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Abstract
Most transfer learning-based fault diagnosis methods learn diagnostic information from the
source domain to enhance performance in the target domain. However, in practical appli-
cations, usually there are multiple available source domains, and relying on diagnostic
information from only a single source domain limits the transfer performance. To this end, a
non-uniformly weighted multisource domain adaptation network is proposed to address the
above challenge. In the proposed method, an intra-domain distribution alignment strategy is
designed to eliminate multi-domain shifts and align each pair of source and target domains.
Furthermore, a non-uniform weighting scheme is proposed for measuring the importance of
different sources based on the similarity between the source and target domains. On this basis,
a weighted multisource domain adversarial framework is designed to enhance multisource
domain adaptation performance. Numerous experimental results on three datasets validate
the effectiveness and superiority of the proposed method.
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1 Introduction

The rapid development of the manufacturing industry is closely related to various machinery
equipment. Modern mechanical equipment is increasingly automated and intelligent, which
has high requirements for the reliability and stability of equipment components [1]. Bearings
are used to support the mechanical rotating body and play a crucial role in the operation
of the equipment. Therefore, accurately monitoring the condition of bearings can ensure
the regular operation of equipment and avoid economic losses and safety risks caused by
equipment damage [2–4].

In recent years, with the rise of artificial intelligence such as machine learning, data-
driven intelligent fault diagnosis (IFD) methods have attracted considerable attention [5].
Among them, IFD methods based on deep learning (DL) are widely used due to their good
adaptability and learning ability [6]. DL-based IFD methods usually hold the assumption
that a large amount of labeled and equally distributed data are available [7, 8]. However, the
above assumptions do not always hold in complex practical scenarios, resulting in serious
degradation of diagnostic performance [9, 10].

To address the above challenges, an important tool of the transfer learning technique,
domain adaptation (DA), is introduced to IFD [11, 12]. DA facilitates the utilization of trans-
ferable diagnostic information learned from the source domain in the target domain through
domain confusion, thereby effectively enhancing diagnostic accuracy in the target domain
[13]. A common DA approach is realized by statistical matching [14, 15]. For instance,
Schwendemann et al. [16] introduced a layered maximum mean discrepancy and integrated
it as a loss function within the deep neural network, effectively mitigating the distribution
discrepancy between the source and target domains. Similarly, Xiong et al. [17] designed a
central moment discrepancy to minimize the distribution discrepancy between domains for
cross-domain fault diagnosis. Another common DA approach is domain adversarial training
[18, 19]. Ganin et al. [20] introduced a domain adversarial neural network (DANN) to extract
domain invariant features in the target and source domains. Wang et al. [21] designed a deep
adversarial DAmodel to effectively mitigate the distribution discrepancy between the source
and target domains. Although the aforementioned methods effectively mitigate domain shift,
they are limited to learning transferable information solely from a single source domain. A
single source of diagnostic information may ultimately limit the cross-domain diagnostic
performance of the model.

Generally,multiple source domains often exist because the equipment operates in complex
and variable operating environments.More abundant diagnostic information can be exploited
in a multisource domain dataset, which can compensate for the lack of diagnostic knowl-
edge in a single source domain [22]. Traditional DA methods that learn only single-source
information cannot fully utilize the shared information among multiple source domains [23].
Fortunately, multisource DA (MDA) methods have been successfully explored to solve this
problem. For example, a novel adversarialDAnetworkwith classifier alignmentwas designed
by Zhang et al. [24] for multisource domain problems that may arise in real industrial sce-
narios. Shi et al. [25] achieved knowledge transfer from multiple sources based on a MDA
network with an entropy penalty strategy.Multi-adversarial learning was employed by Zhu et
al. [26] to extract high-dimensional domain-invariant features. Wang et al. [27] constructed a
sub-domain adaptation network that enables multisource information transfer by integrating
source-private feature extractors and classifiers. Shi et al. [28] proposed an instance-adaptive
multisource transfermethod thatmitigatesmultisource domain shifts and improves the ability
of the model to learn multisource diagnostic information.
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Although the above methods achieve effective MDA through multi-domain matching,
they ignore the distribution discrepancy between each pair of source and target domains,
which restricts the accurate matching of source and target domains. Moreover, since source
domain data are collected from different working conditions, their respective contributions
to the target domain also exhibit discrepancies. The source domain close to the target work-
ing condition should be given a larger weight, which indicates that it contains more common
diagnostic information about the working condition of the target domain. Literature [29],[30]
demonstrate that more competitive classification performance can be achieved by weight-
ing multiple source domains. An improved LMMD was proposed by Tian et al. [31] for
computing source-specific weight scores and combining the weights with a multi-classifier
to consider the different contributions of the sources. According to the similarity of differ-
ent working conditions, Wei et al. [32] constructed a specific discriminator for each source
in order to implement non-uniform weighting. The successful implementation of the above
methods proved the necessity of considering sourceweights.However, their proposedweight-
ing scheme relies on constructing additional network models and parameters, increasing the
required computational cost. Therefore, a more efficient weighted MDA approach needs to
be developed for multi-source knowledge transfer.

To this end, a non-uniformly weighted MDA network (NWMDAN) is developed in this
study. The proposed method eliminates multi-domain shifts from both the inter-domain per-
spective between source and target domains and the intra-domain perspective for each pair
of source and target domains. To measure the contribution of multiple source domains effec-
tively, a non-uniform weighting scheme is designed based on the similarity between each
source domain and the target domain. Furthermore, a non-uniformly weighted adversarial
training framework is proposed to enhance MDA performance. The main contributions of
this paper are as follows.

(1) A more realistic fault diagnosis scenario, the multisource cross-domain fault diagnosis
problem, is explored in this paper. To this end, a NWMDAN is proposed to enhance the
MDA performance.

(2) To effectively eliminatemulti-domain shifts, an intra-domain distribution alignment strat-
egy is designed to eliminate the intra-domain distribution discrepancy for each pair of
source and target domain.

(3) From the perspective of similarity between multiple source and target domains, a non-
uniform weighting scheme is proposed for quantifying the contributions of different
source domains.

(4) A non-uniformly weighted adversarial training framework is proposed to learn and com-
bine the multisource information better.

The remainder of this paper is structured as follows. The problem definition and relevant
theoretical background are provided in Sect. 2. Section3 provides the framework and diagnos-
tic flow of the proposed NWMDAN method. The experimental validation and performance
analysis are carried out in Sect. 4. Finally, the conclusions of this study are given in Sect. 5.

2 Preliminaries

2.1 Problem Definition

In this paper, the problem of multisource cross-domain fault diagnosis is investigated. It
conforms to the following basic assumptions: (a) source domain data are collected from
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multiple working conditions; (b) target domain data are unlabeled; (c) the label space is
shared by both the source and target domains.

Based on the above assumptions, the detailed symbolic definitions of the problem are
given as follows. Assuming K source domains are available, and Ds

k = {(xs,ki , ys,ki )}ns,ki=1(k =
1, 2, ..., K ) represents the k-th source domain dataset with ns,k labeled samples, where xs,ki

and ys,ki denote the i-th sample and corresponding condition label from the k-th source
domain, respectively. Let Dt = {xtj }ntj=1 be the target domain dataset with nt unlabeled
samples, where xtj denotes the j-th sample from the target domain. The purpose of this study
is to build a reliable diagnosis model for multisource cross-domain tasks.

2.2 MaximumMean Discrepancy

Maximum mean discrepancy (MMD) [32] is often used by statistics matching-based DA
methods to calculate the distribution distance in different domains, which can measure the
distribution discrepancies of different datasets [33, 34]. Given X{xi |xi ∼ p, i = 1, 2, . . . , n}
and Y {y j |y j ∼ q, j = 1, 2, . . . ,m}, the MMD between X and Y is defined as follows:

DH(X , Y ) � ||EX∼p[�(x)] − EY∼q[�(y)]||H (1)

whereH represents the reproducingkernelHilbert space (RKHS), andφ(·)denotes the feature
mapping function. By introducing the characteristic kernel, the squared value of MMD can
be expressed as follows:

MMD2
(X ,Y ) = 1

n2

n∑

i, j=1

K(xi , x j ) − 2

mn

n∑

i=1

m∑

j=1

K(xi , y j ) + 1

m2

m∑

i, j=1

K(yi , y j ) (2)

whereK(·, ·) represents the kernel function. If multiple kernels are available, themulti-kernel
MMD (MK-MMD) can be used as a more effective metric to evaluate the differences in the
different domains.

2.3 Domain Adversarial Neural Network

As an adversarial training-based DA method, domain adversarial neural network (DANN)
[35] has attracted considerable attention in the field of IFD [36, 37]. DANN is composed of a
classifierC , a feature extractor F and a domain discriminator D. The key to achieving domain
adversarial training is the game process of F and D. D is trained to distinguish samples from
the source or target domain accurately, and conversely, the goal of F is to confuse D as could
as possible. In conclusion, the optimization objective of the DANN is defined as following
equation:

LDANN = 1

ns

∑

xi∈Ds

Lc(C(F(xi )), yi ) − λ

ns + nt

∑

xi∈(Ds∪Dt )

Ld(D(F(xi )), di ) (3)

where Lc and Ld represent the cross-entropy loss, ns and nt denote the number of samples
in the Ds and Dt, yi and di denote the true condition label and domain label of i-th sample,
respectively, and λ represents the trade-off parameter. To avoid a phased training process, the
gradient reversal layer (GRL) is implemented into DANN to optimize the training process,
which does not add additional parameters and enables the gradient sign to change when back
propagating.
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Fig. 1 The framework of the NWMDAN

3 Proposedmethod

The structure of the proposed NWMDAN is shown in Fig. 1. It consists of a feature extractor,
an intra-domain distribution alignment strategy, a non-uniform weighting scheme, and a
non-uniformly weighted adversarial training framework. Specifically, to clearly represent
the data related to different sources, the corresponding colors are used in Fig. 1. For example,
the red color indicates data regarding the first source domain. The structure and parameters
of the proposed method are shown in Fig. 2. The Conv, BN, and FC shown in Fig. 2 denote
the 1D convolutional layers, the batch normalization layers, and the fully connected layers.
The three parameters of the Conv layer, for example, Conv (16,15,1), denote the number of
input channels, the convolution kernel size and the stride, respectively. The parameters that
follow the FC layer represent their output size. The detailed algorithm flowchart is shown in
Algorithm 1.

3.1 Feature Extractor

In the field of IFD, convolutional neural networks (CNN) have been popularly adopted as
feature extractors due to their simplicity of training and superior performance [38–40]. Based
on this, a CNNwith four convolutional layers and a fully connected layer is used as the feature
extractor for the proposed method. In particular, batch normalization and dropout are used
in the feature extractor to speed up model training and prevent overfitting.

3.2 Intra-Domain Distribution Alignment Strategy

The domain adversarial process described in Sect. 2.3 is able to map the source and target
domain data to identical feature space and eliminate distribution differences between them.
However, in multisource domain problems, it is challenging to directly eliminate multi-
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Fig. 2 The structural parameters of NWMDAN

Algorithm 1 NMWDAN

Require: source domain dataset Ds
k = {(xs,ki , ys,ki )}ns,ki=1 (k = 1, 2, . . . , K ) and target domain dataset {Dt =

{xtj }ntj=1},initial NWMDAN{G f ,Gd ,Gc}, maximum epoch N , tradeoff parameters λ and β, hardness
coefficientη, batch size m.

Ensure: trained NWMDAN {G f ,Gc}.
1: for k = 1 → k = N do
2: Random sample a batch {(xs,ki , ys,ki )}m/k

i=1 and {xtj }mj=1 from Ds
k and Dt .

3: Samples from different source and target domains are fed into a shared feature extractor G f to get

feature representations f s,ki and f tj .

4: Feed f s,ki and f tj into the intra-domain distribution alignment strategy and use Eq.5 to calculate the
total alignment loss L intra for each pair of source and target domains.

5: Feed f s,ki and f tj into a non-uniform weighting scheme to obtain source-specific weights ωs,k .
6: Use Gd with source-specific weights to calculate the weighted domain discrimination loss Ld as Eq.7.
7: Use Gc with source-specific weights to calculate the weighted classification loss Lc as Eq.8.
8: Update the parameters θ f , θd , θc ofG f ,Gd ,Gc byminimizing the total optimization objective in Eq.9.
9: end for

domain shifts by globally matching the multisource domain data with the target domain data.
Because there are not only distribution discrepancies between the source and target domains
but also distribution discrepancies observed among different source domains. Therefore,
an intra-domain distribution alignment strategy is designed to align each source domain
with the target domain. Specifically, in each iteration of the epoch, all samples from each
source domain are selected from the data in each batch_size, and the distribution discrepancy
between each source domain and the samples from the target domain in the batch_size is
calculated. The proposed intra-domain distribution alignment strategy measures the distribu-
tion discrepancy in the two domains usingMK-MMDwith five Gaussian kernels. The square
value of MK-MMD between the k-th source domain and the target domain can be calculated
as follows:

MMD2
( f s,k , f t ) = 1

n2s,k

ns,k∑

i=1

ns,k∑

j=1

K ( f s,ki , f s,kj )
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− 2

ns,knt

ns,k∑

i=1

nt∑

j=1

K ( f s,ki , f tj )

+ 1

n2t

nt∑

i=1

nt∑

j=1

K ( f ti , f tj ) (4)

where f s,ki represents the features of the i-th sample from Ds
k , and f tj represents the feature

of the j-th sample from Dt . When the MK-MMD of all K sources and target domains are
calculated, the intra-domain distribution alignment loss can be obtained as follows:

L intra = 1

K

K∑

k=1

MMD2
( f s,k , f t ). (5)

3.3 Non-UniformWeighting Scheme

To measure the contribution of different source domains, a non-uniform weighting scheme
is designed based on the statistical distance between source domains and target domains.
Specifically, the MK-MMD distance is utilized in each epoch to calculate distinct source-
specific weights. The similarity of domains calculated according to statistical distances has
been demonstrated to be a reliablemetric for the contribution of different source domains [29].
Consequently, the source domain that is closer to the target domain distribution should be
assigned a larger weight. Based on the intra-domain distribution alignment loss accumulating
the MMD values within the whole epoch, the weight of k-th source domain in the next epoch
is formulated as follows:

ωs,k =
exp(−ηMMD2

( f s,k , f t )
)

∑K
k=1 exp(−ηMMD2

( f s,k , f t )
)

(6)

where η represents the hardness coefficient, it enables a more significant difference in the
contributions of different sources; f s,k represents the sample features of Ds

k .

3.4 Non-UniformlyWeighted Adversarial Training Framework

3.4.1 Non-Uniformly Weighted Discriminator

The domain discriminator is the key player in domain adversarial training. The discrimina-
tor of traditional DA methods receives the feature representations of the source and target
domains and outputs a probability vector representing the domain labels of the samples.
Besides the feature representations of the samples, inNWMDAN, the source-specificweights
are also used as input elements to the domain discriminator, which makes the proposed
method more effective in extracting diagnostic information. Therefore, the weighted domain
discrimination loss Ld of the weighted discriminator is defined as follows:

Ld = 1

K

K∑

k=1

ωs,k

ns,k

∑

(xs,ki ,ys,ki )∈Ds
k

Ld(D(F(xs,ki ), ds,ki ) + 1

nt

∑

xt
i
∈Dt

Ld(D(F(xti ), d
t
i ) (7)

where ds,ki and dti are the domain label of xs,ki and xti , respectively.
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Fig. 3 Experimental equipment and test bearings of the Case1 dataset

3.4.2 Non-Uniformly Weighted Classifier

In adversarial training, the goal of the classifier is to identify the health status of samples
as accurately as possible while ensuring that sample features remain domain-invariant. Con-
sidering that there are differences in the transferability of samples from different source
domains, source-specific weights are integrated into the NWMDAN classifier. The weighted
classification loss Lc of the weighted classifier can be formulated as follows:

Lc = 1

K

K∑

k=1

ωs,k

ns,k

∑

(xs,ki ,ys,ki )∈Ds
k

Lc(C(F(xs,ki )), ys,ki ). (8)

3.5 Optimization Objective

The optimization objective contains intra-domain alignment loss L intra, domain adversarial
loss Ld and classification loss Lc, which is expressed as Eq.9:

L = Lc + λL intra − βLd (9)

where λ and β are trade-off parameters to balance the loss terms. By minimizing Lc, samples
of different fault categories can be predicted accurately, which is beneficial for extracting
domain discriminative features. The distribution discrepancy in each pair of source and target
domain is reduced by minimizing L intra. Besides, maximizing Ld enables to align multiple
source domains to the target domain. Let θ f , θc, θd denote the parameters of feature generator,
classifier and domain discriminator, respectively, and they can be updated as follows:

θ f ← θ f − α(
∂Lc

∂θ f
+ λ∂L intra

∂θ f
− β∂Ld

∂θ f
)

θc ← θc − α
∂Lc

∂θc

θd ← θd − α
∂Ld

∂θd
(10)

where α is the learning rate. The Eq.10 will be updated simultaneously in a training epoch
by GRL, which avoids a staged training process.
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Fig. 4 Experimental equipment of the Case2 dataset

4 Case Study

4.1 Dataset Description

(1) Jiangnan University (JNU) bearing dataset: The JNU dataset is a famous open-source
bearing dataset that is widely used as a benchmark to verify the feasibility of diagnostic
methods. Four health statuses can be found in the JNU dataset, including normal state
(Normal), inner race fault (IRF), outer race fault (ORF) and ball fault (BF). The vibration
signals are collected at 50 kHz with three speeds (600, 800 and 1000 r/min).

(2) Self-made bearing test rig dataset-1(Case1): Case1 bearing vibration signals are collected
from an experimental rig shown in Fig. 3(a). The experimental system is composed of
an inverter motor, a main shaft, a supporting device, and the SKF 6206-2RS1/C3 test
bearings. Three sensors distributed at different locations in space are used to collect
vibration signals in multiple directions. Similar to the JNU dataset, the Case1 dataset
also includes four state types (Normal, ORF, IRF and BF), and each fault has different
fault sizes. Figure3(b)–(d) show the different health conditions of the tested bearings. In
addition, four speeds, including 150, 300, 900 and 1500 r/min, are applied to the bearings
by adjusting the driving device.

(3) Self-made bearing test rig dataset-2(Case2): The Case2 bearing data are collected on a
self-made experimental rig shown in Fig. 4, where, besides the ORF, IRF, and BF failure
types, bearing retainer fracture failures (RF) are also simulated. The vibration signals of
three loads, 0N, 500N and 1000N, at the speed of 300r/min are selected as experimental
data for this experiment to further verify the effectiveness of the proposed method. The
detailed descriptions of datasets are given in Table 1.

4.2 ComparisonMethods

Several commonly used DA methods are chosen as comparison methods to validate the
effectiveness and performance of the proposed network comprehensively. Specifically, the
selected comparison methods have the same network structure and parameters as our pro-
posed method. According to different states of the source domain data implemented in the
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Table 1 Detailed description of the three datasets

Dataset Condition Fault size (mm) Label Working condition

JNU Normal – 0 600/800/1000 r/min

IRF – 1

ORF – 2

BF – 3

Case1 Normal – 0 150/300/900/1500 r/min

BF 0.4 1

BF 0.2 2

IRF 0.3 3

IRF 0.4 4

ORF 0.2 5

ORF 0.3 6

Case2 Normal – 0 0/500/1000 N

RF – 1

BF – 2

IRF 0.3 3

IRF 0.5 4

ORF 0.2 5

ORF 0.7 6

comparison methods, the comparison experiments can be divided into the following three
groups.

(1) Single source domain-based transfer methods (Single best). CNN, deep adaptation net-
work (DAN) [41], deep coral (DCORAL) [42], joint adaptation network (JAN) [43], and
DANN with a single-source domain. For this group of comparison methods, we select
different source domains successively to construct transfer tasks and record themaximum
diagnostic accuracy obtained using different source domains as the final result. Among
them, the CNN model whose feature extractor and classifier have the same structure as
the proposed method, is chosen as the benchmark for the comparison methods. The most
widely used statistics matching-based DA methods, DAN and DCORAL, are chosen as
comparison methods, which calculate the distribution discrepancy by MK-MMD and
CORAL, respectively. Additionally, a JAN based on the joint maximum mean discrep-
ancy is also used in the comparison experiments. Then, the adversarial learning-based
DANN is chosen as one of the comparison methods, which is the original framework of
our approach.

(2) Merged source domain-based transfer methods (Merged source domains). CNN, DAN,
JAN, DCORAL, andDANNwithmerged source domains. Such group comparisonmeth-
ods provide improvements in source domain data comparedwith diagnosismethods based
on the single source. Merging fault samples collected under different working conditions
into the same source domain makes it possible to extract more diagnostic information.

(3) Multi-source domain transfer methods (Multisource domain). NWMDAN_a, NWM-
DAN_b, MDA network (MDAN) [44] with multisource domain. As one of the most
effective MDA approaches, MDAN is employed as a comparison method. NWMDAN_a
and NWMDAN_b, variants of NWMDAN, serve as comparison methods to validate
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Table 2 Detailed description of
all diagnostic tasks

Dataset Working condition Domain name

JNU Rotating speed:600 r/min A

Rotating speed:800 r/min B

Rotating speed:1000 r/min C

Case1 Rotating speed:150 r/min D

Rotating speed:300 r/min E

Rotating speed:900 r/min F

Rotating speed:1500 r/min G

Case2 Load:0 N H

Load:500 N I

Load:1000 N J

the effectiveness of the proposed intra-domain distribution alignment strategy and non-
uniformly weighted adversarial training framework. In NWMDAN_a, the intra-domain
distribution alignment strategy is removed, while in NWMDAN_b, the non-uniform
weights are omitted. However, both NWMDAN_a and NWMDAN_b retain the same
structure and parameters as NWMDAN.

The utilized CNN model comprises a feature extractor and a classifier, whose structures
are consistent with the corresponding components in the proposed method. Specifically,
DAN, JAN, and DCORAL augment the CNN architecture by incorporatingMK-MMD, joint
MMD, and CORAL distance metrics respectively to address distribution discrepancies. In
the DANN model, the feature extractor and classifier align with the proposed method, while
the discriminator functions as a binary classifier. Extending the DANN, the MDAN model
enhances the binary discriminator to enable the recognition ofmultiple domains. The network
architectures of NWMDAN_a and NWMDAN_b align with the proposed method, with the
distinction that the intra-domain distribution alignment strategy and non-uniform weighting
scheme have been respectively omitted.

4.3 Experimental Details

Thevibration data for different rotational speeds in the JNUandCase1 datasets are regarded as
different domains, respectively, as shown in Table 2. The JNU dataset contains 2930 samples
in each domain, which includes 1466 samples of healthy bearings and the remaining are
samples of various faults. For the Case1 dataset, 1134 samples are available in each domain,
which consists of seven categories with equal number of samples. The Case2 dataset contains
195 samples for each fault state. By default, the samples in the three datasets contain 1024
sampling points. For each task, 80% of samples from source and target domains are randomly
selected as training samples, and the remaining 20% samples are used for testing. The details
of all the transfer tasks on both datasets are shown in Table 3.

The trade-off parameters λ and β of NWMDAN, which correspond to domain alignment
loss and discrimination loss in the optimization objective, respectively, may have a significant
impact on performance. Therefore, the grid search strategy is employed to investigate the
sensitivity of parameters λ and β on the network performance, and the experimental results in
tasks B,C→A are illustrated in Fig. 5. According to Fig. 5, the highest diagnostic accuracy is
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Table 3 Detailed description of
all diagnostic tasks

Dataset Transfer task Source domain Target domain

JNU A+B→C A+B C

A+C→B A+C B

B+C→A B+C A

Case1 D+E+F→G D+E+F G

D+E+G→F D+E+G F

D+F+G→E D+F+G E

E+F+G→D E+F+G D

Case2 H+I→J H+I J

H+J→I H+J I

I+J→H I+J H

Fig. 5 Sensitivity analysis of trade-off parameters on task B,C→A

achieved at λ = 0.8 and β = 0.6, and the performance of NWMDAN degrades significantly
when the parameter values close to 1 simultaneously.

Furthermore, the sensitivity of the diagnostic performance with respect to the hardness
coefficient η is investigated on three tasks and the obtained results are shown in Fig.6. The
experimental results demonstrate that the proposed method achieves the highest diagnostic
accuracy when η = 20. When the value of η is close to 100, the accuracy decreases on
all diagnostic tasks, and the performance degradation is more obvious in some of the tasks
with more challenging knowledge transfer, for example B, C→A. The detailed setting of
the remaining parameters are given in Table 4. In particular, a fixed-step update strategy is
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Table 4 Detailed parameter settings for the experiments

Parameters Value Parameters Value

Maximum epoch 300 Weight decay 1e-5

Batch size 64 Trade-off parameters λ, β 0.8,0.6

Optimizer Adam Learning rate 1e-3

Fig. 6 Sensitivity analysis of hardness coefficient

used to adjust the learning rate, which decreases to 1e-4 and 1e-5 after 150 and 250 epochs,
respectively.

Finally, the experimental accuracies of the test samples in the target domain are chosen as
the model evaluation metrics. Each experiment is performed five times repeatedly to avoid
the effect of randomness, and the averaged value of five experiments is regarded as the final
diagnosis accuracy. All experiments are implemented through the Pytorch framework on a
experimental equipment with Intel Core i5-11400K, NVIDIA GeForce RTX 3060.

4.4 Experimental Results and Analysis on JNU Case

4.4.1 Comparison of Classification Accuracy

The proposed method and the comparison methods discussed in the previous section are
applied to the tasks in the JNU case, and the detailed diagnostic results are presented in
Table 5. It is clear that more competitive diagnostic accuracy of NWMDAN is observed in
all diagnostic tasks with an average diagnostic accuracy 99.16%, indicating its effectiveness
in multisource cross-domain diagnostic tasks. By further analysis, the following conclusions
can be found.

(1) Compared with single source-based transfer methods, merged source domains and
multisource-based methods achieve higher diagnostic accuracy in most tasks, but neg-
ative transfers are observed in some tasks, for example, task A+B→C. These results
demonstrate that more diagnostic information can be found in multisource domains than
in single-source domains, but extracting them is a complicated task.
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Table 5 Classification accuracy (%) on the JNU case with different methods

Groups Methods Transfer tasks Average
A+B→C A+C→B B+C→A

Single best CNN 94.92 94.67 79.71 89.77

DAN 96.55 96.79 95.29 96.21

JAN 97.71 97.39 96.76 97.29

DCORAL 97.30 95.37 89.74 94.14

DANN 97.18 96.42 91.06 94.89

Merged source domains CNN 95.33 96.43 83.96 91.91

DAN 96.79 97.65 94.95 96.46

JAN 97.54 98.09 96.45 97.36

DCORAL 96.17 96.79 89.86 94.27

DANN 97.88 97.27 93.33 96.16

Multisource domain MDAN 96.31 97.58 94.83 96.24

NWMDAN_a 97.47 98.26 96.11 97.28

NWMDAN_b 97.75 98.15 97.00 97.63

Proposed method NWMDAN 99.18 99.73 98.57 99.16

(2) Although the merged source domain approaches achieve an improvement in diagnostic
accuracy compared with the single source domain-based approaches, their performance
is lower than the proposed approach. It indicates that the multisource invariant features
are not sufficiently extracted by the methods of the merged source domains. For the
proposed NWMDAN, the average diagnostic accuracy remains above 99% in all tasks,
further demonstrating that the proposed method achieves efficient and accurate knowl-
edge transfer.

(3) The proposed NWMDAN outperforms MDAN in terms of diagnostic accuracy on the
multisource tasks. Furthermore, the results validate the advantages and necessity of the
proposed alignment strategy and non-uniform weighting scheme. Despite NWMDAN_a
achieves more promising diagnostic results than MDAN, it is less competitive compared
with the proposed method. Similarly, when the weighting scheme is removed, the diag-
nostic accuracy of the NWMDAN_b decreases on different tasks compared with the
results of the proposed method.

4.4.2 Feature Visualization Results

To analyze the model performance and effectiveness more intuitively, the high-dimensional
feature representations are visualized using the distributed stochastic neighbor embedding
(T-SNE) technology. The feature visualization results of task B+C→A are given in Fig. 7.
As shown in Fig. 7(a), the CNN without using the transfer learning strategy has serious class
confusion and unclear classification boundaries, which confirms the poor diagnostic results
of the CNN in Table 5. Poor clustering performance and significant overlaps between classes
are found in Fig. 7(b). This indicates that it is difficult to eliminate multi-domain shifts only
by adversarial training methods. In Fig. 7(c), although a promising clustering performance is
achieved, the samples of different categories are notwell separated, which leads to a decline in
classification accuracy. By contrast, separable boundaries and fused features among samples
of different health statuses are observed clearly in Fig. 7 (d), which indicates the excellent
properties of the proposed method in eliminating multi-domain shifts.
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Fig. 7 T-SNE visualization results of different methods on task B+C→A

4.4.3 Weight Analysis

To analyze the effectiveness of the weighting scheme, the weight values assigned to multiple
source domains in different diagnostic tasks are recorded in Fig. 8, where w1 and w2 denote
the weight values of the first and second source domain, respectively.

As can be seen from Fig. 8, the weights estimated based on the MMD values are signifi-
cantly correlatedwith the physical significance of the source domainworking conditions. The
source domains that have a smaller gap with the working conditions of the target domain are
assigned a larger weight. The results in Figs. 8 and 9 show a similar trend between the weights
and the single source transfer results. When a single source domain is used for transfer and
achieves higher diagnostic accuracy, it is often given a higher weight in MDA scenario. In
the tasks A+B→C and B+C→A, where the speed of A, B, C is 600, 800 and 1000 r/min,
respectively, the B source domain whose speed is closest to the target domain is given the
largest weight. In the diagnostic task A+C→Bwhere the gaps in working conditions between
the source and target domains are equal, the A source domain with lower speed is selected
as the best source. This suggests that the A source domain within the JNU dataset holds
diagnostic information closely related to the target working condition.

4.5 Experimental Results and Analysis on Case1

4.5.1 Comparison of Classification Accuracy

Experiments on the Case1, which keeps the same experimental setup as the JNU case, are
constructed for further validation of the effectiveness ofNWMDAN. The detailed experimen-
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Fig. 8 Weight values of source domains in different tasks for JNU case

Fig. 9 Single-source domain diagnosis accuracy (%) on JNU case
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Fig. 10 T-SNE visualization results of different methods on task E+F+G→D

tal results are recorded in Table 6. It can be seen that NWMDAN achieves a more competitive
diagnostic performance than the comparison methods. More concretely, an average diagnos-
tic accuracy 99.41% is observed for the proposedmethod in all tasks.Meanwhile, the negative
transfer is not observed in the diagnosis results of the NWMDAN. It is also observed that the
proposed network retains a superior diagnostic performance compared to NWMDAN_a and
NWMDAN_b, further validating the effectiveness of the intra-domain distribution alignment
strategy and weighting scheme.

4.5.2 Feature Visualization Results

Similar to the JNU case, the visualization of experimental results for the transfer task
E+F+G→D are illustrated in Fig. 10. The promising clustering performance can be observed
in the visualization result of NWMDAN shown in Fig. 10(d), where different states of fault
samples are obviously separated. By contrast, from Fig.10(a), it is clear that there is a sig-
nificant overlap among the classes, and poor alignment performance of the source and target
domains is achieved. Figure10(b) and (c) show clear changes in the distribution of features
across categories, but there is a slight overlap between categories, which leads to a decrease
in diagnosis performance.

4.5.3 Weight Analysis

The diagnosis tasks in the Case1 contain three source domains, which are different from
the JNU case. In Fig. 11, the weight curves of the source domains on the four transfer
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Fig. 11 Weight values of source domains in different tasks for Case1

Fig. 12 Single-source domain diagnosis accuracy (%) on Case1

tasks are recorded, where w1, w2, w3 represent the weights of different source domains,
respectively. Combined with the single-source domain transfer diagnosis results shown
in Fig. 12, it can be observed that the assignment of weights is closely related to the
working condition differences between the source and target domains. The F, G, D, and
E source domains are given the largest weights of the four diagnostic tasks, respec-
tively, which is consistent with the ranking of diagnostic results based on the single
domain.
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Table 7 Classification accuracy (%) on the Case2 with different methods

Groups Methods Transfer tasks Average
H+I→J H+J→I I+J→H

Single best CNN 96.83 96.46 96.41 96.56

DAN 98.05 97.92 97.80 97.92

JAN 98.08 97.74 96.94 97.59

DCORAL 98.17 97.80 97.75 97.87

DANN 96.68 97.67 96.58 96.98

Merged source domains CNN 96.82 96.79 95.97 96.53

DAN 97.44 99.51 96.70 97.88

JAN 98.05 98.41 98.53 98.33

DCORAL 97.93 98.29 96.94 97.72

DANN 97.56 98.66 97.07 97.76

Multisource domain MDAN 98.35 98.77 97.90 98.34

NWMDAN_a 97.66 99.02 98.40 98.36

NWMDAN_b 98.97 99.27 99.02 99.09

Proposed method NWMDAN 99.88 100.00 99.39 99.76

4.6 Experimental Results and Analysis on Case2

4.6.1 Comparison of Classification Accuracy

The diagnostic accuracy of the proposed NWMDAN and comparison methods on the Case2
dataset are shown in Table 7. It can be observed from Table 7 that NWMDAN has an average
diagnostic accuracy of 99.76% on the three tasks, outperforming the comparison methods.
On the task H+J→I, NWMDAN achieves 100% classification accuracy, while the single
best and merged source domain approaches cause degradation in classification accuracy. The
classification performance of NWMDAN_a and NWMDAN_b outperforms MDAN, further
validating the effectiveness of the proposed intra-domain distribution alignment strategy
and non-uniform weighted domain adversarial framework. Compared to the JNU and Case1
datasets, the load variations on the Case2 dataset do not significantly increase the knowledge
transfer challenge, and the NWMDAN and comparison methods show high accuracy of
classification on all three tasks.

4.6.2 Feature Visualization Results

The results of the T-SNE visualizations on the Case2 dataset are presented in Fig. 13. The
visualization results of NWMDAN shown in Fig. 13(d) show promising classification results
with clear classification boundaries for different classes, and sample features in the target
domain can be accurately matched to the corresponding source domain. In contrast, the
visualizations shown in Fig. 13(a) and (b) exhibit poor distinguishability between the classes,
and Fig. 13(c) presents a partial confusion of the classes.

4.6.3 Weight Analysis

The non-uniform weights during the training of the transfer task for the Case2 dataset are
recorded in Fig. 14, and the diagnostic accuracy of single source domain-based methods is
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Fig. 13 T-SNE visualization results of different methods on task I+J→H

shown in Fig. 15. Different from the JNU dataset and Case1 dataset, the variations of load on
the Case2 dataset are considered. The results in Fig. 14 are similar to JNU andCase1, showing
that theweights of different sources are are physically correlated. Sourceswith high similarity
to the target domain working conditions tend to be assigned higher weights. Conversely, the
contributions of source domains that differ significantly from the target working conditions
are reduced.

5 Conclusion

In this study, a multisource domain IFD method, NWMDAN, considering non-uniform
weights of source domains and domain shift between each pair of source and target domain is
proposed. The proposed NWMDAN can precisely align multisource domains with the target
domain and extract multi-domain invariant features effectivelly. In particular, the proposed
NMWDAN eliminates the domain shifts between each pair of source and target domains by
an intra-domain distribution alignment strategy proposed in this study. Considering the differ-
ent contribution of different source domains to the target domains, a non-uniform weighting
scheme is designed tomeasure the relative importance of different source domains.Moreover,
to further learn and combine multisource diagnostic information, a non-uniformly weighted
domain adversarial framework is designed. The experimental results on three datasets demon-
strate the effectiveness of the proposed NWMDAN. Comprehensive results show that the
proposed network obtains promisingDA effect andmore competitive diagnostic performance
compared with the comparison methods.
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Fig. 14 Weight values of source domains in different tasks for Case2

Fig. 15 Single-source domain diagnosis accuracy (%) on Case2
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Although the proposedmethod is expected to achieve goodMDAperformance, it is limited
by the assumption that the label spaces of the source and target domains are equivalent. Future
research will focus on a more complex multisource cross-domain diagnostic scenario with
asymmetric labeling spaces of the source and target domains.

Acknowledgements This work was supported by the Natural Science Foundation of Anhui Province, China
[Grant Number 2108085MG236]; the Natural Science Foundation of Anhui Province, China [Grant Number
2208085MG181]; and the Natural Science Foundation from the Education Bureau of Anhui Province, China
[Grant Number KJ2021A0385].

Declarations

conficts of interest The author(s) declared no potential conficts of interest concerning the research, authorship,
and/or publication of this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Yu G, Lin T, Wang Z, Li Y (2021) Time-reassigned multisynchrosqueezing transform for bearing fault
diagnosis of rotating machinery. IEEE Trans Industr Electron 68(2):1486–1496. https://doi.org/10.1109/
TIE.2020.2970571

2. ZhuD, ChengX, Yang L, ChenY, Yang SX (2022) Information fusion fault diagnosis method for deep-sea
human occupied vehicle thruster based on deep belief network. IEEE Trans Cybern 52(9):9414–9427.
https://doi.org/10.1109/TCYB.2021.3055770

3. Xia Y, Shen C, Wang D, Shen Y, HuangW, Zhu Z (2022) Moment matching-based intraclass multisource
domain adaptation network for bearing fault diagnosis. Mech Syst Signal Process168, 108697. https://
doi.org/10.1016/j.ymssp.2021.108697

4. HasanMJ, SohaibM,Kim J-M (2021)An explainable ai-based fault diagnosismodel for bearings. Sensors
21(12):4070. https://doi.org/10.3390/s21124070

5. Pan H, Xu H, Liu Q, Zheng J, Tong J (2022) An intelligent fault diagnosis method based on adap-
tive maximal margin tensor machine. Measurement 198, 111337. https://doi.org/10.1016/j.measurement.
2022.111337

6. Cao H, Shao H, Liu B, Cai B, Cheng J (2022) Clustering-guided novel unsupervised domain adversarial
network for partial transfer fault diagnosis of rotating machinery. IEEE Sens J 22(14):14387–14396.
https://doi.org/10.1109/JSEN.2022.3182727

7. Zhao MH, Zhong SS, Fu XY, Tang BP, Pecht M (2020) Deep residual shrinkage networks for fault
diagnosis. IEEE Trans Industr Inf 16(7):4681–4690. https://doi.org/10.1109/tii.2019.2943898

8. Wang Y, Ning D, Lu J (2022) A novel transfer capsule network based on domain-adversarial training for
fault diagnosis. Neural Process Lett 54(5):4171–4188. https://doi.org/10.1007/s11063-022-10803-y

9. Xu H, Wang J, Liu J, Peng X, He C (2022) A novel joint distinct subspace learning and dynamic distribu-
tion adaptation method for fault transfer diagnosis. Measurement 203, 111986. https://doi.org/10.1016/
j.measurement.2022.111986

10. QianC, Zhu J, ShenY, JiangQ, ZhangQ (2022)Deep transfer learning inmechanical intelligent fault diag-
nosis: application and challenge. Neural Process Lett 54(3):2509–2531. https://doi.org/10.1007/s11063-
021-10719-z

11. Qin Y, Yao Q, Wang Y, Mao Y (2021) Parameter sharing adversarial domain adaptation networks for
fault transfer diagnosis of planetary gearboxes. Mech Syst Signal Process 160, 107936. https://doi.org/
10.1016/j.ymssp.2021.107936

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TIE.2020.2970571
https://doi.org/10.1109/TIE.2020.2970571
https://doi.org/10.1109/TCYB.2021.3055770
https://doi.org/10.1016/j.ymssp.2021.108697
https://doi.org/10.1016/j.ymssp.2021.108697
https://doi.org/10.3390/s21124070
https://doi.org/10.1016/j.measurement.2022.111337
https://doi.org/10.1016/j.measurement.2022.111337
https://doi.org/10.1109/JSEN.2022.3182727
https://doi.org/10.1109/tii.2019.2943898
https://doi.org/10.1007/s11063-022-10803-y
https://doi.org/10.1016/j.measurement.2022.111986
https://doi.org/10.1016/j.measurement.2022.111986
https://doi.org/10.1007/s11063-021-10719-z
https://doi.org/10.1007/s11063-021-10719-z
https://doi.org/10.1016/j.ymssp.2021.107936
https://doi.org/10.1016/j.ymssp.2021.107936


84 Page 24 of 25 H. Zhang etal.

12. Vashishtha G, Kumar R. Unsupervised learning model of sparse filtering enhanced using wasserstein
distance for intelligent fault diagnosis. J Vib Eng Tech. https://doi.org/10.1007/s42417-022-00725-3

13. Li X, Hu Y, Zheng J, Li M, Ma W (2021) Central moment discrepancy based domain adaptation for
intelligent bearing fault diagnosis. Neurocomputing 429, 12–24. https://doi.org/10.1016/j.neucom.2020.
11.063

14. Li C, Zhang S, Qin Y, Estupinan E (2020) A systematic review of deep transfer learning for machinery
fault diagnosis. Neurocomputing 407, 121–135. https://doi.org/10.1016/j.neucom.2020.04.045

15. Wang Y, Ning D, Lu J (2022) A novel transfer capsule network based on domain-adversarial training for
fault diagnosis. Neural Process Lett 54(5):4171–4188. https://doi.org/10.1007/s11063-022-10803-y

16. Schwendemann S, Amjad Z, Sikora A (2021) Bearing fault diagnosis with intermediate domain based
layeredmaximummean discrepancy: a new transfer learning approach. EngApplArtif Intell 105, 104415.
https://doi.org/10.1016/j.engappai.2021.104415

17. Xiong P, Tang B, Deng L, Zhao M, Yu X (2021) Multi-block domain adaptation with central moment
discrepancy for fault diagnosis. Measurement 169, 108516. https://doi.org/10.1016/j.measurement.2020.
108516

18. Wang Z, He X, Yang B, Li N (2022) Subdomain adaptation transfer learning network for fault diagno-
sis of roller bearings. IEEE Trans Industr Electron 69(8):8430–8439. https://doi.org/10.1109/TIE.2021.
3108726

19. Wang Y, Ning D, Lu J (2022) A novel transfer capsule network based on domain-adversarial training for
fault diagnosis. Neural Process Lett 54(5):4171–4188. https://doi.org/10.1007/s11063-022-10803-y

20. Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F,MarchandM, Lempitsky V (2016)
Domain-adversarial training of neural networks. The journal of machine learning research 17(1):2096–
2030

21. Wang Y, Sun X, Li J, Yang Y (2021) Intelligent fault diagnosis with deep adversarial domain adaptation.
IEEE Trans Instrum Meas 70, 1–9. https://doi.org/10.1109/TIM.2020.3035385

22. Sun S, Shi H, Wu Y (2015) A survey of multi-source domain adaptation. Inf Fusion 24, 84–92. https://
doi.org/10.1016/j.inffus.2014.12.003

23. Wang R, Huang W, Wang J, Shen C, Zhu Z (2022) Multisource domain feature adaptation network
for bearing fault diagnosis under time-varying working conditions. IEEE Trans Instrum Meas 71, 1–
109761066. https://doi.org/10.1109/TIM.2022.3168903

24. Zhang Y, Ren Z, Zhou S, Yu T (2020) Adversarial domain adaptation with classifier alignment for cross-
domain intelligent fault diagnosis of multiple source domains. Meas Sci Technol 32(3):035102. https://
doi.org/10.1088/1361-6501/abcad4

25. Shi Y, Deng A, Ding X, Zhang S, Xu S, Li J (2022) Multisource domain factorization network for cross-
domain fault diagnosis of rotating machinery: an unsupervised multisource domain adaptation method.
Mech Syst and Signal Process 164, 108219. https://doi.org/10.1016/j.ymssp.2021.108219

26. Zhu J, ChenN, ShenCQ (2021)A newmultiple source domain adaptation fault diagnosismethod between
different rotating machines. IEEE Trans Industr Inf 17(7):4788–4797. https://doi.org/10.1109/tii.2020.
3021406

27. Wang ZC, Huang WT, Chen Y, Jiang YC, Peng GL (2022) Multisource cross-domain fault diagnosis of
rolling bearing based on subdomain adaptation network. Meas Sci Technol 33(10). https://doi.org/10.
1088/1361-6501/ac7941

28. Shi YW, Deng AD, Deng MQ, Xu M, Liu Y, Ding X, Bian WB(2022) Instance adaptive multisource
transfer for fault diagnosis of rotating machinery under variable working conditions. Measurement 202.
https://doi.org/10.1016/j.measurement.2022.111797

29. Blitzer J, Crammer K, Kulesza A, Pereira F, Wortman J (2007) Learning bounds for domain adaptation.
Adv Neural Inf Process Syst 20:129–136

30. Ge L, Gao J, Ngo H, Li K, Zhang A (2014) On handling negative transfer and imbalanced distributions in
multiple source transfer learning. Stat Anal Data Mining ASA Data Sci J 7(4):254–271. https://doi.org/
10.1002/sam.11217

31. Tian J, Han D, Li M, Shi P (2022) A multi-source information transfer learning method with subdomain
adaptation for cross-domain fault diagnosis. Knowl Based Syst 243, 108466. https://doi.org/10.1016/j.
knosys.2022.108466

32. WeiD, Han T, Chu F, ZuoMJ (2021)Weighted domain adaptation networks formachinery fault diagnosis.
Mech Syst Signal Process 158, 107744. https://doi.org/10.1016/j.ymssp.2021.107744

33. Borgwardt KM, Gretton A, Rasch MJ, Kriegel H-P, Schölkopf B, Smola AJ (2006) Integrating structured
biological data by kernel maximum mean discrepancy. Bioinformatics 22(14):49–57. https://doi.org/10.
1093/bioinformatics/btl242

123

https://doi.org/10.1007/s42417-022-00725-3
https://doi.org/10.1016/j.neucom.2020.11.063
https://doi.org/10.1016/j.neucom.2020.11.063
https://doi.org/10.1016/j.neucom.2020.04.045
https://doi.org/10.1007/s11063-022-10803-y
https://doi.org/10.1016/j.engappai.2021.104415
https://doi.org/10.1016/j.measurement.2020.108516
https://doi.org/10.1016/j.measurement.2020.108516
https://doi.org/10.1109/TIE.2021.3108726
https://doi.org/10.1109/TIE.2021.3108726
https://doi.org/10.1007/s11063-022-10803-y
https://doi.org/10.1109/TIM.2020.3035385
https://doi.org/10.1016/j.inffus.2014.12.003
https://doi.org/10.1016/j.inffus.2014.12.003
https://doi.org/10.1109/TIM.2022.3168903
https://doi.org/10.1088/1361-6501/abcad4
https://doi.org/10.1088/1361-6501/abcad4
https://doi.org/10.1016/j.ymssp.2021.108219
https://doi.org/10.1109/tii.2020.3021406
https://doi.org/10.1109/tii.2020.3021406
https://doi.org/10.1088/1361-6501/ac7941
https://doi.org/10.1088/1361-6501/ac7941
https://doi.org/10.1016/j.measurement.2022.111797
https://doi.org/10.1002/sam.11217
https://doi.org/10.1002/sam.11217
https://doi.org/10.1016/j.knosys.2022.108466
https://doi.org/10.1016/j.knosys.2022.108466
https://doi.org/10.1016/j.ymssp.2021.107744
https://doi.org/10.1093/bioinformatics/btl242
https://doi.org/10.1093/bioinformatics/btl242


Non-Uniformly Weighted Multisource Domain Adaptation Network … Page 25 of 25 84

34. Arora JK, Rajagopalan S, Singh J, Purohit A. Low-frequency adaptation-deep neural network-based
domain adaptation approach for shaft imbalance fault diagnosis. J Vib Eng Technol. https://doi.org/10.
1007/s42417-022-00848-7

35. Ghifary M, Kleijn WB, Zhang M (2014) Domain adaptive neural networks for object recognition. In:
13th Pacific rim international conference on artificial intelligence (PRICAI). Lect Notes Artif Intell 8862,
898–904. https://doi.org/10.1007/978-3-319-13560-1_76

36. Li X, Zhang W, Ma H, Luo Z, Li X (2020) Partial transfer learning in machinery cross-domain fault
diagnostics using class-weighted adversarial networks. Neural Netw 129, 313–322. https://doi.org/10.
1016/j.neunet.2020.06.014

37. Han T, Liu C, Yang W, Jiang D (2019) A novel adversarial learning framework in deep convolutional
neural network for intelligent diagnosis of mechanical faults. Knowl Based Syst 165, 474–487. https://
doi.org/10.1016/j.knosys.2018.12.019

38. Zhang L, Lv Y, Huang WY, Yi CC (2022) Bearing fault diagnosis under various operation conditions
using synchrosqueezing transform and improved two-dimensional convolutional neural network. Meas
Sci Technol 33(8):085002. https://doi.org/10.1088/1361-6501/ac69b1

39. Lee CK, Shin YJ (2021) Detection and assessment of i&c cable faults using time-frequency r-cnn-based
reflectometry. IEEE Trans Industr Electron 68(2):1581–1590. https://doi.org/10.1109/tie.2020.2970677

40. Zhu ZY, Peng GL, Chen YH, Gao HJ (2019) A convolutional neural network based on a capsule network
with strong generalization for bearing fault diagnosis. Neurocomputing 323, 62–75. https://doi.org/10.
1016/j.neucom.2018.09.050

41. Long M, Cao Y, Wang J, Jordan M. Learning transferable features with deep adaptation networks. In:
International conference on machine learning, pp 97–105. PMLR

42. SunB, SaenkoK (2016) Deep coral: Correlation alignment for deep domain adaptation. In: 14th European
conference on computer vision (ECCV). Lect Notes Comput Sci 9915, 443–450. https://doi.org/10.1007/
978-3-319-49409-8_35

43. Long M, Zhu H, Wang J, Jordan MI (2017) Deep transfer learning with joint adaptation networks. In:
34th International conference on machine learning. Proc Mach Learn Res 70:2208–2217

44. Dai Y, Liu J, RenX, Xu Z (2020) Adversarial training basedmulti-source unsupervised domain adaptation
for sentiment analysis. Proc AAAI Conf Artif Intell 34, 7618–7625 . https://doi.org/10.1609/aaai.v34i05.
6262

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s42417-022-00848-7
https://doi.org/10.1007/s42417-022-00848-7
https://doi.org/10.1007/978-3-319-13560-1_76
https://doi.org/10.1016/j.neunet.2020.06.014
https://doi.org/10.1016/j.neunet.2020.06.014
https://doi.org/10.1016/j.knosys.2018.12.019
https://doi.org/10.1016/j.knosys.2018.12.019
https://doi.org/10.1088/1361-6501/ac69b1
https://doi.org/10.1109/tie.2020.2970677
https://doi.org/10.1016/j.neucom.2018.09.050
https://doi.org/10.1016/j.neucom.2018.09.050
https://doi.org/10.1007/978-3-319-49409-8_35
https://doi.org/10.1007/978-3-319-49409-8_35
https://doi.org/10.1609/aaai.v34i05.6262
https://doi.org/10.1609/aaai.v34i05.6262

	Non-Uniformly Weighted Multisource Domain Adaptation Network For Fault Diagnosis Under Varying Working Conditions
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Maximum Mean Discrepancy
	2.3 Domain Adversarial Neural Network

	3 Proposed method
	3.1 Feature Extractor
	3.2 Intra-Domain Distribution Alignment Strategy
	3.3 Non-Uniform Weighting Scheme
	3.4 Non-Uniformly Weighted Adversarial Training Framework
	3.4.1 Non-Uniformly Weighted Discriminator
	3.4.2 Non-Uniformly Weighted Classifier

	3.5 Optimization Objective

	4 Case Study
	4.1 Dataset Description
	4.2 Comparison Methods
	4.3 Experimental Details
	4.4 Experimental Results and Analysis on JNU Case
	4.4.1 Comparison of Classification Accuracy
	4.4.2 Feature Visualization Results
	4.4.3 Weight Analysis

	4.5 Experimental Results and Analysis on Case1
	4.5.1 Comparison of Classification Accuracy
	4.5.2 Feature Visualization Results
	4.5.3 Weight Analysis

	4.6 Experimental Results and Analysis on Case2
	4.6.1 Comparison of Classification Accuracy
	4.6.2 Feature Visualization Results
	4.6.3 Weight Analysis


	5 Conclusion
	Acknowledgements
	References




