can be observed. Compared to the Adam optimizer,
our optimizer reduces perplexity by 4.45% in the 1-layer LSTM and by 5.15% in the 3-layer
LSTM, which indicates that our optimizer achieves better performance improvements when
handling more complex models and larger-scale language modeling tasks.

5 Conclusion

This article proposes a new adaptive learning rate optimization algorithm called AdaGL.
AdaGL is based on the G–L fractional-order derivative method, which approximates the
gradient during parameter update and fully utilizes the long-term curvature information of
the loss function. At the same time, we introduce a step size control coefficient that controls
the parameter update direction and step size based on recent gradients changes, enabling
acceleration to escape when encountering unexpected local (or sharp) minima or saddle
points, and deceleration to explore when encountering flat target points.

Extensive experimental results on image classification, node classification, graph classifi-
cation, image generation, and languagemodeling demonstrate that AdaGL achieves excellent
performance compared to traditional optimizers, and can converge quickly and stably with
high accuracy across various deep learning tasks.

In the future, we will continue to explore the integration of fractional-order calculus
methods and deep learning optimizers, as well as the properties of loss surfaces that affect
the optimization algorithms’ ability to find target points. We plan to extend the different
definitions of fractional-order calculus inmathematics to deep learning optimizationmethods
and further investigate hyperparameters such as fractional order. By comparing and analyzing
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performances, we can select the most suitable optimization method when facing different
neural network architectures.
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