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Abstract
Online actiondetection (OAD)is a challenging task that involves predicting the ongoing action
class in real-time streaming videos, which is essential in the field of autonomous driving and
video surveillance. In this article, we propose an approach for OAD based on the Recep-
tance Weighted Key Value (RWKV) model with temporal label smooth. The RWKV model
captures temporal dependencies and computes efficiently at the same time, which makes it
well-suited for real-time applications. Our TLS-RWKV model demonstrates advancements
in two aspects. First, we conducted experiments on two widely used datasets, THUMOS’14
andTVSeries.Our proposed approach demonstrates state-of-the-art performancewith 71.8%
mAP on THUMOS’14 and 89.7% cAP on TVSeries. Second, our proposed approach demon-
strates impressive efficiency, running at over 600 FPS and maintaining a competitive mAP
of 59.9% on THUMOS’14 with RGB features alone. Notably, this efficiency surpasses the
prior state-of-the-art model, TesTra, by more than two times. Even when executed on a CPU,
our model maintains a commendable speed, exceeding 200 FPS. This high efficiency makes
our model suitable for real-time deployment, even on resource-constrained devices. These
results showcase the effectiveness and competitiveness of our proposed approach in OAD.

Keywords Online action detection · Online detection of action start · Label smoothing ·
Computer vision

1 Introduction

In recent years, the widespread use of digital devices led to an exponential growth in video
data, creating a need for efficient methods to automatically analyze and understand actions
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in these videos. Conventional video analysis methods, while effective, often lack real-time
responsiveness. Online Action Detection (OAD) [1] aims to classify ongoing actions in real-
time streaming videos, which plays a pivotal role in real-time video analysis for applications
such as autonomous driving [2] and video surveillance [3].

The OAD task poses a significant challenge, primarily due to the real-time constraint.
The crux of the challenge lies in striking a delicate balance between achieving optimal
performance and maintaining computational efficiency.

A typical OAD model first extracts features at the snippet level and then predicts the
action class over the feature sequence. Early works [4–9] in online action detection utilized
Recurrent Neural Networks (RNNs) to model history information. However, RNN-based
models suffer from non-parallelism and gradient vanishing [10, 11], resulting in training
difficulties and sub-optimal performance.

Recent works [12–15] have introduced the Transformer architecture [16] to address these
issues. Despite its benefits, the real-time limitation in OAD restricts the Transformer’s ability
to handle long context lengths, potentially missing critical long temporal dependencies in
streaming video. Additionally, previous works often assign the label of a specific time point
to the entire snippet, which is arbitrary and leaves room for improvement.

To address these issues, we propose an online action detection model that leverages the
emerging long sequence model RWKV [17] to enhance both performance and efficiency.
RWKV stands out as an innovative and promising model, with both Transformer-like and
RNN-style formulations. This unique characteristic enables training as a Transformer while
inferencing as an RNN model, thus achieving an optimal balance between performance and
efficiency. In adapting RWKV for the OAD task, we employ the Laplace activation to tailor it
specifically for OAD requirements. Additionally, we introduce a temporal label smoothing
technique for online action detection.

In summary, our primary contribution involves the adaptation of the RWKV architecture
for the OAD task. Additionally, we introduce the temporal label smoothing technique to
further enhance robustness.

We conducted experiments on two widely used datasets: THUMOS’14 [18] and TVSeries
[1]. Our model achieves state-of-the-art performance of 71.8% mAP on THUMOS’14 and
89.7% mcAP on TVSeries. In terms of efficiency, our model can run at 600+FPS alone,
making it applicable for real-time online action prediction. Notably, when using only RGB
features, the overall system can run at 200+FPS even on CPU while still retaining 59.9%
mAP on THUMOS’14, which makes it possible to deploy on edge computing devices.

2 RelatedWorks

Online Action Detection In the field of online action detection, several notable works have
contributed significant advancements. RED [6] introduces a reinforcement loss function to
promote early action detection. TRN [7] performs online action detection and anticipation
simultaneously, utilizing the predicted future information to improve the performance. IDN
[8] incorporates an information discrimination unit to selectively accumulate relevant infor-
mation for the present action. PKD [9] utilizes curriculum knowledge distillation to transfer
knowledge from offline models. Colar [19] employs an exemplar-consultation mechanism to
compare similarities and aggregate relevant information. LSTR [13] proposes a long short-
term memory mechanism to efficiently model video sequences using transformer. GateHub
[14] designs a gated history unit to enhance the relevant history information.
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Transformer-based models [12–15] have demonstrated promising performances in online
action detection. However, the square computational complexity of self-attention brings
significant computational cost, especially when dealing with long video streams. OadTR [12]
only keeps a few recent frames to reduce computational demands. LSTR improves efficiency
by performing compression on long-term memories using Perceiver [20], and TesTra [15]
further improves efficiency by replacing the first layer of LSTR encoder with linear attention
[21]. But LSTR/TesTra still has a fixed context length and excessive token reduction could
result in the loss of critical information.
Online Detection of Action Start Online Detection of Action Start (ODAS) is a task closely
linked to online action detection, focusing on identifying the precise starting point of an action
instance andminimizing the time gap between the actual start time and prediction. Fewworks
specifically focus on this task. Shou et al. [22] first introduced this task and proposed three
methods to train an ODAS model. StartNet [23] decomposes ODAS into two stages: action
classification and start point localization, addressing the challenges of subtle appearance near
action starts and limited training data. While WOAD [24] and SCOAD [25] also conduct
experiments on this task, their original designs were intended for weakly supervised online
action detection.
Efficient Long SequenceModelingWhile the Transformer model has demonstrated remark-
able capability in handling long-distance dependencies, it is hindered by the square
computational complexity of cross self-attention. To address this challenge, a variety of
approaches have been proposed. Some focus on optimizing the attentionmechanism, employ-
ing techniques such as sparse self-attention [26], kernelization [21], low-rank approximations
[27], and other methods [28, 29]. Other researchers explore alternative modules to replace
attention. MLP-Mixer [30] replaces attention with Multilayer Perceptrons(MLPs), while the
Attention Free Transformer(AFT) [31] introduces a computationally efficient alternative to
the traditional dot-product self-attentionmechanism. Inspired byAFT,RWKV[17] simplifies
interaction weights to enable an RNN-style implementation for inference. For a compre-
hensive overview of more efficient Transformer variants, a survey by Tay et al. [32] can
be referenced. Additionally, some approaches modify recurrent neural networks(RNN) to
increase context length, such as the Recurrent Memory Transformer [33], Linear Recurrent
Unit [34], and state spacemodels(SSM) [35–38]. These techniques offer alternative strategies
to enhance the context modeling capabilities of sequence-based models.

3 Approach

OAD aims to recognize actions in a video streamwith only current and historical informa-
tion. Mathematically, an OADmodel provides an action class probability vector ŷt ∈ R

k for
the current frame f t ∈ R

s at time t , based on the sequence of current and historical frames
{ f 1, f 2, . . . , f t }. Here, k represents the number of action classes, including the background
class, and s denotes the size of the input frame.
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Fig. 1 Overview of our model. Raw video frames are initially processed using a pretrained feature extractor
to obtain a feature sequence. The feature sequence is then fed into the RWKV model to capture temporal
dependencies. Finally, a fully connected layer (classifier) generates the action class prediction
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3.1 Base Model

The overall architecture of our model is illustrated in Fig. 1. To complete the OAD task,
we employ a pretrained feature extractor [39] to process each video frame f t into a feature
vector xt ∈ R

d of d dimensions.1 These feature vectors are then fed into our model.
We utilize the RWKVmodel to capture the temporal dependencies, which offers a balance

between performance and efficiency. A RWKV model comprises multiple RWKV layers,
each containing a time-mixing block and a channel-mixing block illustrated in Fig.1. In the
time-mixing block, we employ the original RWKV formulas:

rt = Wr · (μr xt + (1 − μr )xt−1), (1)

kt = Wk · (μk xt + (1 − μk)xt−1), (2)

vt = Wv · (μvxt + (1 − μv)xt−1), (3)

wkvt =
∑t−1

i=1 e
−(t−1−i)w+ki vi + eu+kt vt

∑t−1
i=1 e

−(t−1−i)w+ki + eu+kt
, (4)

ot = Wo · (σ (rt ) � wkvt ), (5)

where equations (1)-(3) represent the token shift operation, aiding the model in better infor-
mation propagation. Equation (4) plays the role of cross-attention in standard Transformers.
In this formulation, the model can be trained in a parallel manner, similar to Transform-
ers. Equation (4) can also be easily rewritten into recursion-style with linear computational
cost, potentially enabling the model to handle infinite context length and effectively capture
long-term dependencies in streaming video.

The channel-mixing block works as the FFN layer in regular Transformers and it is given
by

rt = Wr · (μr xt + (1 − μr )xt−1), (6)

kt = Wk · (μk xt + (1 − μk)xt−1), (7)

ot = σ(rt ) � (Wv · flaplace(kt )), (8)

where we replace the original squared ReLU activation [40] with the Laplace activation [28]:

flaplace = 0.5 ×
[

1 + erf(
x − μ

σ
√
2

)

]

, μ = 1/
√
2, σ = 1/

√
4π. (9)

The Laplace activation is an approximation of the squared ReLU activation with both a
bounded range and gradient, which can address the gradient explosion issue [28].We find this
modification increases the stability of the model. After the RWKV layers, a fully connected
layer (classifier) generates the action class prediction for the current time.

3.2 Temporal Label Smoothing

Due to the less explicit boundaries of actions and the higher similarity of features near the
action boundaries compared to objects which may confuse the model, we propose a temporal
smoothing technique to refine the ground-truth labels. Given a ground-truth label G(t), a

1 For simplicity, we use the single frame notation, although many works use feature vectors extracted from
small video snippets in practice.
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Fig. 2 Illustration of Temporal Label Smoothing (TLS). This diagram illustrates the application of a Gaussian
smoothing kernel to refine ground-truth action labels over time. The Gaussian kernel transforms the ground
truth from a binary (0-1) function into a gradual and continuous representation

general temporal smoothing operation is defined as

G∗(t) =
∫ +∞

−∞
φ(τ) · G(t − τ)dτ. (10)

Here, we choose the Gaussian function as the kernel φ(τ)

φ(τ) = 1

σ
√
2π

exp

[

− (τ − μ)2

2σ 2

]

. (11)

which assumes that the ground-truth labels have errors following a normal distribution. By
applying the Gaussian smoothing, nearby time points contribute to the refined label G∗(t) in
a continuous and gradual manner, effectively reducing the impact of label uncertainties and
ambiguities near action boundaries. For a video snippet, the calibrated ground-truth label is
obtained by integrating over time. We utilize G∗(t) to train our model, which makes it more
robust to handle the ambiguous boundaries and feature similarities near action boundaries
(Fig. 2).

3.3 TrainingModel

For data augmentation, we utilize a technique similar to the temporal VideoMix [41] and
randomly stack an average of 3 video clips as one input sample during training. To train our
model, we employ the cross-entropy loss between the predicted probability vector ŷt and the
ground-truth label yt ∈ R

k at each frame. The per-frame loss Lt is calculated as follows:

Lt = −
k∑

i=0

yit log ŷ
i
t , (12)

where yit and ŷt i represent the i-th element of the ground-truth and predicted vectors, respec-
tively, at time t . The total loss is obtained by summing over each frame:

L =
T∑

t=1

Lt , (13)

where T represents the total number of frames in the video.
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4 Experiments

4.1 Datasets and EvaluationMetrics

THUMOS’14 The THUMOS’14 dataset includes 413 untrimmed videos with 20 action
classes for online action detection. The dataset is split into 200 training videos and 213
testing videos according to the public data split. In line with previous studies [12–15, 23–
25], we evaluate OAD using per-frame mean Average Precision (mAP) and evaluate ODAS
using point-level mean Average Precision (pAP) [22].

Most existing works follow the two-stream paradigm [42], utilizing both optical flow and
RGB features to achieve optimal performance. However, this leads to high computational
costs due to optical flow computation. Hence, we also evaluate the performance ofOADusing
mAP solely with RGB features. This evaluation allows us to specifically focus on scenarios
where computational efficiency is a critical factor to consider.
TVSeries The TVSeries dataset includes 16h of 27 untrimmed videos with 30 everyday
action classes, collected from 6 TV series. This dataset is originally designed for OAD and
introduces the calibrated Average Precision (cAP) [1] as the evaluation metric. Therefore,
we employ cAP as the evaluation metric for the TVSeries dataset.

4.2 Implement Details

We implemented our model using PyTorch [43] and conducted all experiments on a system
equipped with an Intel i9-12900 CPU and an NVIDIA RTX 3090 graphics card.We followed
the approach outlined in [13–15] to preprocess the videos, where we converted all videos to
24 frames per second (FPS) and then extracted features at 4 FPS. For feature extraction, we
utilized theTSNmodels pretrained on theKinetics-400 dataset [44],whichwere implemented
in the MMAction2 framework [45]. The TSN model is a two-stream network, where we
employed Resnet-50 [46] for handling RGB features and BN-Inception [47] for optical flow
features.

Regarding the RWKVmodel, we set the hidden dimension size to 512 and used 4 RWKV
layers. Instead of the initialization proposed in RWKV, we employed Kaiming Initialization
[48] for our model.

During the training process, we used a batch size of 1 since multiple video clips were
already stacked together. The model was trained for 30 epochs using the Adam optimizer
[49] with a weight decay of 9e-8 and a base learning rate of 6e-4. The learning rate was
linearly increased from zero to 6e-4 during the first 10 epochs and then reduced to zero
following a cosine function.

4.3 Main Results

Online Action Detection We present a comparison of our method with recent works on
the OAD task in Table 1. All the compared models utilize TSN features pretrained on the
Kinetics-400 dataset as input. Notably, our model achieves 71.8%mAP on THUMOS’14 and
89.7% cAP on TVSeries, surpassing the performance of all previous methods. Moreover, in
the RGB-only setup, our model achieves a remarkable mAP of 59.9%, effectively narrowing
the performance gap between the two-stream method and the RGB-only method. These
results highlight the efficacy and competitiveness of our proposed approach in online action
detection.
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Table 1 Online action detection results on THUMOS’14 and TVSeries using TSN features pretrained on
Kinetics-400

THUMOS’14 mAP(%) TVSeries mcAP(%)
OF+RGB RGB OF+RGB

IDN [8] 60.3 – 86.1

TRN [7] 62.1 – 86.2

OadTR [12] 65.2 51.2 87.2

Colar [19] 66.9 52.1 88.1

LSTR [13] 69.5 – 89.1

GateHUB [14] 70.7 – 89.6

TesTra [15] 71.2 56.4* –

Ours 71.8 59.9 89.7

“OF” denotes using optical flow features, and “RGB” denotes using RGB features
*This result was obtained using the official code base and run by ourselves, as it was not reported in the paper

Table 2 Online detection of action start results on THUMOS’14 using feature extractor pretrained onKinetics-
400

pAP@time threshold (s)
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

StartNet [23] 21.9 33.5 39.6 42.5 46.2 46.6 47.7 48.3 48.6 49.0

WOAD [24] 28.0 40.6 45.7 48.0 50.1 51.0 51.9 52.4 53.0 53.1

SCOAD [25] 30.6 42.3 48.2 51.9 54.5 55.4 56.0 56.5 56.9 57.0

Ours 28.7 41.6 48.1 52.2 54.3 55.5 57.9 58.9 59.8 60.4

The time threshold ranges from 1s to 10s. StartNet and our model utilize the TSN feature extractor, while
WOAD and SCOAD employ the I3D feature extractor. The bold numbers indicate the best results, while the
underlined numbers denote the second best results

Online Detection of Action Start We present a comparison of our method with recent works
on the ODAS task in Table 2. Both StartNet and our model utilize the TSN feature extractor,
while WOAD and SCOAD employ the I3D [50] feature extractor. It is worth noting that both
feature extractors, TSN and I3D, are pretrained on the Kinetics-400 dataset and demonstrate
similar performance characteristics, ensuring a fair comparison.

Our model consistently achieves the best results across various time thresholds, demon-
strating superior performance in most cases. Even in scenarios where our model does not
secure the top position, it still achieves the second-best results. These outcomes highlight
the effectiveness and competitiveness of our proposed approach compared to state-of-the-art
methods for the ODAS.

4.4 Ablation Study

We conducted ablation experiments on the THUMOS’14 dataset to analyze the performance
of our model. We evaluated four different setups, as follows:
Baseline This setup represents the model with raw RWKV layers and serves as the baseline
for comparison.
Baseline+LA In this setup, we replaced the original squared ReLU activation in RWKVwith
the Laplace activation to examine the impact of this modification.
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Table 3 Ablation experiments on
THUMOS’14 evaluating the
impact of Laplace Activation
(LA) and Temporal Label
Smoothing (TLS)

Baseline LA TLS mAP(%)

� × × 71.4

� � × 71.6

� × � 71.5

� � � 71.8

The checkmark indicates it’s enabled in the configurationwhile the cross-
mark indicates that it’s not

Table 4 Running speed in frames per second (FPS) comparison

OF Comp OF Feat RGB Feat Model Overall mAP (%)

TRN 11.2 97.5 754.4 188.8 11.2 62.1

LSTR 11.2 97.5 754.4 253.6 11.2 69.5

TesTra 11.2 97.5 754.4 263.5 11.2 71.2

TesTra* – – 754.4 263.5 263.5 56.4

TesTra** – – 206.2 110.9 110.9 56.4

Ours 11.2 97.5 754.4 624.3 11.2 71.8

Ours* – – 754.4 624.3 624.3 59.9

Ours** – – 206.2 599.7 206.2 59.9

The asterisk (*) denotes using RGB features only. The double asterisk (**) indicates that the experiment runs
on a CPU with RGB features only

Baseline+TLS We used the proposed temporal smoothed ground-truth labels to train the
baseline model to assess the effectiveness of temporal label smoothing.
Baseline+LA+TLS This setup represents our final proposed method, where we combined
the Laplace activation and temporal label smoothing.

Table 3 presents the performance comparison of these different methods on the THU-
MOS’14 dataset, demonstrating the effectiveness of each component in improving the
model’s performance.

4.5 Efficiency Analysis

We compare the efficiency of our method with TRN, LSTR and TesTra in terms of online
inference. To ensure a fair comparison, we re-run all models on our platform to control
variables. The results are presented in Table 4. Our model outperforms all other models in
terms of speed, and specifically, our model achieves a speed that is over two times faster than
the previous state-of-the-artmethod, TesTra,with a slight 0.6% improvement in performance.
Additionally, we observe that our method experiences a minimal drop in speed when running
on a pure CPU platform, achieving an impressive 206.2 FPS for end-to-end online inference
with RGB features only. This suggests that our model is suitable for deployment on low-end
platforms, such as edge computing devices.
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5 Conclusion and FutureWork

In this study, we proposed a novel model for online action detection, which combines the
RWKV architecture with temporal label smoothing. The RWKV architecture seamlessly
integrates the advantages of the Transformer’s long context length and RNN’s efficient infer-
ence, creating a model with an optimal balance between performance and efficiency. This
characteristic is particularly well-suited for OAD tasks, where the demand for long context
length aligns with the necessity for bounded inference time. Moreover, the incorporation of
Laplace activation and temporal label smoothing further enhances the model’s robustness.

Our model achieved significant improvements in both performance and efficiency. Exper-
imental results on the THUMOS’14 and TVSeries datasets showcased the superiority of
our approach, surpassing state-of-the-art methods in terms of mAP and cAP. Moreover, our
model demonstrated impressive inference speed, outperforming the TesTra model by more
than two times while maintaining competitive performance. Notably, our model exhibited
remarkable efficiency even on CPU platforms, enabling deployment on resource-constrained
devices.

In future work, it would be valuable to explore alternatives to optical flow computation or
ways to reduce its reliance, as it is the running speed bottleneck for the overall system.
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