Neural Processing Letters (2024) 56:69
https://doi.org/10.1007/511063-024-11548-6

®

Check for
updates

Adaptive Evolutionary Reinforcement Learning with Policy
Direction

Caibo Dong' - Dazi Li’

Accepted: 28 January 2024 / Published online: 23 February 2024
© The Author(s) 2024

Abstract

Evolutionary Reinforcement Learning (ERL) has garnered widespread attention in recent
years due to its inherent robustness and parallelism. However, the integration of Evolu-
tionary Algorithms (EAs) and Reinforcement Learning (RL) remains relatively rudimentary
and lacks dynamism, which can impact the convergence performance of ERL algorithms.
In this study, a dynamic adaptive module is introduced to balance the Evolution Strategies
(ES) and RL training within ERL. By incorporating elite strategies, this module leverages
advantageous individuals to elevate the overall population’s performance. Additionally, RL
strategy updates often lack guidance from the population. To address this, we incorporate the
strategies of the best individuals from the population, providing valuable policy direction.
This is achieved through the formulation of a loss function that employs either L1 or L2
regularization to facilitate RL training. The proposed framework is referred to as Adaptive
Evolutionary Reinforcement Learning (AERL). The effectiveness of our framework is eval-
uated by adopting Soft Actor-Critic (SAC) as the RL algorithm and comparing it with other
algorithms in the MuJoCo environment. The results underscore the outstanding convergence
performance of our proposed Adaptive Evolutionary Soft Actor-Critic (AESAC) algorithm.
Furthermore, ablation experiments are conducted to emphasize the necessity of these two
improvements. It is worth noting that the enhancements in AESAC are realized at the pop-
ulation level, enabling broader exploration and effectively reducing the risk of falling into
local optima.

Keywords Adaptive evolutionary reinforcement learning - Adaptive evolutionary soft
actor-critic - Soft actor-critic - Policy direction

1 Introduction

Reinforcement Learning (RL) [1] stands as a prominent subfield within machine learning,

focused on training agents to acquire optimal behavior strategies through interactions with
the environment. In RL, agents receive state information from the environment, take actions

<X Dazi Li
lidz@mail.buct.edu.cn

College of Information Science and Technology, Beijing University of Chemical Technology,
Beijing 100029, China

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-024-11548-6&domain=pdf

69 Page2of19 C. Dong, D. Li

based on the current state, and receive rewards or punishments as feedback for their actions.
RL has been found extensive applications in diverse domains such as games [2], robot control
[3], and optimization [4—6]. In recent years, with the rapid development of Deep Reinforce-
ment Learning (DRL), many high-performance algorithms have been proposed, such as
Deep Deterministic Policy Gradient (DDPG) [7], Proximal Policy Optimization (PPO) [8],
and Soft Actor-Critic (SAC) [9]. However, these algorithms still face challenges related to
hyperparameter sensitivity and limited convergence performance. The SAC algorithm, rec-
ognized for its exceptional sample efficiency, operates as a maximum entropy RL algorithm
that adeptly balances exploration and exploitation objectives. Nevertheless, certain stochastic
conditions can still impede robustness and yield suboptimal training outcomes in RL prob-
lems [10]. However, Evolutionary Algorithms (EAs) [11], due to their inherent capacity to
explore global optimal solutions, hold promise in mitigating this limitation within the realm
of RL.

Evolutionary Algorithms (EAs), derived from imitating biological evolution mechanisms,
have found broad application in domains such as optimization and scheduling [12]. EAs are
distinguished by their robustness and stability, which stem from the diversity of individuals
within their populations. In contrast to RL [13], EAs provide a gradient-free optimization
solution and demonstrate favorable convergence properties, particularly when executed in
highly parallel computing environments. However, this advantage comes at the cost of sig-
nificant computational resources. EAs tend to converge towards global optimal solutions.
Nonetheless, the assessment of policy quality necessitates a full iteration, resulting in lower
sample efficiency and a limited exploration approach [14]. Some RL algorithms, owing
to their high sample efficiency and the capacity to promptly provide gradient information
through single-step updates, can mitigate the shortcomings of EAs.

The combination of Evolutionary Algorithms (EAs) and Reinforcement Learning (RL)
has been extensively studied in recent years, as it allows for addressing the respective defi-
ciencies of each approach. EAs can explore and learn within the parameter space, while RL
operates in the action space. ERL can be categorized into two main types: non-feedback
ERL and feedback ERL. In non-feedback ERL [15], the learning processes of EAs and RL
are almost separate, limiting their effectiveness. Feedback ERL [16, 17] primarily integrates
the gradient information of RL into the EAs. As one of the pioneering feedback ERL algo-
rithms, the Evolutionary Reinforcement Learning (a specialized algorithm) [18] combines
the exploration capabilities of EAs with the sample efficiency of RL. Several algorithms
within the ERL framework have been proposed, either by replacing or augmenting com-
ponents of EAs and RL segments, such as the Evolution-based Soft Actor-Critic (ESAC)
algorithm [19] which exhibits similar performance to the SAC. Nevertheless, there is still
considerable room for enhancing the performance of ERL. Moreover, there are relatively
limited researches on the combination method of EAs and RL [20], and it is difficult to bal-
ance learning and exploration between the two. Exploring the relationship between these two
approaches and leveraging their combined strengths to further enhance performance is an
area that warrants more attention and investigation. Additionally, the timing of when to ini-
tiate RL training significantly impacts the overall training outcomes, yet existing researches
are typically based on fixed-step methods. Current approaches of RL individuals injecting
gradient information into EAs lack distinction, while emphasizing the utilization of useful
gradient information is essential. The adaptive module proposed in this article can highlight
the dominant individuals of the population in the ERL and retain more gradient information
of the dominant RL individuals within the population, especially when combined with the
elite strategy [21]. Moreover, the direction provided by EAs to RL is still insufficient. The
proposed policy direction method employs the optimal individuals within the population for

@ Springer

Adaptive Evolutionary Reinforcement Learning with Policy Direction Page3of19 69

RL parameter guidance, expediting the RL learning process without any adverse effects.
Considering the sensitivity of EAs to mutation rates [22] and the necessity of continuous
exploration during the early stage of the learning process, an exponential decay mutation
rate is designed to facilitate robust exploration capabilities for both EAs and RL within the
parameter space and action spaces during the initial stages.

In the context of our research, Adaptive Evolutionary Reinforcement Learning (AERL)
with policy direction is proposed. The core innovation lies in considering the proportion
of RL individuals (individuals correspond to policy parameters) within the population and
determining when to introduce gradient information from RL training into the population
during the evolutionary reinforcement learning processes. This dynamic and adaptive process
fosters a harmonious synergy between the two learning modalities, enabling individuals
within the population to adapt to a high-performance state. Additionally, as RL may not
incorporate the learning achievements of the population in its own learning, we address this
limitation by guiding RL individuals with the optimal individuals within the population. These
optimal individuals actively contribute to the RL training process through the utilization of a
loss function, without introducing any adverse effects on the RL training. Finally, recognizing
the sensitivity of mutation rates, stronger exploratory behavior is preferred during the early
stages of evolutionary training. To achieve this, mutation rates are updated by using an
exponential decay approach. We selected SAC as RL algorithm to introduce the AESAC
algorithm for experimental verification and highlighted its good performance.

2 Background and Related Work
2.1 Evolution Strategies

Evolutionary Strategy (ES) [23] is a parameter optimization method inspired by biological
evolution. It has emerged as a prominent black-box optimization method. Specifically, the
Natural ES [24] is used, whose genes are composed of real numbers obtained via sampling
from the Gaussian distribution to generate new individuals. Most EAs tend to discard the
majority of solutions and retain only the best one [12]. However, those poorer solutions often
contain valuable information beneficial for computing better parameter estimates in subse-
quent generations. In Natural Evolution Strategies (NES), information from all individuals
within the population, regardless of their quality, is utilized to update parameters. Then, the
parameters are updated through the fitness of the individuals in the environment. The next
generation population consists of individuals with new parameters. Similar to conventional
EAs, natural ES involves essential elements such as crossover, mutation, and selection.

Previous researches have explored the possibility of utilizing natural ES as a substitute for
RL algorithms, demonstrating competitive performance. However, the sample efficiency of
natural ES is hindered by the requirement of evaluating individual fitness after each iteration.
To expedite the training process, multiple workers can be employed in parallel to speed up
the training process. Although parallelization is highly efficient, it does entail substantial
computational resource consumption. In our study, we extensively investigate the potential
benefits of employing parallel natural ES to accelerate the learning process. And the com-
bination of maximum entropy reinforcement learning yields a noteworthy improvement in
sample efficiency [25].

Focusing on the parameter optimization, ¢ are defined as the parameters of the actor net-
work of the RL agent, which is used to make decisions. F(-) is the fitness function composed

@ Springer

69 Page4of19 C. Dong, D. Li

of the return from the environment within a single round. The population distribution P is
instantiated as the Gaussian distribution N (i, o'2) with the mean u and the standard devia-
tion . The average fitness of each parameter can be written as Ey~p_F(¢). Generally, we
directly set Eg~p_F(¢) = Ec~n(0,1)F(¢+2e). A is the mutation rate. In practical operations,
each worker is defined to sample noise from the normal distribution N(0, 1) with different
random numbers. Generally, the individuals obtained by sampling the population are hoped
to have higher fitness, and the parameter 6 are updated using gradient descent, resulting in
the achievement of the expression:

Vo Ep~p F(@) = VyEenno, 1) F (@ +28) = 1/0 Ecnnio, n{F (¢ + 1e)e} (1

Parallel Natural Evolution Strategies (ES for short) can efficiently utilize distributed
computing resources, thereby accelerating the optimization process. This enables them to
tackle large-scale problems and discover solutions through parallel computation within a
constrained timeframe [26]. For parallel evolutionary learning, the process can be divided
into two main steps. The first step involves multiple workers interacting with the environment
to evaluate the effectiveness of perturbed parameters, ultimately acquiring scalar fitness val-
ues. In the second step, the parameters are updated based on the obtained fitness values and
their corresponding perturbations. Algorithm 1 below demonstrates a simple implementation
of this process.

Algorithm 1 Parallel Natural Evolution Strategies

Initialize mutation rate A ,learning rate [, initial policy parameters 6
for generation =1, do
for each worker i =1, ...,ndo
sample the random seed and sample &, ~ N(0,1)
get the fitness F, by evaluating the (6+ As;)
end for
update @ < 0+ S,/ noE,

£~N(0,1)

{Fe}

end for

From the Algorithm 1, it can also be observed that when obtaining fitness values Fj, there
is a need to evaluate policy parameters (6 +A¢;). Nonetheless, even with the parallel approach,
achieving this still necessitates interacting with the environment for an entire episode and
assessing the cumulative reward. This approach inherently leads to lower sample efficiency.

2.2 Maximum Entropy Reinforcement Learning

RL is a methodology for acquiring rewards through the interaction of an agent with its envi-
ronment and maximizing the rewards to obtain an optimal strategy. Typically, RL problems
in continuous space are modeled as Markov decision processes (MDP) [27], consisting of a
tuple (S, A, P, r), where the state space S and action space A are continuous, P represents
the state transition probability, and r is a bounded reward function given by the environment
feedback. The agent follows a policy and uses p, to represent the trajectory distribution.
The Soft Actor Critic (SAC) algorithm, within the maximum entropy framework, leverages
off-policy capabilities for the reutilization of past experiences. Additionally, this frame-
work effectively balances exploration and exploitation. Furthermore, the algorithm employs

@ Springer

Adaptive Evolutionary Reinforcement Learning with Policy Direction Page50f19 69

single-step updates, which are advantageous for promptly introducing gradient information
into the population. Unlike traditional RL, the objective function of the maximum entropy
reinforcement learning algorithm SAC is as follows:

T = 3" Etyarpr(se, an) + nHGrClso)] @

where H(m(-|s;)) is the entropy term with the coefficient . SAC evolved from soft policy
iteration and has strong convergence performance, with powerful exploration ability in the
early stage to avoid local optima. The algorithm initializes the state value function V4, Q
value function Qs, policy output 7y (a;|s;), and their corresponding network parameters @,
8, ¢. The loss function of the state value network is:

1
Iy (@) = EX,ND[E(Vwm — Eapony [Q5(s1, ar) — log n¢(at|sz)])2} 3)

where D represents an experience pool. The loss function of the Q network is the Bellman
residual, given by:

1 A 2
Jo®) = E(S,,a,)ND[E(Qa(st, a) = OGsi,) } @

with Q(s,, ay) =r(sy, ap)+y Eg,, ~p[Ve (5141)] Where y is the discount rate. By minimizing
the expected KL-divergence [28], the policy network parameters are updated as:

exp(Qs(s, -))]
Z5(st)

Through the acquisition of the loss function and the execution of gradient backpropagation
to update the parameters, the algorithm eventually attains convergence. In our framework,
SAC serves as the RL algorithm for AERL.

Policy parameters ¢ are updated through the computation of the loss function as defined
in equal (5). It’s important to note that if the initial policy selection is inappropriate, it can
result in the algorithm exploring in the vicinity of local optima. Furthermore, in certain
complex environments replete with numerous local optima, relying solely on RL algorithms
may not suffice in ensuring robust performance. Therefore, considering the integration of
Evolutionary Strategies (ES) to enhance algorithmic performance becomes a compelling
proposition.

Jn(@) = Es~p |:DKL(7T¢(‘|SI)

&)

3 Method
3.1 Adaptive Evolutionary Reinforcement Learning (AERL)

Incorporating the policy parameters updated by RL agents into the population of ES is a
crucial step in feedback ERL. However, the collaborative dynamics between ES and RL
training, as well as the optimization of their respective performances, have not been compre-
hensively explored. This study aims to investigate the coupling relationship between ES and
RL, encompassing aspects such as the proportion of RL individuals within the population
and the opportune moment for introducing the gradient information of RL. This dynamic
adjustment process unfolds throughout the training of feedback ERL, thereby attaining adap-
tive states in response to the evolving training conditions of ES and RL. Significantly, when
combined with elite strategy, the advantageous individual parameters of both ES and RL can

@ Springer

69 Page6of19 C. Dong, D. Li

ES Adaptive Module
Proportion Start
Crossover Ratnk RL_Flag RL
1 ey 1 |ves RL
Mutation i RL Individuals <*i—
=1 +> EsIndividual | Actor/ "\Critic
Update | Crossover i 1
LI | Individuals I
Selection ‘ ' Loss \fj
Elite Strategy § —-------- > Elite Individuals | S”'“l‘;'* :
! :
Fitness Best Individual sl s
Parallel .
Environment

Fig. 1 The flow chart of our proposed framework AERL

be preserved. The flow chart of our proposed framework AERL is depicted in Fig. 1, and
the detailed execution of the algorithm is expounded upon below. The AERL framework,
as illustrated in the diagram, comprises three primary components: ES, RL, and Integration.
Our primary innovations are concentrated within the Integration component, encompassing
the introduction of an adaptive module designed to harness individual strengths effectively
and policy direction for utilizing the top-performing individual within the population to guide
RL training.

The initialization of population P is defined by composing the initial parameters of ES
individuals, RL individuals, and crossover individuals. Crossover individuals are generated
through the crossing of ES individuals and elite individuals. The proportion of crossover indi-
viduals within the population is fixed at 40%. Initially, all individuals’ parameters within the
population are perturbed and evaluated through interactive simulations with the environment.
Multiple workers are deployed to facilitate this process, ultimately yielding corresponding
fitness values. The parameters of elite individuals and the best individual ¢, are obtained
from the evaluation results. The best individual ¢p,.s; will be operated in updating RL indi-
vidual.

In the adaptive module, the fitness of the individuals within the population is first ranked,
such as the rank of RL individuals is r{, r»...r,, n = Ngr, and when the population size is
NarL, the number of RL policy individuals NRr in the next generation population is

NRL
2T
NrL = clip| x| Narr = “F— |- Cmin * Narr, €max * NarL (6)

where x is the individual learning coefficient that is utilized to enhance or diminish the
proportion of RL individuals within a population. £y, is the lower bound coefficient of
truncation and £, is the is the upper bound coefficient. Establishing upper and lower limits
ensures that the RL individuals is not too weak within the population or too strong, resulting
in a too small proportion of ES individuals. It helps avert scenarios where ES training and
RL training are temporarily neglected due to poor performance.

@ Springer

Adaptive Evolutionary Reinforcement Learning with Policy Direction Page70f19 69

The advantage of this approach lies in its ability to dynamically adjust the proportion of
RL individuals within the population based on the performance of RL training. When RL
training yields superior results, this adaptive mechanism increases the presence of RL indi-
viduals, thereby expediting the overall training process of ERL. However, if the performance
of RL individuals falls short of the optimum, ES individuals and crossover individuals take on
more significant roles, ensuring that the training process remains robust. In essence, this rep-
resents an internal adaptive control mechanism operating within the population, optimizing
its composition in response to the prevailing training conditions.

Based on the calculated Ngry, external adaptive control can be performed. The purpose
of RL training is to introduce the learned parameters, that is, gradient information, into the
population. If the ranking of the RL individuals is high when Nry, > vp * Napp with vy
the RL threshold coefficient, it means that RL plays a leadership role. When combined with
crossover, the individuals will have an advantage transfer with the elite individuals, mainly
based on the RL individuals. At this time, intensifying RL training can accelerate individuals
optimization within the population. Conversely, if RL individuals are ranked poorly, the
emphasis can temporarily shift towards ES training, with elite individuals predominantly
derived from ES individuals. This approach fully capitalizes on the complementary strengths
of ES and RL, with one operating within the parameter space and the other within the action
space. The introduction of the RL_Flag is designed to maintain a consistent number of RL
training steps throughout each ERL training process. The purpose of introducing condition
RL_Flag = vmax * Narr,with upnax as the RL starting coefficient, to initiate RL training
is to avoid the continuous training of ES when the RL training results are suboptimal. This
continuous ES training could impede the mutual complementarity of the two approaches.
This external adaptive control is controlled by Ng; and RL_Flag.

3.2 Policy Direction

In ERL, RL individuals often lack guidance from ES during training. Given that evaluation
occurs in a population-based form, ES can derive an optimal policy from the current popula-
tion, which holds instructive significance for RL training. In the AERL, the method of policy
direction is adopted, which entails learning directly by imitating the optimal strategy in the
parameter space. It is clear to calculate a distance by comparing the population’s optimal
policy with the current RL policy (policy is equals to individual) to update the RL policy.
The expression representing the distance is denoted as D(@RL,, @Ppest), Where ¢gy is the cur-
rent RL policy and ¢y, is the population’s optimal policy. Since the guideline does not be
supposed to keep changing during the update, only the best individual at that time ¢p,,, is
imported.

L1 [29] or L2 norms [30] are commonly employed metrics to quantify distances. We can
utilize either L1 or L2 norms to measure the distance between two sets of neural network
parameters and guide policy by minimizing this distance. If the L1 norm is selected, its
expression is as follows:

n
D(PRL, Ppest) = K1||PRL — Ppest|l1= K1 Zi:l |PRL,i — Pbest.il)

where « is the L1 coefficient.
If L2 norm, the expression is:

D(@RL, Ppest) = k2||PRL — Ppest|l2= Kz\/zlr;l (PRL,i — Pbest,i)? ®)

@ Springer

69 Page8of 19 C. Dong, D. Li

where «; is the L2 coefficient.
Combined with the distance metric, the loss function for updating the SAC policy is as
follows:

L($RL) - Es;~D, e;~N 108 Tty (fopre (€13 50)180) — Qi(st, fpp (€13 50)] + D(PRL, Pbest)
C))

where ¢, is the noise vector which is sampled from a normal distribution N. fy; is the implicit
policy network.
The expression of the derivative of the total loss to ¢rr. is below:

0L(¢rL)
O¢rL

+ (Va, log g, (arls:) — Va, Q(sy, at)) Vore for (615 8:) +

- Vre 108 g, (arlst)
a D(¢RL, ¢best)
OgrL (10

where a, is sampled from the fi, .
For the case of L1,

OD(PRL, Poest) K10 D i1 |PRL.i — Pbest. il
OPRrL, i OPRrL, i

= k1sign(PrL.i — Ppesr,i) (11)

For L2,

0 D(PRL, Pbest) _ "23\/Z?=1 (rL,i — ¢’best,i)2 _ K2(PRL,i — Pbest, i)
OFRL.i OFRL.i \/ S (rei — ¢best,i)2

Due to the fact that a single training episode of RL may involve up to a thousand steps,
consistently using the optimal parameter individual to guide the reinforcement learning pro-
cess might diminish the advantage of RL during the later stages of the episode. Therefore,
the guidance of the optimal individual is only employed during the first one hundred steps
of the RL process.

(12)

3.3 Adaptive Evolutionary Soft Actor-Critic (AESAC)

In order to instantaneously investigate the integration and coupling relationship between ES
and RL in AERL, a novel algorithm called Adaptive Evolutionary Soft Actor-Critic (AESAC)
is proposed. It includes an adaptive module that can dynamically adjust the proportion of RL
(SAC) individuals within the population and the opportune moment of SAC training based on
the training situation of ES and SAC. Additionally, we incorporate policy direction methods
to accelerate the learning process of SAC individuals towards the optimal individual within
the population, without introducing any negative impact as SAC individuals are also included
in the population.

In the standard maximum entropy evolutionary reinforcement learning algorithm ESAC,
the number of SAC individuals within the population remains constant, and the initiation of
SAC training depends solely on a fixed number of steps, disregarding any population-based
information. However, ES primarily explores the parameter space, while SAC algorithms
delve into the policy space. It is pivotal to adaptively increase the proportion of SAC indi-
viduals within the population and to allow SAC training to persist when its performance is
relatively favorable, thereby leveraging on the strengths of SAC. The elitist strategy preserves
the best individuals from the previous generation and enables their advantageous parameters

@ Springer

Adaptive Evolutionary Reinforcement Learning with Policy Direction Page90of19 69

to be retained by crossing over with ES individuals. Our adaptive module can effectively
harness the influential role of these advantageous individuals in conjunction with the eli-
tist strategy. Moreover, guidance from the best individual within the population introduces
a bias during SAC gradient updates. By adopting L1 or L2 regularization, the discrepancy
between the SAC individual and the best individual within the population can be reduced,
thus facilitating convergence during training.

To speed up the convergence of the algorithm, an exponential decay method is adopted
to update the mutation rate. During the early stage of the algorithm, a larger mutation rate
is required to enhance the diversity of the population and facilitate exploration in both the
parameter space of ES and the policy space of SAC. As the learning process advances, it
becomes crucial to decrease the mutation rate in order to accelerate convergence. The specific
expression for the mutation rate is determined as follows:

Nstep

A= Afinal + ()\start -)\final) * e [decay (13)
where A finq is the mutation rate in the end of the training, Agq,, is the mutation rate in
the beginning. nyp is the immediate number of training steps, ngecqy is the number of all
training steps.

The specific algorithm is shown in Algorithm 2.

Algorithm 2 Adaptive Evolutionary Soft Actor-Critic (AESAC)

Initialize A, Brg, € s Conin> o Up> s Ko Ko 11, ¥
initialize parameters vectors @, @, ,0,@,@
initialize the number of all individuals N, , SAC individuals N,, and the flag of RL RL_Flag

initialize the population with n actors
for generation =1, do
for each worker i=1, ..., n do
sample the random seed and sample &, ~ N(0,1)
get the fitness F; by evaluating the (¢, + As;)
end for
rank the F; and get the average rank of SAC individuals

calculate the N,, of next generation according to Eq. (6).
if N, >0, *N,,,or RL_Flag=v,, *N,,:
Obtain the current best individual q?,m, within the population
update the ¢,, with the policy direction according to Eq. (10).
update the &,@,@ according to SAC algorithm
initial RL_Flag
else:
RL _Flag+=1
update ¢.s <« ¢y + B/ nAE, . {Fs}
update 4 according to exponential decline function Eq. (13).
Composition of the next generation from N,, SAC Individuals, ¢,, individuals, crossover

individuals
end for

@ Springer

69 Page100f19 C. Dong, D. Li

3.4 Guideline to Develop Similar Algorithms

In the AERL framework I propose comprises ES, RL algorithm, adaptive module, and policy
direction. ES is often recognized for its capacity to provide global optimal solutions and
exhibit stronger robustness, although it tends to be less time-efficient. Conversely, RL is a
highly sample-efficient algorithm with exploration capability, yet it may become trapped in
local optima. Within our adaptive module, based on the learning performance of RL and
ES, we can fully harness the strengths of these individuals. RL individuals are integrated as
part of the ES population. Concurrently, policy direction refers to the utilization of the best
individuals from the ES to guide the RL training. This framework allows for the development
of similar algorithms, where ES can be replaced with other evolutionary algorithms. Regard-
ing the reinforcement learning algorithm, we have chosen the currently well-converging
algorithm SAC, but other reinforcement learning algorithms can also be employed.

4 Experiments
4.1 Comparative Evaluation

To validate the effectiveness of our proposed AESAC algorithm, continuous control tasks
from MuJoCo [31] based on the open Al are conducted, which are widely-recognized bench-
mark for evaluating continuous RL algorithms. MuJoCo (Multi-Joint dynamics with Contact)
is aleading physics simulation engine used for modeling complex dynamics. This simulation
environment provides a dynamic and realistic setting for training and evaluating intelligent
agents in RL. MuJoCo’s efficient physics simulation engine facilitates the development and
testing of RL algorithms, making it a valuable tool for academic research in the field of
machine learning and artificial intelligence. The HalfCheetah, Hopper, Walker2d, and Swim-
mer used in the experiments are different simulation environments provided by MuJoCo.
These MuJoCo tasks encompass diverse challenges in motion control. In the HalfCheetah
task, the goal is to efficiently propel a half-cheetah model forward to maximize rewards.
The Hopper task involves orchestrating a one-legged robot to execute forward jumps while
maintaining balance. For the Walker2d task, the objective is to achieve swift and stable
forward walking with a bipedal robot. Lastly, in the Swimmer task, a three-link swimmer
model is controlled using two joints to achieve rapid forward swimming. Each of these tasks
poses unique demands on control and coordination, making them valuable benchmarks for
assessing the performance of RL algorithms.

In our algorithm, the network structures are shown in Fig. 2. The network architectures
for RL individuals and ES individuals share two fully connected layers. However, there is
a divergence when it comes to policy outputs: ES utilizes a Mean Linear Layer 3 to derive
actions, whereas RL requires both Mean Layer 3 and Std Layer 3 for action sampling. The
structure of the RL Critic network segment consists of three fully connected layers. The
activation function employed in the neural network is Rectified Linear Unit (ReLU), and the
dimension of hidden layers is 256.

Specific parameter settings in the experiments are shown in Table 1. These parameters are
manually selected within the applicable range. It’s noteworthy that SAC algorithm effectively
mitigates hyperparameter sensitivity, simplifying the process of parameter selection.

Experiments are performed with five different random seeds to ensure reliable results.
The hardware used for the experiments includes NVIDIA RTX3090 GPU and i9-12900 K

@ Springer

Adaptive Evolutionary Reinforcement Learning with Policy Direction

Page 110f19 69

-~

ES/RL Actor

Input Layer
U

| Fully Connected Layer 1 |

U

ReLU

g

| Fully Connected Layer 2 l

~

U
ReLU
_____ v

Output Layer |

Mean Std
Layer 3 Layer 3

/~ RL Critic
Input Layer

| Fully Connected Layer 1 |

a4
O

| Fully Connected Layer 2 |

U

ReLU
O

| Output Layer |

~

L___g_____&__J
\ Mean Std

e

Value

Fig. 2 The ES/RL individuals network structure and Critic network structure in RL

Table 1 The parameter settings

Description Symbols Values
Initial mutation rate A 0.06
Number of all individuals Narr 10
Initial number of RL individuals NpL 4

ES learning rate BES 0.005
RL learning rate BRL 0.0003
Upper bound coefficient of truncation Lmax 0.5
Lower bound coefficient of truncation Limin 0.2
Individual learning coefficient X 1

RL threshold coefficient Up 0.3
RL start coefficient Umax 0.6

L1 coefficient K1 0.01
L2 coefficient %) 0.01
Discount rate y 0.99

CPU. AESAC is compared with ESAC, SAC, DDPG, and PPO algorithms. The settings
for the common SAC algorithm part in AESAC, ESAC, and SAC are the same. The policy
networks for the SAC part use the same Gaussian policy, and both the policy and value
networks consisted of fully connected layers. The results of the experiments are depicted
in Fig. 3, where the shaded areas of different colors represent the range between the best
and worst training results of each algorithm, and the solid lines represent the average results
from five training runs. It can be seen that in the HalfCheetah, Hopper, Walker2d, and Swim-
mer environments, AESAC outperforms the other algorithms in terms of average training
results, with superior best and worst training results. Except for the Hopper environment,

@ Springer

69 Page120f19 C. Dong, D. Li

HalfCheetah-v2 Hopper-v2
—— AESAC
—— ESAC
3000{ — SAC
—— DDPG

12000{ —— AESAC
— ESAC
100001 —— SAC

— DDPG
PPO

8000

g =
Er EE \ K
51 51
o~ &2 1500
4000 |
1000
2000
500
o
0
3 200 400 600 800 1000 3 200 400 00 800 1000
Episodes Episodes
Walker2d-v2 Swimmer-v2
—— AESAC 300{ —— AESAC
s000] —— ESAC — ESAC
— SAC 2501 — SAC
4000 — DDPG — DDPG

PPO
3000

Return

2000

‘
5 %)
n

Episodes Episodes

Fig. 3 The training curves of five algorithms (AESAC, ESAC, SAC, DDPG, PPO) on four Mujoco tasks

where ESAC’s convergence speed is better than that of AESAC, AESAC outperforms the
other four algorithms in terms of both convergence speed and final convergence value in the
remaining three environments. When comparing AESAC, ESAC, and SAC, it was observed
that ESAC and SAC displayed similar performance in the four environments, with ESAC not
surpassing SAC in terms of convergence value, even falling behind SAC in the HalfCheetah
environment. Additionally, ESAC don’t perform better than SAC in terms of convergence
speed either. Therefore, our proposed AESAC algorithm demonstrates superior performance,
which compensates ESAC’s shortcoming of not surpassing SAC. The minimum, maximum,
and average values of the five algorithms when they converged in the four environments
are summarized in Table 2. The highlighted data represents the highest values among the

Table 2 The convergence results of five algorithms (AESAC, ESAC, SAC, DDPG, PPO) on four Mujoco tasks

Task AESAC ESAC SAC DDPG PPO
HalfCheetah-v2 Min 11,070.60 8916.28 10,627.31 1889.94 1247.59
Max 12,468.11 10,458.94 11,026.27 9586.76 3691.85
Mean 11,806.57 9770.95 10,837.55 7437.77 2196.55
Hopper-v2 Min 3568.31 3321.77 2530.38 753.32 851.42
Max 3662.67 3389.21 3609.90 2766.85 3378.22
Mean 3629.53 3360.87 3250.03 1425.73 1739.07
Walker2d-v2 Min 4467.97 3550.59 3826.44 227.51 511.47
Max 5451.12 4830.14 4696.97 439.35 981.50
Mean 4882.81 4408.56 4156.62 329.91 727.04
Swimmer-v2 Min 47.67 49.02 46.57 46.16 37.56
Max 275.47 248.11 130.31 132.02 103.29
Mean 141.91 96.00 75.46 102.55 60.05

@ Springer

Adaptive Evolutionary Reinforcement Learning with Policy Direction Page 130f19 69

convergence results of the five algorithms. It can be observed that, except for the case where
AESAC has a lower minimum value than ESAC in the Swimmer environment, ESAC out-
performs the other algorithms in all other cases. This demonstrates the superior performance
of AESAC. Analyzing the average convergence values of the algorithms, it is evident that
AESAC exhibits an improvement of approximately 10% compared to ESAC in the Hopper
and Walker2d environments, a 20% improvement in the HalfCheetah environment, and a
significant 50% improvement in the Swimmer environment. The superiority of AESAC over
ESAC can be attributed primarily to the improvements made in the adaptive module and
policy direction. DDPG and PPO algorithms display noticeably inferior performance com-
pared to SAC, which leverages the advantages of maximum entropy reinforcement learning
[32, 33], enabling it to avoid local optima and exhibit good convergence properties. In the
next section, we will discuss the ablation experiments conducted to further investigate the
contributions of the adaptive module and policy direction components in AESAC.

4.2 Ablation Study

The previous section presents experimental results that showcased the exceptional per-
formance of AESAC in continuous control tasks compared to the other four algorithms,
particularly outperforming ESAC. In comparison to ESAC, the key improvements in AESAC
involve the incorporation of the adaptive module and policy direction. To further investigate
the effectiveness of these components and determine if their combination yields supe-
rior results compared to each component alone, ablation experiments are conducted in the
HalfCheetah environment. The experiments are repeated with five random seeds, maintain-
ing the same experimental settings as described in the previous section. The specific results
of this ablation experiment are illustrated in Fig. 4.

As shown in Fig. 4, the ESAC with the adaptive module achieves higher rewards compared
to the ESAC, confirming the significance of the adaptive module in AESAC and its positive
impact on improving the integration between ES and SAC. However, due to the lack of

HalfCheetah-v2

120004 —— ESAC with adaptive module
—— AESAC
10000{ —— ESAC

8000 A

6000 -

Return

4000 A

2000 A

0 200 400 600 800 1000

Episodes

Fig. 4 The training curves of the ESAC with the adaptive module, AESAC, and ESAC

@ Springer

69 Page140f19 C. Dong, D. Li

HalfCheetah-v2

120004 —— ESAC with L1 policy direction

—— ESAC with L2 policy direction W
100001 — AESAC
—— ESAC

8000

6000 -

Return

4000 A

2000 A

0 200 400 600 800 1000
Episodes

Fig. 5 The training curves of the ESAC with policy direction, AESAC, and ESAC

policy direction, the performance of ESAC with the adaptive module still falls short of the
AESAC. This highlights the crucial role of policy direction in updating the SAC policy. In
our experiments, L1 and L2 regularization are employed to improve the original ESAC. The
results of these experiments are shown in Fig. 5.

Analysis of Fig. 5 reveals that both L1 and L2 regularization techniques applied to ESAC
result in performance improvements. Specifically, the AESAC adopts L2 regularization.
A comparison of the training results between AESAC and ESAC enhanced by L2 policy
direction indicates that the combination of the adaptive module on the ESAC with L2 policy
direction is beneficial. Therefore, these findings confirm the effectiveness of adding the
adaptive module or policy direction into ESAC, as well as the effectiveness of incorporating
one improvement after another.

4.3 Analysis of Individuals Within Populations

In the learning process of ERL, the population consists of ES individuals, RL individuals, as
well as crossover individuals. In the AESAC, we have made improvements not only focusing
on the best individuals within the population but also considering the performance within
the whole population. Worst individuals and the average performance of the population are
considered. This comprehensive evaluation enables us to better assess the effectiveness of
algorithmic improvements and their impact on the overall population dynamics.

Figure 6 displays the plotted best, worst, and average returns of individuals within the
population during the training process of the AESAC and ESAC algorithms. Each line rep-
resents the best, worst, or average performance, and different colors represent AESAC and
ESAC algorithms. From the experimental results, it can be observed that AESAC consistently
outperforms the ESAC in terms of the best individual, worst individual, and average policy
within the population. Therefore, it is clear that the improvement of AESAC over ESAC is not
limited to the performance of a few individuals within the population but extends to the pop-
ulation as a whole. This is mainly attributed to the effective utilization of advantages offered
by the adaptive module and the iterative learning in both parameter space and policy space.

@ Springer

Adaptive Evolutionary Reinforcement Learning with Policy Direction Page 150f19 69

HalfCheetah-v2

12000
—— AESAC - Average_reward
~==- AESAC - Max_reward
—-= AESAC - Min_reward

10000 { —— ESAC - Average_reward o Y It v AN Y
—==- ESAC - Max_reward Bt ‘w’”'\ pomen T v \/ \J
—-= ESAC - Min_reward /;’:,\,/“\' 4
~p0 N ¥

R SRR N
P A TN L
AV A Ve)
N / - N
- N/ A Y
\ \/
¥ N

v

8000

6000

Return

4000

2000

0 200 400 600 800 1000
Episodes

Fig. 6 The training curves of the best individual, worst individual, and average policy within the population
between AESAC and ESAC

Furthermore, the SAC training is guided by the parameters of the best individuals, leading to
the observed improvements in SAC. Importantly, it should be noted that the SAC individuals
themselves are integral members of the population, further emphasizing the significance of
their contributions in driving the overall improvement in AESAC.

4.4 The Analysis of Parameters Diversity

In AESAC, ES concentrates on exploring the parameter space, while SAC algorithms explore
the policy space. The combination of the adaptive module and policy direction fully max-
imizes the advantages of both ES and SAC. It ensures a diverse range of parameters,
particularly during the early stages of training. To analyze and compare the parameter diver-
sity of the policy individuals, we employ dimensionality reduction techniques such as TSNE
and visualization [34] to analyze the weights of the first fully connected layer of the ES
policy and RL policy in AESAC and ESAC. First, compare the parameter diversity of SAC
individuals between the AESAC and ESAC. The visualization results presented in Fig. 7
display a subset of training points during the early stages of training. From Fig. 7, it can
be observed that the AESAC exhibits a wider exploration range in the parameters of SAC
individuals. The results are closely related to the effective utilization of the adaptive module.
Additionally, the policy direction incorporated in the SAC training process introduces more
possibilities and expands the parameter training space of SAC.

Similarly, a comparison of the parameter diversity among the ES individuals in AESAC
and ESAC is conducted. The visualization results, depicted in Fig. 8, show a subset of training
points during the early stages of training. The parameter diversity in AESAC is found to be
broader, indicating improved exploratory behavior in the ES individuals. This observation
further emphasizes the connection between the superior performance of AESAC compared
to ESAC and the enhanced exploratory nature of individuals. Moreover, the larger parameters
space of SAC individuals and ES individuals in AESAC reduces the likelihood of getting
trapped in local optima.

@ Springer

69 Page160f 19 C. Dong, D. Li

RL-Actor
[]
° AESAC R
1000 - v ESAC
o
2 5001 o o ®
s A
< 0 A '~ })
Q L o &
[] d‘ v
—500 - °
v °
[]
[]
~1000 500 0 500 1000

1-th dimension

Fig. 7 The training distribution diagram of some parameters of reinforcement learning in the early stage of
training after TSNE dimensionality reduction

ES-Actor
° AESAC
2000 - v ESAC .
8 °
Z 1000
o
£
o », Y
< 0 +% ‘w 282 ° v
3 v, v?ﬁd‘ b .
~1000 °
[]
—400 -200 0 200 400 600 800 1000

1-th dimension

Fig. 8 The training distribution diagram of some parameters of the evolutionary strategy in the early stage of
training after TSNE dimensionality reduction

4.5 The Analysis of Computing Complexity
In AERL, the definition of problem complexity is related to the number of individuals N4z,
within the population and the number of iterations N;. Each individual within the population

needs to undergo policy evaluation, crossover, mutation, and parameter updates. As previ-
ously analyzed, the total training steps in RL are essentially the same as the total number of

@ Springer

Adaptive Evolutionary Reinforcement Learning with Policy Direction Page170f19 69

Table 3 The time complexity

comparison of AESAC, ESAC, Algorithms Execution time (h) Proportion
SAC, and ES
ESAC 25.98 1
SAC 5.81 0.22
ES 19.95 0.77
AESAC 31.36 1.21

iterations in ES. Therefore, the computational complexity of this algorithm can be defined
using Big O notation as O(Narr * Ny).

In this part, we experimentally verify the time complexity of the proposed algorithm com-
pared to other algorithms. By breaking down the time complexity of our algorithm AESAC
into three parts, namely evolutionary strategy, SAC, adaptive module and policy direction, we
provide a comparative analysis of AESAC against ESAC, SAC, and ES algorithms in terms
of time complexity, as shown in Table 3, all after running 1000 episodes in the HalfCheetah
environment.

The time complexity of ESAC is taken as 1, and the time complexities of the other three
algorithms are marked for comparison. Notably, the RL algorithm SAC constitutes only
a small fraction of the population. Hence, the time complexity of SAC is expected to be
lower than ESAC, at approximately 0.22. Conversely, using the ES directly, as compared to
ESAC, reduces the training portion of reinforcement learning, resulting in a time complexity
of approximately 0.77 compared to ESAC. Moreover, it is noticeable that the algorithm
execution time for ES approaches the sum of the execution time of SAC, which closely
approximates the execution time of ESAC algorithm. Our algorithm builds upon the existing
ESAC algorithm by introducing an adaptive module and policy direction. Due to the setting
of RL_Flag, the reinforcement learning training steps in our algorithm are the same as in
ESAC, and the evolutionary strategy training steps are also identical. The primary difference
in time complexity arises during policy direction, where the norm of the network parameters
of the best individual within the population needs to be computed. It is noteworthy that,
compared to ESAC, our algorithm exhibits a 20% increase in time complexity, yet it yields
a 10-20% performance improvement.

5 Conclusion

In this study, the AERL is introduced, which incorporates improvements in the form of an
adaptive module and policy direction on the ERL. In our investigation of the combination of
ES and RL, the proposed adaptive module adjusts the number of RL individuals within the
population adaptively and determines when to initiate RL training by the RL_Flag parame-
ter, which facilitates the advantages of ERL during the learning process. To incorporate the
parameter information of the population’s best individual into RL training, policy direction
is introduced. It reduces the discrepancy between the RL individuals and the best individual
within the population using L1 or L2 regularization, without introducing any detrimental
effects. To verify the AERL framework, AESAC is proposed by incorporating the SAC algo-
rithm into the AERL framework. Experimental results demonstrate that AESAC outperforms
ESAC, SAC, and four other algorithms in terms of learning speed and convergence. In addi-
tion, ablation experiments are conducted to validate the effectiveness of each improvement.

@ Springer

69 Page180f19 C. Dong, D. Li

Moreover, the training results of the best, worst, and average individuals within the popu-
lation emphasize that the algorithmic improvements in AESAC operate at the population
level and demonstrate stronger robustness. Furthermore, in the experiments on parameter
diversity, AESAC demonstrates stronger parameter diversity compared to ESAC. This facil-
itates avoiding local optima and leads to performance improvement. In the time complexity
experiment, AESAC exhibits higher time complexity, despite demonstrating better conver-
gence performance. This is also the limitation of our algorithm. In the future, we can explore
alternative approaches that offer higher time efficiency. This study has shed light on the com-
bination method of ES and RL and demonstrated improvements in the performance of ERL.
It provides promising research directions for future investigations, including more efficient
combination methods, methods of utilizing RL gradient information to guide ES update,
among others.

Acknowledgements This work was substantially supported by the National Natural Science Foundation of
China under Grants 62273026.

Author Contributions Caibo Dong, writing & experiments Dazi Li, Configuration & revision.
Declarations

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Sutton RS, Barto AG (2018) Reinforcement learning: an introduction, 2nd edn. The MIT Press, Cam-
bridge, MA, USA

2. Lample G, Chaplot DS (2017) Playing FPS games with deep reinforcement learning. In: Proceedings of
the AAAI conference on artificial intelligence, pp 2140-2146

3. Nguyen H, La H (2019) Review of deep reinforcement learning for robot manipulation. In: 2019 Third
IEEE international conference on robotic computing (IRC), pp 590-595

4. Ming Z, Zhang H, Li W, Luo Y (2023) Base on $ Q $-learning Pareto optimality for linear Itd stochastic
systems with Markovian jumps. IEEE Trans Autom Sci Eng 1-11

5. Zhang W, Ji M, Yu H, Zhen C (2023) ReLP: reinforcement learning pruning method based on prior
knowledge. Neural Process Lett 55(4):4661-4678

6. Yang Y, He J, Chen C, Wei J (2023) Balancing awareness fast charging control for lithium-ion battery
pack using deep reinforcement learning. IEEE Trans Ind Electron 1-10

7. Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2015) Continuous control
with deep reinforcement learning. arXiv preprint arXiv:1509.02971

8. Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347

9. Haarnoja T, Zhou A, Abbeel P, Levine S (2018) Soft actor-critic: off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In: International conference on machine learning (PMLR),
pp 1861-1870

10. XuT, Yang Z, Wang Z, Liang Y (2021) Doubly robust off-policy actor-critic: convergence and optimality.

In: International conference on machine learning (PMLR), pp 11581-11591

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1707.06347

Adaptive Evolutionary Reinforcement Learning with Policy Direction Page 190f19 69

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

. Slowik A, Kwasnicka H (2020) Evolutionary algorithms and their applications to engineering problems.

Neural Comput Appl 32:12363-12379

Sheng M, Chen S, Liu W, Mao J, Liu X (2022) A differential evolution with adaptive neighborhood
mutation and local search for multi-modal optimization. Neurocomputing 489:309-322

Salimans T, Ho J, Chen X, Sidor S, Sutskever I (2017) Evolution strategies as a scalable alternative to
reinforcement learning. arXiv preprint arXiv:1703.03864

Such FP, Madhavan V, Conti E, Lehman J, Stanley KO, Clune J (2017) Deep neuroevolution: genetic
algorithms are a competitive alternative for training deep neural networks for reinforcement learning.
arXiv preprint arXiv:1712.06567

Colas C, Sigaud O, Oudeyer PY (2018) Gep-pg: Decoupling exploration and exploitation in deep rein-
forcement learning algorithms. In: International conference on machine learning (PMLR), pp 1039-1048
Pourchot A, Sigaud O (2018) CEM-RL: Combining evolutionary and gradient-based methods for policy
search. arXiv preprint arXiv:1810.01222

Lii S, Han S, Zhou W, Zhang J (2021) Recruitment-imitation mechanism for evolutionary reinforcement
learning. Inf Sci 553:172-188

Khadka S, Tumer K (2018) Evolution-guided policy gradient in reinforcement learning. Adv Neural Inf
Process Syst 31:1-13

Suri K, Shi XQ, Plataniotis KN, Lawryshyn YA (2020) Maximum mutation reinforcement learning for
scalable control. arXiv preprint arXiv:2007.13690

Drugan MM (2019) Reinforcement learning versus evolutionary computation: a survey on hybrid algo-
rithms. Swarm Evol Comput 44:228-246

Dulebenets MA (2020) Archived elitism in evolutionary computation: towards improving solution quality
and population diversity. Int J Bio Inspir Comput 15(3):135-146

Lehre PK, Qin X (2022) Self-adaptation via multi-objectivisation: a theoretical study. In: Proceedings of
the genetic and evolutionary computation conference, pp 1417-1425

Hussien AG, Heidari AA, Ye X, Liang G, Chen H, Pan Z (2023) Boosting whale optimization with evolu-
tion strategy and Gaussian random walks: an image segmentation method. Eng Comput 39(3):1935-1979
Wierstra D, Schaul T, Glasmachers T, Sun Y, Peters J, Schmidhuber J (2014) Natural evolution strategies.
J Mach Learn Res 15(1):949-980

Wang J, Lei S, Liang L (2020) Preparation of porous activated carbon from semi-coke by high temperature
activation with KOH for the high-efficiency adsorption of aqueous tetracycline. Appl Surf Sci 530:147187
Ben-Nun T, Hoefler T (2019) Demystifying parallel and distributed deep learning: an in-depth concurrency
analysis. ACM Comput Surv CSUR 52(4):1-43

Li J, Ren T, Yan D, Su H, Zhu J (2022) Policy learning for robust Markov decision process with a
mismatched generative model. In: Proceedings of the AAAI conference on artificial intelligence, pp
7417-7425

Joyce JM (2011) Kullback-Leibler divergence. International encyclopedia of statistical science

LiLT, LiDZ, Song TH, Xu X (2020) Actor-critic learning control with regularization and feature selection
in policy gradient estimation. IEEE Trans Neural Netw Learn Syst 32(3):1217-1227

LiLT,LiDZ, Song TH, Xu X (2018) Actor-critic learning control based on $\ell_ 2 $-regularized temporal-
difference prediction with gradient correction. IEEE Trans Neural Netw Learn Syst 29(12):5899-5909
Todorov E, Erez T, Tassa Y (2012) Mujoco: A physics engine for model-based control. In: 2012 IEEE/RSJ
International conference on intelligent robots and systems, pp 5026-5033

Shi W, Song S, Wu C (2019) Soft policy gradient method for maximum entropy deep reinforcement
learning. arXiv preprint arXiv:1909.03198

Chen P, PeiJ, Lu W, Li M (2022) A deep reinforcement learning based method for real-time path planning
and dynamic obstacle avoidance. Neurocomputing 497:64-75

Cai TT, Ma R (2022) Theoretical foundations of t-sne for visualizing high-dimensional clustered data. J
Mach Learn Res 23(1):13581-13634

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

http://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1712.06567
http://arxiv.org/abs/1810.01222
http://arxiv.org/abs/2007.13690
http://arxiv.org/abs/1909.03198

	Adaptive Evolutionary Reinforcement Learning with Policy Direction
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Evolution Strategies
	2.2 Maximum Entropy Reinforcement Learning

	3 Method
	3.1 Adaptive Evolutionary Reinforcement Learning (AERL)
	3.2 Policy Direction
	3.3 Adaptive Evolutionary Soft Actor-Critic (AESAC)
	3.4 Guideline to Develop Similar Algorithms

	4 Experiments
	4.1 Comparative Evaluation
	4.2 Ablation Study
	4.3 Analysis of Individuals Within Populations
	4.4 The Analysis of Parameters Diversity
	4.5 The Analysis of Computing Complexity

	5 Conclusion
	Acknowledgements
	References

