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Abstract
Despite that much progress has been reported in gait recognition, most of these existing
works adopt lateral-view parameters as gait features, which requires large area of data col-
lection environment and limits the applications of gait recognition in real-world practice.
In this paper, we adopt frontal-view walking sequences rather than lateral-view sequences
and propose a new gait recognition method based on multi-modal feature representations
and learning. Specifically, we characterize walking sequences with two different kinds of
frontal-view gait features representations, including holistic silhouette and dense optical flow.
Pedestrian regions extraction is achieved by an improved YOLOv7 algorithm called Gait-
YOLO algorithm to eliminate the effects of background interference. Multi-modal fusion
module (MFM) is proposed to explore the intrinsic connections between silhouette and dense
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optical flow features by using squeeze and excitation operations at the channel and spatial
levels. Gait feature encoder is further used to extract global walking characteristics, enabling
efficient multi-modal information fusion. To validate the efficacy of the proposedmethod, we
conduct experiments on CASIA-B and OUMVLP gait databases and compare performance
of our proposed method with other existing state-of-the-art gait recognition methods.

Keywords Gait recognition · Multi-modal feature learning · Dense optical flow · Deep
learning

1 Introduction

Gait recognition, a new kind of non-contact biometric technique, has received increas-
ing attentions since the outbreak of COVID-19 [1]. In contrast to conventional biometric
techniques, e.g. face or fingerprint recognition, gait recognition has great advantages of long-
distance non-contact individual identification without the cooperations of subjects, making
it particularly attractive for security-sensitive surveillance applications [2, 3].

Much progress has been reported in the area of gait recognition, however, most of these
existing works adopt lateral-view parameters as gait features. These methods usually suffer
from severe occlusion problems of human silhouette between left and right legs [4, 5].
In addition, to obtain walking sequences of the whole gait cycle, it is necessary to place
cameras at a considerable distance from subjects, which requires large area of data collection
environment and limits the applications of gait recognition in real-world practice. Attempts
to resolve these dilemmas have resulted in the development of frontal-view gait recognition
methods.

To name a few, Tahmoush et al. [6] presented a frontal-view gait recognition algorithm
based on the data stream of remote micro-Doppler radar that enables individual detection,
tracking and identification. Barnich et al. [7] extracted gait time-frame interval features from
frontal-view walking sequences and built a real-time system for pedestrian identification
using improved machine learning algorithms. Matovski et al. [8] combined the advantages
of gait energy image (GEI) and gait entropy image (GEnI) and proposed a hybrid frontal-
view gait recognition method. It can be observed that the aforementioned methods can sort
out the frontal-view gait recognition problem to some extent. However, it is still challenging
to deal with the changes of human silhouettes especially when complex backgrounds and
external environmental factors are taken into consideration [9]. Additional depth cameras or
radar sensors are involved in the existing frontal-view recognition works, leading to heavy
hardware system burdens as well. Therefore, our proposed method tackle these issues as the
core objective in this paper, and propose a new frontal-view gait recognition method based
on multi-modal feature representations and learning.

In this study, we propose a new frontal-view gait recognition method using multi-modal
feature representations and learning. First, we propose that, the extracted binary frontal-
view gait silhouettes are characterized with two different kinds of frontal-view gait features
representations: holistic silhouette and dense optical flow. Pedestrian regions extraction is
achieved by an improved YOLOv7 algorithm to eliminate the effects of background inter-
ference. Holistic silhouettes are used to describe the spatial characteristic during human
walking, while dense optical flow can be designed to reflect the temporal dynamics informa-
tion of human walking. Second, multi-modal fusion module (MFM) is proposed to explore
the intrinsic connections between silhouette and dense optical flow features by using squeeze
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and excitation operations at the channel and spatial levels. Gait feature encoder is further
used to extract global walking characteristics, enabling efficient multi-modal information
fusion. The aforementioned two kinds of gait representations reflect the spatial and temporal
changes of walking silhouettes in two different aspects, and are fused by using the proposed
multi-modal fusion module for a better recognition performance.

The main contributions of this paper are as follows: (1) Our proposed method facilitates
the application of gait-based individual identification in real-world scenarios by using only
frontal-view walking sequences, particularly in security-sensitive narrow corridors. (2) Our
proposed method combines holistic silhouette and dense optical flow to capture the spatial
characteristic and temporal characteristics during the gait cycle to further improve the recog-
nition rate. (3) Our proposed method innovatively designs a multi-modal fusion module,
which utilizes squeeze and excitation operations to simulate the interaction between differ-
ent modes. Additionally, we have developed a gait feature encoder, called Gait-Encoder,
to globally encode the gait vector for efficient fusion of silhouette and dense optical flow
features. (4) Our proposed method achieves promising results on publicly available CASIA-
B and OUMVLP gait databases, and outperforms existing other gait recognition methods.
Moreover, our method maintains reliable results even under different walking conditions.

2 RelatedWork

Existing gait recognition methods can be roughly classified into two categories: model-
based and appearance-based. Appearance-based representations can be further classified into
silhouette-based and pose-based methods [10, 11]. Walking silhouettes contain useful tem-
poral information for gait recognition, however, they are highly sensitive to pedestrian attire
or carrying statuses. Pose-based gait recognition methods typically use skeleton parameters
for individual identification and usually suffer from the problems of occlusion and human
body modeling.

In recent years, deep learning-basedgait recognitionmethods have gained increasing atten-
tions due to their superior performance. Neural network-based feature extraction techniques
[12, 13] and graph-based gait representations [14–16] have been widely adopted. To name
a few, Chao et al. [17] used frame-level features to construct gait templates and employed
convolutional neural networks for silhouette-based feature extraction. Shiraga et al. [18] pro-
posed a lightweight convolutional neural network (Geinet) for gait recognition. Tong et al.
[19] introduced a restricted triple network to address the effect of viewpoint changes on gait
recognition, and they also introduced triple loss to further improve the recognition rates of
gait recognition.

In fact, gait characteristics underlying one single modal are limited and not enough to
develop a high-accurate recognition system. Based on this assumption, one possible method
is to develop multi-modal fusion methods [20] for gait recognition. Papavasileiou et al. [21]
proposed amulti-modal learningmethod that utilized accelerometer and ground contact force
data, and designed an automatic encoding network for feature extraction. Manuel et al. [22]
proposed a robust gait recognition framework, UGaitNet, that integrates various types of
input modalities including pixel gray values, depth maps, and silhouettes to obtain advanced
gait descriptors. Liu et al. [23] proposed a lightweight dual-channel convolutional neural
network, DC-DSCNN, which combines gait cycle sequence data and Gramian angular field
(GAF) images to achieve gait recognition with higher real-time functionality for wearable
devices. Li et al. [24] proposed a multi-modal gait recognition method that combines sil-
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houette and human skeleton modalities to overcome the effects of pedestrian clothing and
carrying. However, these methods only utilize simple stitching fusion for the feature maps of
each modality at the multi-modal fusion level and do not fully consider the intrinsic connec-
tion between each modality. To address this issue, we propose a multi-modal fusion module
(MFM) that models the interactions between different modalities and learns different motion
patterns between each modality, enabling efficient gait recognition.

As for frontal-view gait recognition, several pioneering works have confirmed the feasi-
bility of frontal-view gait parameters for the task of individual identification. Barnich et al.
[7] fit gait features within closed silhouettes from a set of rectangles to frontal-view walking
sequences. However, this method was limited in its ability to accurately predict covariate
factors when walking appearance changes, as the size of the rectangles changed accordingly.
Goffredo et al. [25] proposed an algorithm using 3D gait volumes for frontal view gait recog-
nition, but drop of recognition rates were taken place when clothing and carrying conditions
changed. Soriano et al. [5] utilized FreemanCode for silhouette extraction in frontal-view gait
recognition, but this method was highly sensitive to complex background environment. After
these pioneering works, a vast literature has accumulated on frontal-view gait recognition.
Combined use of depth and RGB data streams from Kinect sensors was further investigated
and represented as pose depth volume for frontal-view gait recognition [26]. Depth parame-
ters from time-of-flight cameras were extracted and a four-part method was presented in [27].
Spatial-temporal characteristics underlying depth data streams were calculated and used as
the input of different deep learning models for frontal-view gait recognition [28]. Skeleton
joint parameters from the depth data of popular Kinect sensor was extracted and used to
develop a key-pose-based frontal-view gait recognition method [29]. Liao et al. [30] further
adopted the OpenPose tool and 18-joint model for extraction of human joint angles as well as
their joint movements. Joint features and bone features were calculated using skeleton data
and a dual graph CNN model was used as classifier in [31].

3 ProposedMethod

As shown in Fig. 1, our proposed method can be summarized in this section in the following
three parts: multi-modal feature representation, target pedestrian areas detection and multi-
modal fusion module. We extract holistic silhouette and dense optical flow as two different
kinds of gait representations. Target pedestrian regions are extracted using an improved
YOLOv7 algorithm for frontal-view gait sequences, and gait in-depth features can then be
captured using convolutional neural network. Based on the captured gait features, we design
a multi-modal fusion module to explore the intrinsic connections between the silhouette
and dense optical flow features through squeezing and excitation operations. A gait feature
encoder, Gait-Encoder, is further used in MFM to globally encode the gait feature vectors,
thereby recognizing human gait through the encoded high-level semantic motion features.

3.1 Holistic Silhouette Extraction

We firstly extract holistic silhouette of each frontal-view frame to describe the spatial change
characteristics during human walking. Original walking frames are converted into grayscale
images to reduce computational complexity.Gaussianfiltering and histogramequalization are
performed to enhance contrast, and background subtraction is adopted to remove background
noise. For the case of noise and isolated pixels in the extracted silhouette images, we apply

123



Human Gait Recognition Based on Frontal-View Walking… Page 5 of 23   133 

Fig. 1 The overall block diagram of the proposed method

Fig. 2 Holistic silhouette extraction: a original frontal-view walking frame, b background image, c binary
silhouette, d clean holistic silhouette

morphological processing to fill in holes and ensure that the gait silhouette has complete
connectivity. The final clean gait silhouettes for normal walking are shown in Fig. 2.

3.2 Dense Optical Flow Extraction

Optical flow has been proved as an effective representation for video understanding, which
presents instantaneous movement pattern of each pixel in image plane when the target object
is moving. This sectionmainly extracts dense optical flow features of each frontal-view frame
to describe the temporal change characteristics during human walking.We use point-to-point
matching between two adjacent frames, and go through every pixel point to formdense optical
flow for gait recognition.

Denote arbitrary two adjacent frames in the walking sequence as I (x, y, t) and I (x +
u, y + v, t + 1), in which I (·) represents gray value calculation function, (x, y) represents
pixel coordinates, t represents time, u and v represent pixel displacement at time t and t + 1,
respectively. Based on constant brightness hypothesis, gray values of pixels at the same
position in consecutive two images should be equal, that is, I (x, y, t) = I (x+u, y+v, t+1).
Using Taylor’s expansion, gray value at the pixel point (x + u, y + v, t + 1) can be obtained
by first order approximation:

I (x + u, y + v, t + 1) ≈ I (x, y, t) + u�x + v�y + �t (1)

where �x , �y , �t represent gradient of I (x, y, t) in the x , y, and t directions, respectively.
According to spatial consistency hypothesis, displacement between adjacent pixels should
be continuous,u and v can be approximated as displacement difference between adjacent
pixels, that is, u = δx and v = δy. Therefore, Eq.3 can be rewritten as:
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Fig. 3 Dense optical flow extraction: a original frontal-view walking frame, b optical flow calculation, c
visualization of optical flow using color coding, d smoothed optical flow images

I (x + u, y + v, t + 1) ≈ I (x, y, t) + δx�x + δy�y + �t (2)

This is an equation for δx and δy , and we can solve it by minimizing the reprojection
error to get the displacement vector (u, v) for every pixel point. After obtaining the extracted
optical flow vector image, we use median filtering to smooth the original optical flow vector
image to remove unnecessary noise and improve the accuracy and stability of optical flow
vector image. Color coding is further used to visualize the optical flow vector image to form
a new kind of gait representation. To improve generalization ability of the extracted dense
optical flow image of gait, we overlay dense optical flow images of adjacent three frames
(i − 1, i, i + 1) by using weight ratio of (a, b, c). In our experiments, weight parameters
(a, b, c) are set to (0.2, 0.6, 0.2). Figure3 shows the extraction process of dense optical flow
images for frontal-view walking sequence.

3.3 Target Pedestrian Areas Detection

The most significant distinguishing factor of frontal-view gait recognition is that height and
width of pedestrian target region vary with distance of pedestrian to camera. To solve this
problem, this section introduces a new method based on popular YOLOv7 algorithm for
detecting pedestrians in holistic silhouettes and dense optical flow images.

3.3.1 Small Object Detection Layer

Since conventionalYOLOv7algorithmsuffers from the problemof detecting small pedestrian
areas, this paper proposes an improved YOLOv7-based algorithm, called Gait-YOLO, by
introducing a small object detection layer for high-precision pedestrian detection.

The YOLOv7 includes three feature maps at scales of 80 × 80, 40 × 40, and 20 × 20,
respectively. One of the most significant difference between frontal-view gait recognition
in this paper and lateral-view gait recognition is the fact that pedestrians walk closer from
a distance, the size of the pedestrian region varies from small to large. From the view of
detecting large objects with a small receptive field and small objects with a large receptive
field, this section maintains the unchanged scale of the baseline network output feature
maps, and further introduces a detection layer with a receptive field of 160 × 160 in the
detection head. This operation partitions the input image into 160× 160 grid cells, enabling
improved regression of prior boxes and adjustment for the detection of small target objects.
The additional small target detection layer is highlighted in red boxes in Fig. 4.
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Fig. 4 Overall structure of Gait-YOLO model. (Color figure online)

3.3.2 Deformable Convolution V3

Conventional convolution operations are generally regular convolutions for sampling of fixed-
sized regions. For frontal-view gait recognition, as pedestrian region continuously changes
during walking movement, conventional convolution is not suitable for the regression task
of pedestrian movement region. Deformable convolution operation, in this sense, can help to
adjust the receptive field according to movement and variations in pedestrian’s appearance.
Therefore, a deformable-ELAN module based on deformable convolution v3 is designed
in this section to address the limitations of conventional convolutional layers in capturing
long-range dependencies and achieve global representation of pedestrian gait:

y(p0) =
G∑

g=1

K∑

k=1

wgmgkxg(p0 + pk + �pgk) (3)

where p0 represents the current pixel point, G is the number of aggregation groups, K is
the total number of sample points. For the g-th group, wg ∈ RC×C ′

represents the position-
independent projected weight of a group, with the dimension of the group C ′ = C/G.
mgk ∈ R represents modulation scalar of the k-th sampling point in the g-th group.
xg ∈ R

C ′×H×W is the sliced input feature vector. �pgk represents the corresponding
offsets of pk in the g-th group. The proposed Deformable-ELAN module can not only
increase the expressiveness of the operator but also share convolution weights, reducing
algorithm complexity and enhancing training stability. The structures of the ELAN module
and Deformable-ELAN module are illustrated in Fig. 5.

The structure of the proposed Gait-YOLO algorithm including ELAN module and
Deformable-ELAN module are shown in Fig. 4. The Gait-YOLO model is used to extract
regions of interest in the holistic silhouettes and dense optical flow images, as shown in
Fig. 6. The extracted pedestrian regions of silhouette images and dense optical flow images
are resized into 64 × 44 images and used as the dual-channel input for final recognition
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Fig. 5 The structures of a ELAN and b deformable-ELAN modules

Fig. 6 Results of pedestrian detection by Gait-YOLO: a silhouette, b dense optical flow. The red box is the
ground-truth box and the green one is the detecting box

task. The proposed Gait-YOLO algorithm can achieve extraction of pedestrian areas from
both silhouette and dense optical flow by adopting a small target detection layer and a
Deformable-ELAN module. Despite that conventional image processing methods do well
in target pedestrian areas detection of binary silhouettes, they fail to obtain satisfactory per-
formance in images with rich color changes, such as dense optical flow graphs. Additionally,
the proposed Gait-YOLO algorithm can obtain promising performance in pedestrian area
detection of binary silhouettes, dense optical flows and even original RGB frame sequences
only with small amount of pre-training, which outperforms conventional image processing
methods.

It is also noted that the baseline YOLOv7model pre-trained on the public COCO database
can deal with target pedestrian areas detection well when the analyzed pedestrian area is
large. When pedestrians are far away from camera, that is, the pedestrian area is small, the
effect of target pedestrian areas detection with target pedestrian areas detection is usually
unsatisfactory. In our proposed algorithm, a small target detection layer and Deformable-
ELANmodule are designed to improve the effect of small pedestrian areas detection. A total
of 100 silhouette images and 100 dense optical flow images are selected to fine-tune the Gait-
YOLOmodel. Experimental results in this paper show that the fine-tuned Gait-YOLOmodel
with a small number of samples greatly improves the effect of pedestrian area extraction for
both gait silhouette and dense optical flow images.
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Fig. 7 Feature visualization extracted by CNNs on the gait images

3.4 Multi-modal fusionmodule

In this section, we propose a multi-modal fusion module (MFM) based on a squeeze-and-
excitation (SE) scheme for discriminative multi-modal feature learning and classification.
The aforementioned two kinds of gait representations, holistic silhouette and dense optical
flow are used as the dual-channel input for feature fusion. The following of this section
summarizes the main steps in recognizing an appearing frontal-view gait sequence using
the multi-modal fusion module. The holistic flowchart of our proposed multi-modal fusion
module is shown in Fig. 8.

First, in-depth gait characteristics underlying original holistic silhouettes and dense optical
flow images are captured by using networks of feature extractors NS and NF , which have
the same structure with different parameters. Both NS and NF contain four convolutional
modules. Each convolutional module includes three 3 × 3 convolutional layers, one 1 × 1
convolutional layer, one pooling layer, and three SiLu activation function layers. The in-depth
gait features underlying holistic silhouette and dense optical flow images are denoted as
S ∈ R

N1×...Nk×C and F ∈ R
M1×...NB×C ′

, where Nk and Mk represent the spatial dimensions
of the given gait representations, C and C ′ represents the number of channels for given gait
representations. In order to show the process of feature learning with CNN models more
intuitively, feature visualization is presented, in which the features obtained by the different
stages of convolutional layers are visualized in Fig. 7 to demonstrate the learning capability
of the low-, middle- and high-layer of the whole network.

The extracted holistic silhouettes maps S and dense optical flow maps F are further
squeezed into a low-dimensional nonlinear space:

SS(c) = 1
∏K

i=1 Ni

∑

n1,...,nK

S(n1, . . . , nK , c) (4)

SF (c) = 1
∏B

i=1 Mi

∑

m1,...,mB

F(m1, . . . ,mB , c) (5)

where SS and SF represent low-dimensional silhouette features and low-dimensional opti-
cal flow features after nonlinear mapping. The spatial information is then compressed into
channel descriptors, and these two features are concatenated to obtain the concatenated low-
dimensional features:

ST = Concat(SS, SF ) (6)

Second, signal gating is applied with different calibration weights to two different modal-
ities. The aforementioned low-dimensional features are then mapped to the global silhouette
feature space ES and the global optical flow feature space EF using fully connected layers,
respectively. An activation function is then applied to obtain output signal:
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ES = WSSS + bS

EF = WF SF + bF (7)

whereWS , bS andWF , bF represent weights and biases corresponding to these two different
modalities, respectively.

Third, the activated output signals ES and EF are used asweights for silhouette and optical
flow feature maps in the channel dimension. The weighted feature maps are obtained by
element-wise multiplication (Hadamard product) between the weights and the feature maps.
The original feature maps and S and F are concatenated with the weighted feature maps
after compression and activation through the SE attention module in the channel dimension.
Then, the concatenated feature maps are compressed using a 1 × 1 convolution module to
match the dimensions of original feature maps.

Fourth, the concatenated feature maps are encoded separately by the proposed gait feature
encoder, calledGait-Encoder, to obtain the corresponding encoding vectors S′

E and F ′
E . These

two encoding vectors S′
E and F ′

E are fused to obtain the final gait feature representation S′
T ,

which contains two different kinds of in-depth gait characteristics underlying silhouette and
optical flow features.

Different from conventional transformer network, the proposed Gait-Encoder algorithm
introduces residual structure for feature learning, which consists of three sub-modules:
multi-head attention module, feed-forward network module, and additive module. Multi-
head attention mechanism is used to capture long-range dependencies on the encoded input
vectors: query (Q), key (K), and value (V), and learn the different internal structures of gait
features:

Attention(Q, K , V ) = so f tmax

(
QKT

√
dk

)
V (8)

Multi Head(Q, K , V ) = Comcat(head1, . . . , headh)W
0 (9)

where Q = Wq X , K = WkX , V = WV X , and headi = Attention(Q, K , V ).
The feedforward network module (FFNM) consists of two fully connected layers and a

SiLu activation function layer. Linear transformation structure is the same for each layer, but
different parameters are used, we have:

FFNM(x) = W2σ(W1X) (10)

where W1 and W2 represent parameter matrices of the two fully connected layers and σ(·)
represents the sigmoid activation function.

Additive module is used and described as follows:

AM(xm) = xm + Attention(Q, K , V ) (11)

By using the FFNM, we can have

AM(x f ) = x f + max(0, x f W1 + b1)W2 + b2 (12)

Different from existing other multi-modal learning algorithms in [32–34], the proposed
MFM uses feature concatenation-based weighted fusion of contour features and optical flow
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Fig. 8 Holistic flowchart of our proposed multi-modal fusion module

features. The two types of features are compressed and concatenated in space to obtain fused
features. Compression units receive fused features and generate joint representations based
on global information. Then, based on the weights and biases of each feature, the joint rep-
resentations are mapped back to the original global feature dimension, achieving adaptive
fusion. At the same time, the SEmodule is used to process the original features in the channel
dimension, which are then merged with the fused features. This approach not only allows
the model to focus more on valid information and suppress invalid features in both chan-
nel and spatial dimensions but also combines low-dimensional high-resolution information
with high-dimensional high-semantic information to enable the model to effectively extract
features without being affected by noise pollution.

The triplet loss is utilized in this paper as the loss function for the frontal-view gait
recognition task, which can increase inter-class distance and decrease intra-class distance in
the classification process:

Ltriplet = max(D(F(i), F(k)) − D(F(i), F( j)) + m, 0) (13)

where sample i and j belong to class A, sample k belongs to class B, F(·) represents
the proposed gait feature extractors, D(·) represents Euclidean distance function, and m
represents the margin of the triplet loss.

4 Experiments

In this section, two widely used gait databases, namely CASIA-B gait database [35] and
OUMVLP gait database [36] are used in performance evaluation of our proposed method.
Comparisons with existing other works are given in this section as well. Finally, ablation
studies are conducted to determine contribution of each module of our proposed method.
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Table 1 Averaged rank-1
recognition rates (%) on
CASIA-B gait database under the
normal walking condition

Training strategy Gait features Accuracy (%)

ST(24) Holistic silhouette 67.7

Optical flow 72.6

Feature fusion 71.4

MT(62) Holistic silhouette 78.1

Optical flow 81.2

Feature fusion 83.3

LT(74) Holistic silhouette 87.8

Optical flow 84.5

Feature fusion 90.6

In the training phase, the batch all (BA) algorithm is used for parameter training with
the batch size set to (p, k), where p represents the number of subjects, and k represents the
number of samples for each subject. Our proposed method adopts a dual-channel input of
silhouette images and dense optical flow maps. The input sizes of both silhouette and dense
optical flow maps are set to 64 × 44. The optimizer used is Adam with a learning rate of
0.005. The margin for the triplet loss is set to 0.2, and the batch size is set to (8, 8) using the
BA sampling strategy. The experimental results in this section are reported in term of rank-1
accuracy. All algorithms and experiments are implemented by using Python platform and a
server with NVIDIA GeForce 3080 GPU.

4.1 Experiments on CASIA-B Gait Database

CASIA-B database contains walking videos and silhouette images of 124 subjects, with
11 different view angles (0◦-180◦) for each subject, and 10 sequences for each view. Each
subject has 3 different walking states, including normal (NM#01-06), carrying a backpack
(BG#01-02), and wearing a jacket or coat (CL#01-02). Three training strategies, namely
small-sample training (ST), medium-sample training (MT) and large-sample training (LT),
are used in our experiments. Under these three training strategies, the first 24, 62, and 74
subjects are assigned into the training set, respectively.

4.1.1 Experimental Results Under the Normal Walking Condition

Two types of experiments on CASIA-B database are carried out to evaluate the performance
of the proposed gait recognition algorithms. The first type is gait recognition without any
walking variations, that is, both gallery and probe sequences are under the normal walking
condition. In our experiments, the first three sequences (NM#01-03) are regarded as gallery,
and the remaining three sequences (NM#04-06) as probes. Detailed experimental results are
presented in Table 1.

It can be observed from the experimental results that (1) the feasibility of holistic sil-
houette and dense optical flow as identifiers of individuals is confirmed; (2) the power of
discriminability provided by holistic silhouette is close to that provided by dense optical flow;
(3) recognition rates using the proposed multi-modal fusion algorithm are better than that
using single modality. The combined use of multi-modal walking characteristics can surely
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Table 2 Averaged rank-1
recognition rates (%) on
CASIA-B gait database under
different walking conditions

Training strategy NM BG CL Avg

ST(24) 75.4 64.9 45.6 62.0

MT(62) 91.1 84.5 67.4 81.0

LT(74) 96.9 93.5 77.8 89.4

involve more informative features, which can improve the generalization performance of the
model.

4.1.2 Experimental Results Under Changes of Walking Conditions

The second type of experiment is gait recognition under changes of walking conditions.
The first four sequences (NM#01-04) are regarded as gallery, and the remaining sequences
(NM#05-06, BG#01-02, CL#01-02) as probes. Detailed experimental results are presented
in Table 2.We can observe from the experimental results that our proposed algorithm can still
obtain promising results even under changes of different walking conditions. The extracted
in-depth gait characteristics underlying holistic silhouette and dense optical flow are not
sensitive to the variations of carrying and clothing statuses. Moreover, the proposed method
fuses two different kinds of gait features, which provides more comprehensive information
to develop a robust recognition system against variations of carrying and clothing statuses.

In order to further evaluate the effectiveness ofMFMmodule, experiments under different
feature fusion schemes are conducted. The first method uses weighted summation of the two
feature map matrices, with a weight ratio of 1:1 (Add Only), the second method directly
concatenates the silhouettes and dense optical flowmaps (concatenate only), The thirdmethod
uses the proposed MFM module for feature map fusion. Figure9 shows the convergence of
training losses under different fusion methods. Faster convergence and lower loss values
indicate better performance. It can be observed that the proposed MFMmodule consistently
obtains the best convergence results under three different walking conditions NM, BG, and
CL. Particularly, under the BG and CL conditions, the training performance using the MFM
module far surpassed that of simple concatenation and addition. This suggests that the MFM
module exhibits superior capability in extracting gait motion information, particularly when
confronting with significant changes in walking conditions. Moreover, the introduction of
the SE (squeeze-and-excitation) attention module, fully connected layers, and an encoder
within the MFM (multimodal fusion module) does lead to a slight increase in the number of
parameters. However, due to its single-layer structure and the parameter-friendly nature of
the SE attentionmechanism in shallow networks, alongwith the improved convergence speed
and detection accuracy brought about by the introduction of the MFM structure, the cost-
effectiveness of the MFM structure far surpasses that of simple concatenation or addition-
based methods.

4.1.3 Ablation Study

In this section, ablation study is conducted to evaluate the improvement of the proposed
three main modules, including Gait-YOLO pedestrian detection method, multimodel feature
fusion module (MFM), and gait-encoder (GE) algorithm, on frontal-view gait recognition
performance. Detailed experimental results are shown in Table 3, which reports the averaged
rank-1 accuracy with the training strategy of LT.

123



  133 Page 14 of 23 M. Deng et al.

Fig. 9 Training loss curves with different fusion strategies

Table 3 Ablation studies on
CASIA-B gait database

Experiment Gait-YOLO MFM GE NM BG CL

A 86.3 78.0 55.7

B � 93.5 81.6 62.1

C � � 92.2 82.7 65.1

D � � � 96.9 93.5 77.8

This paper proposes an improved YOLOv7-based pedestrian region detection method,
which includes a small object detection layer and a Deformable-ELANmodule with a global
receptive field to efficiently detect frontal-view pedestrian regions. By comparing the results
of experiments A and B (with the Gait-YOLO method) in Table 3, significant improvement
can be observed, indicating that the improved YOLOv7 algorithm can effectively extract
pedestrian regions, exclude background noise and facilitate accurate gait recognition.

Experiments B and C are carried out to investigate the impact of the multi-modal fusion
module. Compared to experiment B, experiment C shows a 0.7% decrease in recognition
accuracy only underNMcondition,while increase in accuracy of 1.1%and 3.0%are observed
under BG and CL conditions, respectively. This can be attributed to the fact that multi-
modal fusion module is aimed at enhancing the diversity of semantic information from
different aspects of gait characteristics. Themodel is suitable to handle variations in pedestrian
appearance due to carrying backpacks or wearing coats, thereby enabling accurate identity
discrimination.

Gait feature encoder is proposed to encode the fused gait feature vector, and its effec-
tiveness is verified by comparing the results before (experiment C) and after (experiment
D) adding the Gait-encoder (GE), which shows improvements in accuracy rates by 3.9%,
1.8%, and 2.3% for these three walking conditions, respectively. The proposed gait feature
encoder uses a multi-head attention module to extract multi-motion features, not only in
the temporal dimension for short-, medium-, and long-term features, but also for modeling
the rich information between different input features and simulating multi-motion situations
without depth superposition. Its powerful global modeling capability enables the gait feature
encoder to effectively mine the relationship between different blocks of pixel regions, and
fully characterize the gait semantic information.
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Table 4 Comparison with
state-of-the-art frontal-view gait
recognition methods on
CASIA-B gait database

Method NM BG CL Avg

CNN-LB [41] 82.6 64.2 37.7 61.5

GaitSet [17] 90.8 83.8 61.4 78.7

GaitPart [38] 94.1 89.1 70.7 84.6

GLN [39] 93.2 91.1 70.6 85.0

MT3D [40] 95.7 91.0 76.0 87.6

Proposed method 96.9 93.5 77.8 89.4

4.1.4 Computational Complexity

For the image preprocessing step, this paper employs Gait-YOLO algorithm for feature
extraction from gait pedestrian regions. The Gait-YOLOmodel has 48.28 million parameters
and a computational complexity of 106.2 GFLOPs, slightly exceeding the original YOLOv7,
which has 36.49 million parameters and 103.5 GFLOPs. This is because the addition of
a small-object detection layer in the YOLOv7 neck region enhance recognition accuracy,
resulting in a minor increase in both parameter count and computational complexity. Fur-
thermore, this paper utilizes a custom-designed four-stage convolutional neural network as
the backbone for extracting gait features from silhouette and dense optical flow sequences.
This backbone network have shallower depth, but only contains 1.2 million parameters, sig-
nificantly fewer than mainstream deep neural networks like ResNet and VGG. The parameter
count of the MFM (multimodal fusion module) can be considered negligible in comparison.
Training is conducted on an Nvidia 3080 graphics processing unit (GPU). For one training
iteration of a motion pattern, the average time is 10 s, while the average time for a single
inference prediction is 0.7 s.

4.1.5 Comparisons with Other Existing Frontal-ViewMethods

This section further investigates performance comparisons with other existing frontal-view
gait recognition methods on CASIA-B database. Several mainstream gait recognition meth-
ods are selected for comparison: CNN-LB [37], GaitSet [17], GaitPart [38], GLN [39], and
MT3D [40]. Detailed experimental results of comparison can be seen in Table 4.

From the experimental results, we can observe that: (1) Our proposedmethod outperforms
existing frontal-view gait recognition methods. For the case of NM condition, our proposed
method outperforms the best-performing MT3D method by 1.2%. For the case of BG con-
dition, our proposed method outperforms GLN by 2.4%. For the case of CL condition, our
proposed method outperforms MT3D by 1.8%. The reported significant improvements of
our method under the BG and CL walking conditions are attributed to the introduction of
dense optical flow features, which increase the amount of information captured for gait rep-
resentations. Additionally, the motion characteristics of different body parts represented by
dense optical flow are robust to changes in clothing and carrying, resulting in good robustness
performance under BG and CL conditions.

4.1.6 Comparisons with Other Existing Single-Modal Methods

This section mainly investigates performance comparisons with other existing single-modal
methods. Detailed comparison results on the CASIA-B database are shown in Table 5. From
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Table 5 Comparison with
state-of-the-art single-modal gait
recognition methods on
CASIA-B gait database

Method NM BG CL Avg

LF + AVG [42] 71.4 13.1 20.2 34.9

LF + DTW [42] 61.9 21.4 25.0 36.1

LF + oHMM [42] 63.8 19.7 22.6 35.3

GEI + PCA + LDA [43] 91.2 44.5 23.7 53.1

GPPE [44] 93.4 56.1 22.4 57.3

GEnI [45] 92.3 56.4 27.2 58.6

Proposed method 96.9 93.5 77.8 89.4

Table 6 Comparison with
state-of-the-art multi-modal gait
recognition methods on
CASIA-B gait database

Method NM BG CL Avg

MissGait [46] 99.6 89.5 45.5 78.2

mmGaitSet [47] 95.6 91.4 77.6 88.2

GaitPartHybrid [48] 96.4 89.1 75.4 87.0

Proposed method 96.9 93.5 77.8 89.4

the experimental results, we can see that the recognition performance of our proposed multi-
modal method is superior to other existing single-modal methods, especially for the case of
walking condition variations. Our proposed method fuses two different modals for frontal-
view gait sequences, leading to a higher recognition accuracy compared with single-modal
gait recognition methods. The multi-modal information fusion can provide an comprehen-
sive characterization of human walking, avoiding the great drops of recognition rates when
walking conditions change.

4.1.7 Comparisons with Other Existing Multi-modal Methods

Comparisons with other existing multi-modal gait recognition methods are given in this
section as well on the CASIA-B gait database. Table 6 compares the average recognition
results of the proposed method under the aforementioned three walking conditions with
the ones of existing other gait recognition that used different combinations of modalities,
including MissGait [46], mmGaitSet [47], and GaitPartHybrid [48]. The modalities used
in these methods include grayscale images, optical flow images, silhouette images, pose
heatmaps, and skeleton images.

It can be observed from the experimental results that, compared with MissGait method
using grayscale images and optical flow, our method is slightly lower than MissGait by
2.7% under the NM walking condition, but outperforms MissGait by 4.0% and 32.3% under
the BG and CL conditions, respectively. This is because the silhouette images carry less
noise than grayscale images, thus enhancing the robustness of our method to clothing and
carrying variations. Compared with GaitPartHybrid, our method achieves 0.5%, 4.4%, and
2.4% higher accuracy in these three walking conditions, respectively. This result indicates
that dense optical flow has a more powerful discriminability than skeleton images under
clothing and carrying variations. When the appearance of pedestrians changes, the motion
trends represented by dense optical flow are often more stable.

123



Human Gait Recognition Based on Frontal-View Walking… Page 17 of 23   133 

Fig. 10 Comparison with state-of-the-art gait representation methods on CASIA-B gait database

4.1.8 Comparisons with Other Existing Gait Representation Methods

We further compare our proposed method with other existing gait representation methods,
namely GEI [49], GEnI [50], CGI [51], GFI [10], on the CASIA-B gait database. It can
be observed form the experimental results in Fig. 10 that our proposed frontal-view gait
representation is not inferior to other widely used gait representations for the NM condition.
Moreover, our proposed method makes full use of holistic silhouette and dense optical flow
to enhance the robustness against a wide range of walking condition variations, avoiding
great drops of recognition rates due to the variations of walking conditions.

4.1.9 Comparisons with Other Existing Deep-Learning-Based Methods

Comparisons with other existing deep-learning-basedmethods are investigated in this section
on the CASIA-B database. Algorithms in [41], [52], [53] and [54] are implemented, and
detailed experimental results can be found in Fig. 11. It can be seen that the proposed method
outperforms other existing deep-learning-based methods in terms of average recognition
rates. Although algorithms in Refs. [41] and [52] can achieve higher recognition rates under
the NM conditions, they suffer from great drops of recognition rates when walking condition
change. In this sense, our proposed method makes full use of holistic silhouette and dense
optical flow, which is expected to provide reliable performance against different kinds of
walking conditions.

4.2 Experiments on OUMVLP Gait Database

This section further evaluates performance of our proposed method on the OUMVLP gait
database. The OUMVLP gait database is known as the largest public gait database, contain-
ing 10,307 individuals, with 14 views for each subject. Each subject has 2 different walking
sequences, denoted as 00 and 01 sequence. In our experiments, a total of 5153 subjects are
assigned into training set and the remaining subjects for testing. In the testing phase, the 01
sequence is used as the gallery, and the 00 sequence is used as the probe. The training and
testing strategies are the same as those of Gaitset and GaitPart. We compare our proposed
method with the GEINet, GaitSet, GaitPart, GLN method, and detailed experimental results
are shown in Fig. 12. The experimental results have demonstrated the feasibility of the pro-
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Fig. 11 Comparison with state-of-the-art deep-learning-based gait recognition methods on CASIA-B gait
database

Fig. 12 Comparison with state-of-the-art gait representation methods on OUMVLP gait database

posed method in the frontal-view gait recognition. Our proposed method can work well in
recognizing gait patterns from a frontal view.

4.3 Experiments on CASIA-A Gait Database

Recognition performance of the proposed method is finally evaluated on CASIA-A gait
database [55], in which 20 different subjects and 40 gait sequences under normal walking
condition are involved. Compared with CASIA-B database, CASIA-A gait database is col-
lected in outdoor environments, and is suitable to investigate generalization performance of
our proposed method. A total of 40 frontal-view gait sequences are used in our experiments.
The first sequence is assigned into the probe set and the remaining sequence into gallery
set. We transfer the knowledge of deep learning model trained by the CASIA-B database to
evaluate the generalization performance on CASIA-A gait database. The rank-1 recognition
rate is 95.0%, indicating that the proposed method can achieves excellent performance in
cross-domain gait recognition.
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5 Discussion

From the aforementioned experimental results, the following observations can be obtained:

• Our proposedmethod facilitates the applications of gait-based individual identification in
practice. Superior performance can be obtained compared with other existing gait recog-
nition methods. It is expected to provide a more practical tool in real-world environment
for individual identification, even in secure narrow corridor.

• Our proposed method still achieves reliable performance compared with existing other
methods when the testing walking conditions are different from the corresponding train-
ing conditions. Despite that existing other methods can obtain similar recognition rates
[56, 57], the proposedmethod can still workwell against different walking condition vari-
ations. The fusion of silhouette and dense optical flow features from the frontal-view gait
sequences provides a comprehensive representation of gait dynamics, making it insensi-
tive to variations in clothing, carrying status, walking speed, and temporal changes.

• Ourproposedmethod enhances the recognition accuracyof singlemodality. Theproposed
silhouette and dense optical flow features are designed to complement each other in the
recognition task. Silhouette images can capture the missing contour information present
in dense optical flow maps, while dense optical flow maps provide insights into the
internal motion patterns absent in silhouette images. Multi-modal feature fusion can
be achieved by using a multi-modal fusion module (MFM) that integrates features from
different aspects, yielding superior results compared to singlemodality.Despite thatmuch
progress has been reported on multi-modal feature learning [58–60], the proposed MFM
module exhibits superior capability in extracting gait motion information, particularly
when confronting with significant changes in walking conditions.

• The proposed object region extraction algorithm, namelyGait-YOLO, partially addresses
the challenge of varying target receptive fields. Moreover, a viable strategy is intro-
duced for small target detection, involving the incorporation of small target detection
layers at the channel level and the introduction of DCNv3 convolutional layers at the
structural level. These methods simultaneously enlarge the receptive fields and enhance
long-distance modeling capabilities, significantly improving the recognition accuracy.

• In previous researches, the incorporation of silhouette and dense optical flow feature
sequences into end-to-end networks posed challenges on complex feature extraction
steps. Our proposed method introduces the Gait-YOLO scheme to automatically extract
pedestrian regions from raw walking video sequences, simplifying the feature prepro-
cessing steps and enhancing the accuracy of recognition and regression. Additionally,
convolutional neural networks are employed to further extract features underlying both
silhouettes and dense optical flow, followed by the utilization of the designed multi-
modal fusion module (MFM) to fuse these two types of features, resulting in a more
robust representation of gait patterns.

6 Conclusion

This paper presents a novel framework for frontal view gait recognition, which investi-
gates multi-modal feature representations and learning. Compared with existing other gait
recognition methods, the strength of this paper is that, we propose a discriminative feature
representation scheme by fusing holistic silhouette and dense optical flow from frontal-view
walking sequences. Another strength of our proposed method lies in that we introduce a
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multi-modal feature fusion module to explore the intrinsic connections between silhouette
and dense optical flow features by using squeeze and excitation operations at the channel and
spatial levels. Gait feature encoder is further used to extract global walking characteristics,
enabling efficient multi-modal information fusion. Experimental results on the CASIA-B and
OUMVLP database demonstrate that promising recognition results can be obtained. Future
work will focus on the improvement of algorithm robustness against a wider range of walking
conditions.
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