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Abstract
Semantic Segmentation has been widely used in a variety of clinical images, which greatly
assists medical diagnosis and other work. To address the challenge of reduced semantic
inference accuracy caused by feature weakening, a pioneering network called FTUNet
(Feature-enhanced Transformer UNet) was introduced, leveraging the classical Encoder-
Decoder architecture. Firstly, a dual-branch Encoder is proposed based on the U-shaped
structure. In addition to employing convolution for feature extraction, a Layer Transformer
structure (LTrans) is established to capture long-range dependencies and global context
information. Then, an Inception structural module focusing on local features is proposed
at the Bottleneck, which adopts the dilated convolution to amplify the receptive field to
achieve deeper semantic mining based on the comprehensive information brought by the
dual Encoder. Finally, in order to amplify feature differences, a lightweight attention mech-
anism of feature polarization is proposed at Skip Connection, which can strengthen or
suppress feature channels by reallocating weights. The experiment is conducted on 3 dif-
ferent medical datasets. A comprehensive and detailed comparison was conducted with 6
non-U-shaped models, 5 U-shaped models, and 3 Transformer models in 8 categories of
indicators. Meanwhile, 9 kinds of layer-by-layer ablation and 4 kinds of other embedding
attempts are implemented to demonstrate the optimal structure of the current FTUNet.
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1 Introduction

With the extensive and in-depth study of deep learning, Computer Vision (CV) has been fully
and significantly developed with rich technologies and extensive applications [1]. As a kind
of computer core and advanced vision technology, Semantic Segmentation defines the image
processing mechanism through the network structure, completes the object segmentation,
and realizes the scene understanding [2–4]. In essence, this kind of technology belongs to
pixel-level classification model. It uses Convolutional Neural Network (CNN) to capture rich
information, allowing applications to infer knowledge from images [5]. In addition, Semantic
Segmentation plays a central role in medical image diagnosis [6–9]. In a variety of important
scenarios such as image-guided interactions, radiological diagnostics, and radiology [8], it can
help medical personnel effectively extract the lesion area, greatly reduce the work intensity,
and accurately carry out disease analysis. Since 1992, Semantic Segmentation in medical
scenes involves dividing an image into non-overlapping regions, forming the whole image
[10]. Since then, the convenience brought by the subsequent technological development has
shown a unique role in themedical environment, and has achieved certain results in a series of
multi-modal tasks such as brain lesion segmentation [11, 12], skin cancer tissue segmentation
[13, 14], and tongue segmentation [15].

Semantic Segmentation has rich technical support. With the development and influence
of deep learning, a large number of different types of models have been born. Such as region-
based [16], weakly supervised methods [17, 18], and fully convolutional networks [19].
Among them, Semantic Segmentation based on convolutional networks is the most popular
method in recent years. This kind of framework divides themodel into twoparts: encoding and
decoding. The coding region is used to extract feature information to infer knowledge, and the
decoding region recovers image size to determine position. In recent years, the field ofmedical
image segmentation has seen the emergence of several pivotal network architectures, such as
SegNet [20], FullyConvolutionalNetworks (FCN) [19], andU-Net [21], among others. These
models have significantly contributed to the technical foundation of semantic segmentation.
Moreover, a multitude of variant network models has surfaced subsequently, adding further
depth and richness to research in this domain. While the CNN has achieved remarkable
progress over the past decade, its limitations are becoming increasingly conspicuous. The
feature extraction method, characterized by strong local constraints, gives rise to a notable
challenge known as the perception limitation problem. This issue substantially hampers the
mining of semantic features in image processing, even with the application of techniques like
dilated convolution, which, to a certain extent, alleviate the problem [22].

In the past two years, a new global information aware CV structure Transformer has
aroused the attention and discussion of scholars once it was proposed, and has developed
rapidly in subsequent research, keeping pace with CNN structure in the CV field [23, 24].
In 2017, the Google team adopted attention structures including Q, K, and V to achieve
translation tasks in the field of NLP (Natural Language Processing) with high quality, and
demonstrated the substitutability of thismechanism for convolution [25].Meanwhile, another
kind of ViT (Vision Transformer) model which is applied well in Visual recognition is born
[26]. As a new structure in the field of CV, the ViT is a framework that directly applies the
Transformer to the sequence of image patches. In this model, the image is segmented into
several 2D patches, and the Transformer is directly embedded in the image patches sequence
in the classification task to enhance the self-attention of classification. This mechanism of
embedding pure transformer directly into themodel has aroused extensive discussion, and has
spawned a large number of application research in different fields such as object detection
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and video understanding [27, 28]. At present, some work still embeds the ViT structure
directly into the model, and combines the convolution operation to realize the semantic
encoding and decoding [29]. Compared with other Semantic Segmentationmodels, the effect
is significantly improved. Recent studies have shown that different variants of ViT, such as
DeiT (Data-efficient image Transformers) [30] and Swin [31], have achieved remarkable
results in CV and are emerging in the subfield of Semantic Segmentation research. In a word,
Transformer has good features in the field of Semantic Segmentation by virtue of its excellent
features of attention mechanism, and has been favored by more and more scholars.

1.1 Motivation

1) Rough processing of global context information After the Transformer structure imple-
ments 1D conversion and embedding on segmented image patches, multiple Transformer
layers are adopted to extract information about the Global context. While serialized extrac-
tion systematically deepens the impact of image semantic mining, the fusion with U-shaped
networks frequently adopts a simplistic and rudimentary mode. Regrettably, this strategy
lacks the differentiated integration of deep and shallow semantic information, leading to an
insufficient extraction of valuable image information. 2) Inadequacy of Feature Mining at
the Bottleneck The Bottleneck is a crucial link in U-shaped processing, housing rich seman-
tic information. The original U-Net model adopts double convolution processing, while the
existing optimization structures often do not pay toomuch attention to this structure part [32].
Therefore, the lack of multi-scale convolution information extraction results in a waste of
semantic information. 3) Limitations of differences in channel attentional features Channel
attention is an information-enhanced structure that can effectively express the importance
of different channels. The traditional method uses the maximum pooling or average pooling
of channel pixels to represent the importance of the channel and acts on the corresponding
tensor. However, this method cannot amplify the difference between different tensors, and
the association of channel representation values is quite accidental and coincidental. There-
fore, the existing attention mechanism urgently needs a method to enlarge the difference of
features to enhance or suppress the corresponding channel features.

In view of the abovemotivations, based on the combination of ViT andU-Net model as the
Baseline, this study aims at the coarse-grained problem of Transformer layer serialization,
the problem of Bottleneck feature loss, and the problem of small channel feature difference.
The main work is as follows:

(1) AmechanismLayerTransformer (LTrans) formultilevel semantic fusion betweenTrans-
former and U-Net is proposed. The continuity of the internal recurrent structure of ViT
is not intervened by traditional networks. In contrast to conventional methods, nuanced
semantic details are extracted from Transformer layers 3, 6, 9, and 12 in our approach.
These details are ingeniously integrated intoU-type input layers 1–4, leading to a sophis-
ticated fusion of the Vision Transformer (ViT) and U-Net architectures. This process
achieves a deep amalgamation of their respective structures.

(2) A semantic feature enhancement model, ASPP-Inception (AI), is proposed. Inspired by
the Google Inception module, a parallel ASPP Inception module is designed with multi-
microscale convolution kernels at the key point of coding and decoding connection.
This facilitates the improved learning and strengthening of semantic feature information
at the object’s edge. To mitigate local limitations, the module incorporates the multi-
dilated convolution structure ASPP, accompanied by the utilization of a pyramid-like
sub-module to impact image segmentation within a larger receptive field
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(3) Rethinking of channel weights, and a Polarized Attention (PA) mechanism is proposed.
The application of the transformation relationship between tensor and list is employed to
magnify and differentiate the importance gap of different channels from the perspective
of mathematical statistics. Consequently, important features are fortified, and irrelevant
features are subdued, thereby optimizing channel attention.

The structure of this paper is as follows. The second section summarizes the research
work related to this paper. The third section discusses the overall model and describes the
basic composition of the design structure. The fourth section carries out the comparative
demonstration of the models and integrates the structure ablation analysis. The last section
is the conclusion.

2 RelatedWork

2.1 Medical Image Segmentation

With the development of deep learning networks, researchers began to try to use image seg-
mentation technology to assist clinical medical diagnosis. Early researchers tried to apply
CNN [5] to the field of semantic inference, and proposed the technology of adopting con-
volutional neural network to infer image semantics [33]. This innovation has made great
achievements in medical treatment. Since then, a large number of classic networks con-
tinue to emerge. Long et al. [19] proposed FCN based on the fully convolutional neural
network, which replaces the fully connected part of CNN with a convolutional block, so that
the model can flexibly handle pixel-level classification problems. Besides, Pyramid Scene
Parsing Network (PSPNet) [34] applies a pyramid module to extract context information by
fusing features from four pooling scales, which improves the feature extraction mechanism.
In addition, the DeepLab family [35–38] attempted to employ ResNet to increase the depth
of the network with the support of atrous convolution, and realized the fusion of more con-
textual information while expanding the receptive field. As an equally excellent model, the
embedding of attention mechanism enables Attention Deeplabv3 + to learn more feature
information [39].

Due to the increasing influence ofFCNnetwork in thefield ofSemantic Segmentation,Olaf
Ronneberger et al. [21] proposed the U-Net model in 2015. This model adopts the framework
of encoding and decoding, which standardizes the network structure of feature extraction and
has positive segmentation effect. Since the structure of Encoder and Decoder can effectively
complete the task of image partition, quite a few models based on Encoder and Decoder
have been generated. For example, Refine Net [40] combines Residential Conv Unit (RCU),
Multi resolution Fusion, and Chained Residential Pooling to add them to the Decoder, which
can more effectively generate high-resolution visual features. Besides, SegNet [20] employs
the location information to recover the feature map instead of deconvolution, reducing the
learningof up-samplingduring training. Furthermore,more scholars regardU-Net asBaseline
to achieve updates and breakthroughs. For instance, inspired by the shape of the model, a
large number of structures that can inherit encoding and decoding types have been created,
such as W-net [41], X-net [42], etc. Because of the combination of down-sampling and up-
sampling, the semantic information can be basically captured. In addition to model shape
optimization, a multitude of scholars choose to study from the direction of model structure.
As an example, Context EncoderNetwork (CE-net) [43] added theDenseAtrousConvolution
module (DAC) and Residual Multi-kernel pooling (RMP) to the Bottleneck layer of U-Net.
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Multi-scale atrous convolution and pooling operations are used to obtain more contextual
features while retainingmore spatial information. Likewise, Outlined Attention U-net (OAU-
net) replaced the double convolution of the third and fourth layers with Res2 Conv2d, and
adopts multi-scale parallelized convolution to improve the fusion of multi-scale features
[44]. Moreover, Skip Connection is also an important part of U-net, which recovers the edge
information lost in the down-sampling process and retains more dimension information by
splicing. Small Attention-UNet (SmaAt-UNet) added a spatial attention mechanism CBAM
module at the Skip Connection to capture the semantic information in the high-level feature
map [45]; DC-net [46] increased maximum pooling at Skip Connection.

2.2 Transformer

2.2.1 Variant Networks of Transformer

With the introduction of the Transformer prototype by Vaswani et al. [25] it has been widely
used not only in Natural Language Processing (NLP) field but also has contributed to the
research in CV. For example, Dosovitskiy et al. introduced the Vision Transformer model
[26] that merges image patches and Transformer, initiating the ViT variant network research
boom in the CV field. Since then, many researchers have applied ViT and its variant networks
to a variety of tasks in the CV field, such as Pose Estimation [47–49], Object Detection [27,
50, 51], and Classification [52]. He et al. integrated the mask idea from BERT [53] into ViT,
proposing masked autoencoders [54]. This enables the network to learn existing features
while predicting on masked features, enhancing robustness and accuracy. In addition, a new
Transformer variant, Swin-Transformer [55], uses the shifted windows technique to reduce
the training cost of the model, which is favored by contemporary researchers and has inspired
many scientific works. All of these models play an important role in various tasks of the CV
field, and it is foreseeable that the boom started by Transformer will continue in the near
future.

2.2.2 Integration of Transformer with Other Networks

Since the Transformer has a good track record in CV, many researchers have combined it
with other networks, including but not limited to combining the Transformer with CNN
[56–58], Transformer with DeepLab series [59, 60], and Transformer with FCN[61]. Among
the more prominent ones, He et al. [62] proposed Fully Transformer Network model to
learn long-range contextual information, making their model beyond the contemporaneous
State-Of-The-Art (SOTA) CNNs. Similarly, Xie et al. [63] proposed the Convolutional neural
network and Transformer (CoTr)model to capture features at key locationswith a deformable
Transformer instead of focusing on global features, thus reducing computational costs and
enabling improved accuracy and robustness. Furthermore, Wang et al. [64] put forward the
Max-DeepLab model using Mask Transformer to predict masks and classes directly. Also
inspired by masked Transformer, Yu et al. combined it with clustering ideas and proposed
a Clustering Mask Transformer (CMT-DeepLab), which became the new SOTA on the MS
COCO (Microsoft Common Objects in Context) dataset [65] at that time. From what has
been discussed above, we can see that the Transformer can be better combined with other
networks to improve the accuracy and stability of the model, and thus better accomplish the
tasks in the CV field.
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2.2.3 Transformer+ U-Net

The Transformer plays a pivotal role in Semantic Segmentation tasks, particularly in the
domain of medical image segmentation. Consequently, a substantial body of research has
emerged, combining the Transformer architecture with U-Net. These hybrid models have
found application across various domains. As can be seen from Table 1, Hatamizadeh and
his team applied Transformer to 3D medical datasets by proposing the U-Net Transformers
(UNETR) model [66], where the model inverts U-Net. To be more specific, the model firstly
upsamples the deep features of the Transformer, then continuously splices the deep features
with the shallow features, and then fuses this context information by convolution and other
means as ways to capture more 3D information. In addition, many models apply Transformer
to 2D datasets, for example, Wu et al. [29] introduced Feature Adaptive Transformers (FAT-
Net), merging features from the 12th Transformer layer and U-Net coding layer, improving
accuracy in capturing skin lesion sites.Moreover, inspired byU-Net,HuCao et al. designed an
Encoder-Decode architecture based on symmetric transformer, and used the patch extension
layer to perform up-sampling to reshape the feature map of adjacent dimensions to restore
the spatial resolution of the feature map [31]. Besides, SUNet adopted Swin Transformer
as the basic module to apply it to U-Net for image noise reduction, and reduces parameters
through shifting the pane to achieve advanced performance in a large number of pixel visual
tasks [67]. In contrast, our work is not only carried out on the 2D Skin dataset but also adds
the Cell and Lung datasets to validate the robustness of the model frommultiple perspectives.

Besides, the combination of Transformer and U-Net is also very abundant. For example, H
Wang et al. [68] applied Transformer in the different positions of the codec body and adopted
a Transformer in the Encoder and Decoder to extract features before performing convolution
or deconvolution. Furthermore, Gao et al. applied the self-attentive module [69] in both
Encoder and Decoder blocks, which can better capture the long-range dependency, but it will
increase the computational resources. In order to save computational resources, Teams, like
in theMedical Transformer [70], have added themulti-headed attentionmechanism to the left
side of U-Net’s Encoder, integrating it into each layer. Similarly, the TransU-Net is proposed
in [71], which firstly extracts features through CNN blocks, and then passes these feature
information into Transformer blocks to extract deeper context information. What’s more,
The Levit-U-Net proposed in [72] is similar to the TransU-Net in that both pass through the
CNN block at first, and then combine with the Transformer block to extract deeper features,
but the difference is that the Levit-U-Net will process downsample and reshape after the
Transformer block, tomake the subsequent features can be better integrated. In addition, some
other teams apply the Transformer to other locations of the U-shaped network. For example,
the U-Net Transformer proposed in [73] applies the attention mechanism Multi-Head Self-
Attention (MHSA) andMulti-HeadCross-Attention (MHCA) to theBottleneck and decoding
area, respectively. Likewise, the paper [74] constructs a Twisted Pattern and implements
Twisted Information-sharingPattern forMulti-branchedNetwork,which improves the feature
information fusion effect and alleviates the problem of semantic isolation. Moreover, Wang
et al. introduced DBUNet (Dual-Decoding Branch U-shaped Network), incorporating the
ViT Encoder into the Decoder branches to enhance the representation of shallow features
during image upsampling [75]. The results show that DBUNet has excellent lesion extraction
effects. Different from these ideas, considering the computational resources and the stability
of themodel, Our approach applies Transformer to SkipConnection andBottleneck, blending
U-Net and Transformer features via a residual network, and subsequent experiments confirm
the model’s excellent performance.
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Table 1 Recent work on the combination of transformer and U-Net

Model Transformer position Description Year &
reference

UNETR Encoder Taking features from Transformer
3rd, 6th, 9th, and 12th layer,
deconvoluting them before
merging with other features, and
processing convolution after that

2022, [66]

FAT-Net Bottleneck Taking the Transformer’s 12th
feature and splicing it with the
features extracted from the 4th
Encoder layer

2022, [29]

Mixed transformer Encoder; bottleneck;
decoder

In Encoder, use Transformer to
extract features before convolution.
Add Transformer to Bottleneck. In
Decoder, processing deconvolution
at first and then using Transformer
to extract the features

2022, [68]

UTNet Encoder; decoder Transformer Encoder is proposed to
be used after the Residual Basic
Block, and Transformer Decoder is
proposed as well to replace the
original upsampling part

2021, [69]

Medical
transformer

Encoder; decoder With the Transformer as the main
body, the attention mechanism is
integrated into each layer of U-Net

2021, [70]

TransUNet Encoder The CNN block and Transformer
block do not intersect, and the
CNN block will pass the extracted
features to the Transformer block

2021, [71]

LeViT-UNet Encoder The features are first extracted by
CNN, and then the extracted
features are passed to Transformer,
and then downsampling and
reshaping are processed

2021, [72]

U-Net transformer Bottleneck; decoder Adding Multi-Head Self-Attention to
the Bottleneck and applying
Multi-Head Cross-Attention to the
Decoder

2021 [73],

TP-MNet Encoder The network addresses the primary
issue of semantic isolation by
simultaneously implementing
inter-layer connections and
cross-branch connections in both
the convolutional and ViT branches

2023, [74]

DBUNet Decoder Is a class of multi-branch codecs.
The attention mechanism is added
inside VIT to realize the
optimization of ViT

2023, [75]

Ours Skip connection Taking features from the 3rd, 6th,
9th, and 12th layers of the
Transformer and splice them
together with the results from PA

–
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3 Model

This section begins by presenting the overall architecture of the proposed model, FTUNet.
Subsequently, it sequentially introduces three key component modules within this architec-
ture, providing a detailed discussion of the principles and effects of each component.

3.1 Overall Architecture

In this study, a “Double Encoding—Single Decoding” network is proposed, which is U-
shaped and asymmetric. The dual-pathway coding region of the model is composed of the
optimized ViT structure and the Contracting Path. In addition, combined with the created
attention mechanism and embedded with the designed ASPP-Inception module, multi-
components jointly construct a deep network for optimizing the Semantic Segmentation
effect. Figure 3 shows the model construction architecture.

Figure 1 demonstrates the FTUNet model proposed in this study, which shows our opti-
mal design of the model from the overall perspective. Observably, the model’s input path is
comprised of Transformer ViT and convolution layers. The convolutional layer contributes
semantic information derived from the feature channels, whereas ViT incorporates contex-
tual information from a global perspective. As a result, these dual pathways collaboratively
contribute to the extraction of comprehensive image features. Additionally, to enhancemacro
andmicro semantics at Bottleneck, we introduce an attention mechanism at the Skip Connec-
tion to modulate feature channel weights. In short, the network model structure shows that
FTUNet enriches the extracted semantic features, distinguishes the importance of channels,
and amplifies the microscopic details of semantics.

The main module design includes:

1) Layer Transformer The ViTmechanism is introduced to extract the image information of
Transformer Layer at different levels and sent to the Decoder to realize semantic fusion.

Fig. 1 Overview of the proposed FTUNet framework
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2) ASPP-InceptionThe Inception structure is constructed, on the one hand, different dilation
rates are adopted to enhance the receptive field, and overcome the small convolution
kernel defect; meanwhile, the small-core parallel network is employed to deeply mine
the edge features of the object and infer the microscopic results of the object edge.

3) Polarized Attention Enlarge important feature information, capture important channels
through mathematical statistics technology and increase their weights, while reducing
the weight of secondary feature channels.

3.2 Layer Transformer

Medical images pose challenges like irregular graphics and fuzzy edge semantics. Depending
solely on U-Net for feature extraction may be insufficient for these complexities. Therefore,
Transformer is introduced into the model to combine the features extracted by U-Net with
those extracted by Transformer.

Figure 2 shows our proposed Layer Transformer, which is a method that extracts context
information at different levels in the Transformer and implements the same layer matching

Fig. 2 Overview of proposed LTrans structure
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with different depths of the U-shaped network. In our experiment, we believe that the pri-
mary core of this mechanism is constituted by a significant number of Transformer blocks
following the embedding structure. Sequential processing can gradually transition from the
shallow expression of the image to the deep semantic information with the goal of inferring
semantics. However, only combining deep information with U-shaped network will waste
shallow semantic expression. Accordingly, we demonstrate through experiments that using
the hierarchical structure can mine semantic information more reasonably. In fact, the input
images will be sent to the Encoder Block and Transformer Block respectively. The Encoder
Block refers to a continuous sequence of convolution operations composed of convolutional
encoders, spanning layers 1 to 4. Meanwhile, the Transformer Block refers to a continuous
sequence of attention extraction operations composed of the ViT, encompassing layers 1 to
12 in the encoder. The Encoder Feature 1–4 will be obtained from the Encoder Block, and
the Transformer Features 1–12 will be collected from the Transformer Block. As shown in
Fig. 2a, the semantic fusion of different network depths is achieved by extracting attention
information and convolution feature in different levels of two branches. Figure 2b shows the
combination of two coding branches with the deepening of the Transformer in a process-
oriented manner.

Before merging Encoder Features and Transformer Features, resize the Transformer Fea-
tures to match Encoder Features using the View function. Subsequently, the number of
channels in the Transformer Features is adjusted to align with the Encoder Features through
the application of a 1× 1 convolution. This ensures that both components carry equal weight,
facilitating mutual complementation. Next, the Encoder Features and the Transformer Fea-
tures need to be merged by using the Cat function. Finally, the number of channels needs
to be restored to the same size as the initial Encoder Features by 1 × 1 convolution, and
then Mixed Feature 1–4 can be obtained. Mixed Features 1, 2, 3 are sent to Skip Connection
to combine with upsampling features, while Mixed Feature 4 goes to Bottleneck for deeper
processing. In short, the Eq. (1) denotes the structure of LTrans.

F(x) = Conv1×1(Cat(Conv1×1(V iew(x)), Encoder Feature)) (1)

3.3 ASPP-Inception

We believe that the most important reason for the loss of accuracy is the limitation of the
receptive field. Although pooling can effectively avoid this problem, it also brings a lot of
information loss. Based on this, we use the excellent characteristics of dilated convolution
to improve the receptive field during convolution, and also pay attention to the context
information of different scales. Earlier,He et al. proposed the Spatial PyramidPoolingmodule
[76], which is a pyramid structure. Subsequently, Chen constructed an ASPP module in the
proposedDeepLab v3 network [37], and organized and built a pyramid structurewithmultiple
dilation rates in a cascading manner. This structure consists of a 1*1 convolution and three
types of 3*3 convolution with different dilation rates. Furthermore, it gives full play to the
advantages of dilated convolution to a greater extent.

Although ASPP has certain advantages in obtaining context semantics, the attention of
modules to micro details is often unsatisfactory. According to the Inception structure, this
research proposes an ASPP-Inception module, which is used to capture the feature informa-
tion of different receptive fields while focusing on the local features of the object.

Figure 3 shows the network module unit for ASPP-Inception, where Fig. 3a shows the
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Fig. 3 Network structure of ASPP-Inception

semantic mining module of the designed Inception structure, and Fig. 3b shows the ASPP
structure.

Inspired by the Inception module, the network has constructed three basic convolution
branches, namely 3*3, 5*5, Pooling, and ASPPModule. Different convolutions not only take
into account that they can extract features of different scales and enrich receptive fields, but
also because the convergence speed can be accelerated after the dense matrix is decomposed
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into sparse matrixes. In addition, 1*1 convolution can be used to achieve dimension specifi-
cation. In general, a 1*1 convolution helps the pixel to achieve a fully connected calculation
on all features; and through the series of two convolutions, more nonlinear feature results
can also be discovered.

On the basis of the above branches, the parallel mechanism is used to implement feature
processing. This model effectively organizes the convolution feature tensors of different
branches, pastes all the feature results together, and reduces the feature dimension with 1*1
convolution. In short, the ASPP-Inception module has a good effect in overcoming local
limitations and mining features under different receptive fields, and has a strong sensitivity
to the edges of objects in Semantic Segmentation.

3.4 Polarized Attention

Influenced by style transfer, Lee et al. [77] proposed a style-based recalibration module
(SRM), which is a style-based attention mechanism for recalibrating channels. The proposed
model not only enhances the representation ability of CNN but also offers the advantages of
being lightweight and easily embeddable. Leveraging this inspiration, this paper introduces
a channel attention mechanism to heighten the differentiation between image cut regions
and edge features. The channel attention mechanism utilizes the median pixel value of each
channel as a reference and employs mathematical statistics blocks (MS) to modulate the
feature channel weights, thereby amplifying the discrepancy in pixel values across different
regions. Simultaneously, it enables the model to capture important features more accurately
during training while suppressing the influence of weakly correlated channel weights. The
key advancements are as follows:

1) Introducing Parallel Global Maximum Pooling (GMP) in addition to Style Pooling.
2) Incorporate the method of mathematical statistics, and calculate the tensor value in each

channel using Eq. (2) to analyze image feature weights. This process aims to capture key
features of the image and enhance the processing ability of image edges and details.

f (x) = (y − median)3 (2)

Figure 4 shows the basic structure of themodel. First, the original image feature dimensions

Fig. 4 Channel attention mechanism model: polarized attention
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are (b, c, h,w),which are implemented through three parallel pooling processes.Next, the data
is combined to obtain the image format of (b, c, 3). Then, during the process of mathematical
statistics, calculate the median pixel value for each channel of the combined image. Subtract
each pixel value from the respective channel’s median to obtain an absolute value, and
raise each absolute value to the power of three to obtain a new pixel value. Subsequently,
the features of the new image are extracted again through convolution, and the weights of
each channel are recalibrated. Apply image processing techniques to mitigate overfitting and
activate the image using the Sigmoid function. Finally, multiply the image in the format (b,
c, 1, 1) by the original image (b, c, h, w) to obtain the result. Equation (3) represents the core
content of this mechanism.

4 Experimental Analysis

This chapter conducts comprehensive experimental exploration of FTUNet, including metric
validation, image comparison, training process analysis, and model ablation study.

4.1 Dataset

In this experiment, different data sets are used to achieve comprehensive verification,
and medical image segmentation is implemented in the SKIN (https://www.kaggle.com/
code/hashbanger/skin-lesion-segmentation-using-segnet/notebook), LUNG (https://www.
kaggle.com/datasets/kmader/finding-lungs-in-ct-data), and the DRIVE (https://drive.grand-
challenge.org/), respectively.

4.2 EvaluationMetric

In order to show the effect of the model from multiple perspectives, this experiment adopts
8 different evaluation indicators, which are Accuracy, Dice, Jaccard, Precision, Recall, and
Specificity. In the composition of factors in their formulas, TP (True Positive) Indicates the
pathological pixels that are judged successfully, TN (True Negative) means the background
pixels that are judged successfully, FP (False Positive) indicates the background pixels that
are incorrectly judged as lesion pixels, while FN (False Negative) denotes the lesion pixels
that are wrongly judged as background pixels. The corresponding formula of each index is
shown in Eqs. (3–9).

Acc =
∑

T P + ∑
T N

∑
T P + ∑

T N + ∑
FP + ∑

FN
× 100% (3)

Dice = 2
∑

T P
∑

FP + 2
∑

T P + ∑
FN

× 100% (4)

Jaccard =
∑

T P
∑

FP + ∑
T P + ∑

FN
× 100% (5)

Precision =
∑

T P
∑

T P + ∑
FP

× 100% (6)

Recall =
∑

T P
∑

T P + ∑
FN

× 100% (7)

F1=2(Precision · Recall)
(Precision + Recall)

× 100% (8)
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Table 2 Brief introduction of comparison networks

Order Network Year References Type

1 FCN 2015 [19] Non U-shaped network

2 PSPNet 2017 [34]

3 DeepLab v1 2014 [35]

4 DeepLab v2 2017 [36]

5 DeepLab v3 2017 [37]

6 DeepLab v3 + 2018 [38]

7 U-Net 2015 [21] U-shaped network

8 SmaAt-UNet 2021 [45]

9 OAU-net 2022 [44]

10 SegNet 2017 [20]

11 Refine Net 2017 [40]

12 FAT-Net 2022 [29] Combined with transformer

13 SUNet 2022 [67]

14 Swin-Unet 2021 [31]

Speci f ici t y =
∑

T N
∑

T N + ∑
FP

× 100% (9)

4.3 Contrast Models

As shown in Table 2, we introduce 14 comparison models to objectively verify the Semantic
Segmentation effect of FTUNet, the networks we introduced have the following implications.
From the perspective of network structure, these models are constructed by traditional seg-
mentation networks (FCN, PSPNet, DeepLab v1, DeepLab v2, DeepLab v3, DeepLab v3+),
U-Net and its variants (U-Net, SmaAt-UNet, OAU-net, SegNet, Refine Net), and the Trans-
former structures (FAT-Net, SUNet, Swin-Unet). Therefore, we adopt these representative
networks as comparison models to verify the segmentation effect of FTUNet.

4.4 Implementation Detail

The 5-Fold cross-validation is implemented for the image samples to be trained, which
includes 4 training parts and 1 test part. Validation occurred 5 times, with 100 rounds each,
resulting in 500 epochs per model. The average of 8 indicators was then computed. Other
training details include: Batch Size is 4, Learning Rate is 1e-4, the Loss Function is BCE-
WithLogitsLoss. For this Loss Function, its formula is shown as Eq. (10), where the pix
represents the number of pixels, predi is prediction, gti is Ground Truth, sig is Sigmoid
activation function.

BCEWithLogitsLoss(pred, gt)

= 1

pix

∑pix

i=1

[
gti · log(sig(predi ))+ (1− gti ) · log(1− sig(predi ))

] (10)
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4.5 Comparative Study

4.5.1 Comparison of Indicator Values

We first perform a comparative analysis of multi-indexing with U-shaped and non-U-shaped
networks, which include both the classical model and the newly proposed SOTA models in
recent two years.

Table 3 shows FTUNet outperforming 11 models in 5 of 8 indicators, notably in ACC
(98.8236%), Dice (97.4635%), and Jaccard (95.1379%). Specificity and Precision ranked
2nd and 3rd, showcasing superior pathological figure segmentation. Furthermore, FTUNet
achieved 98.0188% in Recall and 97.4635% in F1, indicating increased sensitivity to
pathological pixels at the expense of some Precision (97.0171%, ranking 3rd), enhancing
segmentation accuracy. Given FTUNet’s superiority, these differences signify its significant
outperformance. Apart fromFTUNet, theDeepLab family, notablyDeepLab v3+ , displayed
outstanding performance, achieving the highest Precision (97.8074%) andAUC (99.6031%).
U-Net, SmaAT-UNet, SegNet, FCN, and PSPNet also excelled with Dice consistently above
95%, reflecting high pixel-level similarity. Their ACC exceeded 98%, highlighting accuracy
superiority. Specifically, SegNet and FCN exhibited Jaccard values above 94% (94.5945%
and 94.0644%, respectively), indicating substantial overlap between segmented and labeled
pixels. SmaAT-UNet stood out with the highest Specificity (99.8270%) but a relatively lower
AUC (83.3388%), suggesting a tendency to classify all pixels as background. In contrast,
OAU-net performed relatively well, especially in Specificity (99.7675%), while Refine Net
lagged behindwith 87.8590%, 84.8032%, and 96.3426% forDice, Jaccard, andAcc.Notably,
the Wilcoxon Test P-values for ACC differences between FTUNet and other models in the
Lung dataset were all below 0.05, indicating statistical significance. UNet was an exception
with aP-value of 6.51E-01, suggesting no significant difference from FTUNet. Overall, these
P-values underscore the substantial distinctions in accuracy between FTUNet and the other
models.

In Table 4, FTUNet excelled in 7 out of 8 evaluation indicators, achieving outstanding
scores in Dice (95.0725%), Jaccard (90.9817%), Precision (96.4227%), F1 (95.0725%),
Specificity (99.6840%), AUC (97.0795%), and Acc (97.5609%). Notably, FTUNet outper-
formed DeepLab v3 + in key metrics—Acc, Dice, and Jaccard—by 1.1121%, 0.5637%,
and 1.1970%, affirming its superiority over the DeepLab family. DeepLab v3 + showed
enhanced Recall at 94.5349%, slightly surpassing FTUNet and indicating heightened sensi-
tivity in segmenting pathological pixels. Other notable models include FCN and OAU-net,
both exceeding 90% in Dice and 82.5% in Jaccard, demonstrating effective differentiation
of pathological pixels from skin pixels, though slightly below FTUNet and DeepLab v3 +
. SmaAT-UNet ranked 3rd in Acc at 94.5913%, surpassing OAU-net and FCN but trailing
FTUNet by 2.9695%. Similarly, SegNet ranked 3rd in Precision at 98.4664%, showcasing
proficiency in identifying pathological pixels, though FTUNet outperformed by 1.2176%.
FCN, ranking 3rd in F1 at 90.6123%, demonstrated effective segmentation while being sur-
passed by FTUNet by 4.4602%. Underperforming models in this dataset include Refine Net,
DeepLab v1-3, and PSPNet, all with lower Acc than U-Net. Refine Net exhibited the lowest
performance across all indicators, attributed to sensitivity to learning rate, as confirmed by
subsequent image analysis. The Wilcoxon Test, applied to the Skin dataset, revealed sig-
nificant differences between FTUNet and other algorithms, including UNet, with P-values
below 0.05. Notably, the lowest P-value corresponded to DeepLab v1, indicating substantial
differences in ACC data distribution between this model and FTUNet.
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In examining the Drive dataset (Table 5), FTUNet experiences a slight decline, yet still
secures the top position in Jaccard (67.7485%) and Accuracy (97.0639%), while ranking
second in the remaining six indicators (Dice, Precision, Recall, F1, Specificity,AUC).Despite
this dip, FTUNet’s overall stability remains significant. The algorithm encounters challenges
due to the fine segmentation granularity of veins in eye blood vessels, resulting in initial
rounds with indices at 0 in every 100 rounds within 500 iterations. However, subsequent
rounds witness a surge, surpassing most comparison models. In general, FTUNet exhibits
the best average value among the eight indicators at 82.6418%, outperforming U-Net (2nd)
at 82.1904%. This underscores FTUNet’s strong segmentation performance, especially on
fine-grained objects.

Combining the above data, we discuss the reasons for the excellent results of FTUNet
model on 8 indicators in the following 3 aspects. (1) ASPP-InceptionModule. The FTUNet’s
prowess is notably anchored in the deployment of the ASPP-Inception module, a sophisti-
cated fusion of ASPP and Inception structures. (2) Dual Encoder Mechanism. The FTUNet’s
Encoder structure stands out due to the strategic integration of a dual Encoder mechanism,
which harmoniously combines local and global information. (3) Receptive Field Widen-
ing with PA Module. Inspired by established models like FCN and PSPNet, the FTUNet
employs a sophisticated approach to widen its receptive field. Overall, the average Acc of
DeepLab families, U-Net series, and receptive field widening series models are 94.1430%,
94.8394%, and 94.4737%, respectively, while the average Acc of FTUNet is 97.8161%,
which is 3.6732%, 2.9768%, and 3.3424% higher than these three types of models, respec-
tively. FTUNet’s exceptional performance stems from its proficient handling of intricate edge
semantic information and its effective segmentation of irregular shapes.

4.5.2 Comparison of Segmented Images

In our pursuit of diverse image samples to enrich model training, we have incorporated
operations such as flipping, translation, and zooming. These augmentations are intended to
preserve image authenticity while broadening sample diversity. The assessment of LUNG
CT segmentation holds paramount significance in clinical diagnosis and treatment. Figure 5
delineates the performance of FTUNet and comparative models on this dataset, facilitating
a visual juxtaposition of segmentation effects. Figure 5a depicts the original lesion image,
Fig. 5b provides pixel-level annotations by experts. For an intuitive comparison, we present
five image contrast domains denoted 1–5 in red boxes. Adverse effects are accentuated with
yellow boxes.

Figure 5 unveils that various networks demonstrate commendable segmentation effects,
satisfying Semantic Segmentation requisites. U-shaped architectures, exemplified by U-Net
(Fig. 5d), facilitate feature capture and image restoration through intricate encoding and
decoding structures. However, U-Net manifests a deficiency in pixel filling during upsam-
pling (marker 3). OAU-net (Fig. 5e) and SmaAT-UNet (Fig. 5f), both U-shaped networks,
excel in handling irregular edges. OAU-net employs a Sobel operator-like mechanism for
precise lung edge representation, while SmaAT-UNet leverages an enhanced attention mech-
anism for meticulous feature control, effectively addressing the void at marker 3. SegNet
(Fig. 5g) and Refine Net (Fig. 5h) also exhibit commendable performance, with SegNet
demonstrating finer granularity owing to its utilization of the VGG16 encoding. However,
the surplus segmentation granularity in SegNet may lead to sensitivity issues, as discerned
in the yellow box highlighting fusion problems.

The DeepLab family of networks plays a key role on non-U-shaped networks. As the
optimal model, DeepLab v3 + (Fig. 5m) achieves the cross-block fusion of feature maps,
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(d) U-Net (e) OA-UNet

(a) Original Lesion Image (f) SmaAT-UNet (g) SegNet

(h) Refine Net (i) FCN

(b) Ground Truth (j) DeepLab v1 (k) DeepLab v2

(l) DeepLab v3 (m) DeepLab v3+

(c) Ours (n) PSPNet

Fig. 5 Segmentation of LUNG CT images

and its segmentation effect has been perfectly displayed on issues such as edge contour and
internal filling. Furthermore, as an earlier fully convolutional structure, FCN implements
skip structures of different depths and integrates semantic information of different depths.
As an improvement, PSPNet achieves richer feature grasping on the scale of the receptive
field. However, the image shows that on the basis of the general Semantic Segmentation, the
local details are still insufficient (Fig. 5n). As the network proposed in this paper, FTUNet
combined with the Transformer ViT mechanism to globally realize the attention mechanism
of image processing. Meanwhile, combined with the downsampling information, the gener-
alized information mining of the Inception structure is implemented at the bottom layer with
the most channels. According to Fig. 5c, our segmentation results are basically consistent
with the ground truth (markers 1, 4, and 5), and can overcome the loss of upsampling infor-
mation and avoid rough pixel completion (marker 3). However, there are still some flaws in
marker 2.

As canbe seen from theFig. 6, themodel generally has a certain ability to identify the lesion
area, but the labeled part still poses a great challenge to the effect of the network. Among the
contrast models, U-Net (Fig. 6d) and its variants (Fig. 6e–h) have certain advantages in edge
processing, but because the colors at the junction are too close, it is easy to mistake the skin
as the lesion area. For example, the judgment results of images such as U-Net, SmaAT-UNet,
SegNet and Refine Net in the fourth lesion area verify that this kind of U-shaped network is
insensitive to the lesion and background,which ismainly due to the coarse-grained processing
of upsampling. Specifically, Refine Net performs similarly on LUNG datasets and is very
sensitive to the learning rate. Segmentation is not possible on 1e-4, so we adopt the parameter
of 1e-6 to get the Fig. 6h. In addition, the DeepLab family still maintains excellent results
in the processing effects of other networks. The image shows that the feature extraction
effect is greatly affected by using the ResNet as the Encoder. This shows that ‘deep network
combined with residual’ has a strong auxiliary effect on the segmentation effect. Such as the
lesion segmentation image of Fig. 6l, m shows that, with the optimization of the DeepLab
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(h) Refine Net (i) FCN

(b) Ground Truth (j) DeepLab v1 (k) DeepLab v2

(l) DeepLab v3 (m) DeepLab v3+

(c) Ours (n) PSPNet

(d) U-Net (e) OAU-net

(a) Original Lesion Image (f) SmaAT-UNet (g) SegNet

Fig. 6 Segmentation of SKIN Melanoma images

series, the capture of details will be more fine-grained. In addition, FCN and PSPNet also
have a more ambiguous edge treatment.

It can be seen from the Fig. 7 that most models have good segmentation effect and basic
ability to deal with fine-grained objects, but the processing effect is slightly biased. The exper-
iment shows that the traditional lightweight U-shaped network has better detail processing
ability and better discrimination on the segmentation of blood vessel trend. In contrast, a large
number of improved networks perform poorly in eye blood vessel segmentation, especially
in the early series of DeepLab family. Although the ASPP module is applied, the image
results prove that it is difficult to achieve blood vessel segmentation by using a single hole
technology. While FTUNet adopts a parallel ASPP structure, and the image proves that seg-
mentation can be realized better with the support of rich semantics extracted from multiple
dilations in parallel.

From Figs. 7, 8, 9, it is evident that FTUNet demonstrates outstanding performance in

(a) Original Image (b) Ground Truth (c) Ours (d) U-Net (e) OAU-net (f) SmaAT-UNet (g) SegNet

(h) Refine Net (i) FCN (j) DeepLab v1 (k) DeepLab v2 (l) DeepLab v3 (m) DeepLab v3+ (n) PSPNet

Fig. 7 Segmentation of DRIVE images
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Fig. 8 Training effect of 500 epoch of different models on two datasets
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(a) Original Medical Image (b) Ground truth (c) FTUNet

(e) SUNet (f ) FAT-Net (g) Swin-Unet

Fig. 9 Segmentation results of FTUNet and different Transformer variant models on LUNG

image segmentation, owing to its meticulously crafted network architecture that adeptly
processes features encompassing large areas, ambiguous edges, and fine-grained structures
in images. LTrans empowers FTUNet to handle extensive information by extracting semantic
details at varying levels from different depth sequences of the Transformer layer, achieving a
comprehensive understanding of the overall image structure. ASPP-Inception, with a focus
on addressing fuzzy edge information, utilizes parallel microscale convolution kernels and
ASPP modules to enhance semantic feature learning for target edges, thereby improving
sensitivity and accuracy in fuzzy or complex edge areas. Additionally, the PA mechanism,
through a reassessment of channel weights, optimizes attention to different features, enabling
FTUNet to excel in handling fine-grained image structures, particularly in preserving detailed
information. This multi-level design allows FTUNet to selectively process various image
features, offering a comprehensive and robust solution for image segmentation tasks.

4.5.3 Comparison of Training Process

Since the Jaccard is the indicator that can best reflect the superiority of the models, Fig. 8
shows the comparison results of learning efficiency of different networks on Jaccard in 3
datasets during the learning process. In order to magnify the contrast effect, a breakpoint is
set in Fig. 8a. It can be seen from the data in the figures that the model proposed by us is
superior to the other comparison models, mainly reflected in two aspects: 1) Indicator values
are more stable. In the analysis of different indicators, the FTUNet model may not have the
highest value in a compromise of an indicator, but it is the most stable. For example, the data
of DeepLap v3+ in the fourth and fifth fold are higher than that of the FTUNet model, but the
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range of data fluctuation is large, and the indicator value will have a relatively serious shock,
even falling to 92.82% in the third fold. 2) The indicator values are generally higher. The
value of FTUNet model in different indicators is ahead of other models. Taking DRIVE data
set as an example, the average of well-performing U-Net was 64.5421% (ranked second),
while the average of FTUNet was 67.745%, which was 3.2064% higher than the second and
7.9541% higher than the third (SmaAT-UNet).

4.5.4 Comparison with Networks with Transformer Structure

The method proposed in this study is a Semantic Segmentation model combined with the
Transformer, which is a deep network supported by global attention. Further, we hope tomake
a deep comparison with similar networks, that is, Semantic Segmentation networks with a
Transformer as its internal structure. We believe that the exploration of the analogy network
with Transformer can more authoritatively and objectively verify the advanced effects of
FTUNet.

It can be seen from the Table 6 that FTUNet still has a good effect compared with different
Transformer type Semantic Segmentation networks. According to the data, FTUNet achieves
the optimal value in 7, 8, and 7 indicators respectively, which verifies the superior character-
istics of all Transformer structural networks. In terms of performance enhancement, FTUNet
not only relies on AP to redistribute channel weights and AI to mine semantic features; It
has also been greatly influenced by the optimized Transformer, which can be verified by the
ablation experiment in Sect. 4.6.2. In Transformer, the FTUNet correlation structure takes a
hierarchical approach andwe expect tomine and process different levels of attention informa-
tion separately, rather than passing it to the deepest part of the U shape. Therefore, the model
matches the context information of different depths in Transformer with the corresponding
position of U-shaped and processes it uniformly.

Other Transformer structures have different optimizations here, but with certain limita-
tions. For example, the FAT is a dual-Encoder model, and the results of Transformer are
directly sent to Bottleneck. While SUNet and Swin-Unet are mechanisms based on shifted
windows, which not sensitive to small granularity objects, such as DRIVE datasets.

Figures 9, 10, and 11 demonstrated the effects of Transformer models for Semantic Seg-
mentation in 3 datasets.

In the LUNG dataset in Fig. 9, the Ground truth (Fig. 9b) marks two obvious differ-
ences, which respectively examine the cohesion granularity of the segmented image and the
ability to capture edge features. By comparison, it can be found that in the first mark, FAT-
Net, SUNet, and Swin-Unet have poor segmentation processing capabilities for fine-grained
images, resulting in excessive fusion. We believe that the reasons come from many aspects,
including the waste of shallow features of images and the inadequacy of deep semantic
information mining. On the contrary, the ASPP-Inception module designed in our model
increases the depth of the model and also increases the nonlinearity of the network, making it
more sensitive to fine-grained image information. Moreover, mark 2 examines the detection
of irregular edges, and each Transformer variant has different segmentation results for this
local feature. Among them, SUNet and Swin-Unet using Shifted Windows mechanism are
relatively rough to deal with this problem, which reflects the problem of inaccurate relation-
ship calculation when performing global attention mechanism on each token. In addition,
we also pay extra attention to the judgment of pixels in the process of image upsampling.
SUNet has “holes” in filling, which reflects the imprecision of feature extraction in the early
stage. In fact, we believe that semantic fusion of different depths can effectively deal with
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(a) Original Medical Image (b) Ground truth (c) FTUNet

(e) SUNet (f) FAT-Net (g) Swin-Unet

Fig. 10 Segmentation results of FTUNet and different Transformer variant models on SKIN

this problem. The LTrans adopted by FTUNet is dedicated to making full use of each layer
of features and passing them to the decoding to achieve pixel classification with upsampling.

In addition, the SKIN andDRIVE datasets have similar problems.We proposed twomarks
in Figs. 10 and 11 to examine the segmentation granularity for irregular edges. The images
demonstrated that FTUNet has better results. Other Transformer networks can generally
achieve the expected results, but there are other noise defects.

4.6 Ablation Study

4.6.1 Description of Ablation Models

The Table 7 shows the idea of structural ablation. In order to verify the performance of each
component on three datasets, we divided the ablation model into two parts: Main Module
Ablation (MMA) andSupplementaryAblation (SA). Themodel involved inMMA is themain
model in the ablation experiment. It combines the three components we proposed: LTrans,
AI, and PA in the form of single module, double modules, and triple modules, and goes deep
into each layer. In addition, considering the problem of gradient disappearance and network
degradation caused by the deepening of network layers after adding new components, we
added residual networks at Skip Connection and Bottleneck respectively. On this basis, we
also carried out SA,which is roughly the sameas the idea ofMMA.However,when combining
modules, we tried to add modules in different places, change the channel of module results,
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(a) Original Medical Image (b) Ground truth (c) FTUNet

(e) SUNet (f) FAT-Net (g) Swin-Unet

Fig. 11 Segmentation results of FTUNet and different Transformer variant models on DRIVE

and increase the number of modules, such as adding AI modules to the Encoder part and
adding two AI components.

4.6.2 Ablation Analysis

Tables 8 and 9 respectively show the ablation analysis of FTUNet on different datasets and
demonstrate the optimal characteristics of the current model structure. The ablation is divided
into two parts, MMA (blue) and SA (orange), each with a gradient color representing the
number of components inside. From the macro point of view, FTUNet has achieved the best
performance in 5 and 4 indicators, respectively. Specifically, the following conclusions can
be fully verified by the comparative experimental data.

(1) The effectiveness of three modules. The data demonstrated that the three types of
modules embedded respectively on the Baseline can improve the performance of each
indicator. The experimental data in the above tables verified the strong supporting effect
of LTrans, AI, and PA modules on semantic inference. It is worth discussing that dif-
ferent modules have different degrees of improvement under different data sets, so it
cannot be simply confirmed that which module has the best performance improvement
effect. Taking the Dice index as an example, in the LUNG data set, AI has the best
improvement effect, which is 10.0092% higher than Baseline, while the PA module
has the best effect on SKIN, which is 2.9723% higher than Baseline. Moreover, taking
Jaccard as an example, LTrans and PA showed the best performance in the two datasets,
with an increase of 9.5193% and 5.0373%, respectively.
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Table 7 Design of ablation models

Type Model formulation Model perturbations Simplified image Component

MMA Baseline Transformer + unet –

Baseline + LTrans Traditional
transformer in
Baseline becomes
LTrans

With a single
module

Baseline + AI The double
convolution module
at Bottleneck in
Baseline becomes
AI module

Baseline + PA Add PA attention
mechanism module
at Skip Connection
in Baseline

Baseline + LTrans + AI +
Res(SC)

Add LTrans module,
AI module to
Baseline and add
residual network at
Skip Connection

With double
modules

Baseline + AI + Res(PA) Baseline adds PA
module and AI
module, and adds
residual network at
both ends of PA
module

Baseline + LTrans + AI +
PA

Add LTrans module,
AI module, PA
module to Baseline

With trible
modules

Baseline + LTrans +
Res(AI) + PA

Add LTrans module,
PA module, AI
module to Baseline
and add residual
network at both
ends of AI module

Baseline + LTrans + AI +
Res(PA), FTUNet

Add LTrans module,
AI module, PA
module to Baseline
and add residual
network at both
ends of PA module
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Table 7 (continued)

Type Model formulation Model perturbations Simplified image Component

SA Baseline + Encoder(AI) Add the
ASPP-Inception
module in the
Encoder part of the
Baseline

With a single
module

Basline + Double(AI) Double convolution at
Baseline’s
Bottleneck is
replaced by two AI
modules

Baseline +
UnifiedCh(LTrans)

Channel of the images
obtained by the
LTrans module is
upsampled to 192
and then spliced
into the Baseline

Baseline + LTrans + AI Add LTrans module
and AI module to
Baseline

With double
modules

Table 8 Ablation validation on LUNG datasets

Networks Dice Jaccard Precision Recall F1 Spe. AUC Acc.

Baseline 86.9501 85.0955 89.6984 86.2294 86.9501 99.8977 92.6250 96.4910

Baseline + LTrans 96.9593 94.6148 96.7457 97.5755 96.9593 99.7797 97.9399 98.7017

Baseline + AI 96.9312 94.5181 96.2708 97.7421 96.9312 99.7600 97.7302 98.6347

Baseline + PA 96.6687 94.4872 96.1116 97.4309 96.6687 99.7839 97.9850 98.6734

Baseline+Ltrans+AI+Res(SC) 97.3863 95.1033 97.1174 97.8971 97.3863 99.7991 98.1615 98.8167

Baseline + AI + PA 97.0077 94.7930 97.1900 97.4155 97.0077 99.8055 98.0173 98.7504

Baseline + Ltrans + AI + PA 97.1876 94.6609 96.5165 98.0384 97.1876 99.7511 97.7461 98.6879

Baseline+Ltrans+Res(AI)+PA 96.4076 93.6294 95.8311 97.6812 96.4076 99.675 97.4747 98.3734

Baseline + Ltrans + AI +

Res(PA)

(Ours: FTUNet)

97.4635 95.1379 97.0171 98.0188 97.4635 99.7878 98.1640 98.8236

Baseline + Enconder(AI) 97.2688 94.9575 97.6180 97.0471 97.2688 99.8413 97.9804 98.7716

Baseline + Double(AI) 96.7688 94.3799 96.1904 97.4903 96.7688 99.7744 97.5507 98.6208

Baseline + UnifiedCh(Ltrans) 25.1263 20.9807 56.2271 21.0091 25.1263 99.9977 59.6134 81.4467

Baseline + Ltrans + AI 97.2594 94.7453 96.5556 98.0821 97.2594 99.7581 97.8076 98.7110

Bolded font means that the data for the indicator is ranked first in all comparative models
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Table 9 Ablation validation on SKIN datasets

Networks Dice Jaccard Precision Recall F1 Spe. AUC Acc.

Baseline 91.6900 85.6057 92.8760 91.9076 91.6900 99.2810 96.6658 95.6869

Baseline + LTrans 94.1648 89.9137 95.0968 94.0093 94.1648 99.5941 97.0763 97.2892

Baseline + AI 94.3094 90.2276 95.7754 93.2678 94.3094 99.6883 96.9292 97.3750

Baseline + PA 94.6623 90.6430 95.8203 93.9831 94.6623 99.6073 97.0721 97.4063

Baseline+LTrans+AI+Res(SC) 95.0349 90.8754 96.1567 94.4617 95.0349 99.6408 97.3563 97.5028

Baseline + AI + PA 94.7354 90.5152 96.4343 93.8281 94.7354 99.6931 96.8760 97.4094

Baseline + LTrans + AI + PA 94.1702 89.9399 95.0261 94.2190 94.1702 99.5237 96.9829 97.2601

Baseline+LTrans+Res(AI)+PA 93.5893 89.0949 94.0854 94.0306 93.5893 99.4594 96.9148 96.9058

Baseline + LTrans + AI +

Res(PA)

(Ours: FTUNet)

95.0725 90.9817 96.4227 94.3093 95.0725 99.6840 97.0795 97.5609

Baseline + Enconder(AI) 94.6244 90.1382 96.4713 93.4051 94.6244 99.6987 97.1646 97.2362

Baseline + Double(AI) 94.2375 90.0105 96.2196 92.8826 94.2375 99.6963 96.7241 97.2591

Baseline + UnifiedCh(LTrans) 71.9030 62.1797 96.4189 62.7264 71.9030 99.9420 81.6529 89.4978

Baseline + LTrans + AI 94.0640 89.8538 94.8540 94.0188 94.0640 99.5761 97.0339 97.2763

Bolded font means that the data for the indicator is ranked first in all comparative models

(2) Effectiveness ofmodule composition. Furthermore, we discuss the combination effect of
these three modules, and find that in most cases, the combination embedding of any two
modules is better than the individual embedding of a single one. Both datasets validated
the above conclusions. For example, the ablation model “Baseline + LTrans + AI +
Res (SC)” outperformed the model embedding alone by 8 and 7 metrics, respectively, in
both datasets. This shows that the combination of the two modules allows the network
to further enhance the features over a wider range of image receptive field. Meanwhile,
with the support of the Transformer, the attention mechanism has been raised to a higher
level. Further, we combined three types of modules to achieve three combinations, and
demonstrated more outstanding results. These combinations respectively consider the
common embedding of the three modules, the addition of residuals at AI under common
embedding, and the addition of residuals at PA under common embedding. It can be seen
from the results that FTUNet has the best effect among the above methods. Generally,
with the increase of network depth, the improvement trend of learning effect will be
gradually slow, and even the phenomenon of learning degradation will occur. In order
to avoid this problem, we introduce the residual mechanism, so that the model tries to
realize learning reinforcement through the strategy of “short-circuit”. The experimental
data show that the residual added at PA is better than that at AI, because the attention
mechanism may cause “too much amplification or reduction” in the process of realizing
weight polarization. In short, the model finally adopts the result of “Baseline + LTrans
+ AI + Res(PA)” to obtain a better effect.

(3) It is difficult to achieve optimal results for different locations and different numbers of
modules. To further complement the validation, wemade some other attempts, including
adjusting the position of the lightweight AI, adding its serial number, and so on. How-
ever, experiments show that AI is difficult to maximize its value in the Encoding part,
while the traditional double convolution effect is better than “deeper” or “wider” net-
works.Moreover, the continuous addition of AImodules at Bottleneck does not enhance
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network learning ability. This is because the features of the network have reached satu-
ration at this time, and too many 1 * 1 convolution kernels will destroy the integrity and
correlation of the original features, so the serial setting does not seem to be the optimal
option either.

5 Conclusion

This study proposes a U-shaped Semantic Segmentation network FTUNet with double
Encoder branches, which achieves accurate semantic inference of medical images by
enhancing features. This network combines the ViT, the proprietary model of Transformer
architecture in CV domain, and establishes a hierarchical context information transfer rela-
tionship with different depths from U-shaped Network. In addition, an inception-like ASPP
structure is proposed to capture important local features in order to further explore the seman-
tic information of LTrans andU-shaped encoding. Finally, a lightweight attentionmechanism
is proposed to strengthen and suppress features and redistribute the weights of different
channels. FTUNet and 14 kinds of comparison networks have realized the comprehensive
comparison of process data, image data, and overall data on 3 kinds of data sets, which veri-
fies the superiority of the network. Meanwhile, 13 ablation networks constructed also proved
the best structure of the current model.

In the experiment, we also found that FTUNet has certain defects. For example, compared
with other lightweight networks such as U-Net, its parameter quantity has a significant
increase, which means that the training time of the model needs to be longer.

A large number of experiments in this study demonstrated the superiority of the combi-
nation of convolution and Attention. The next step of work will continue to focus on the
optimization of the Transformer, paying attention to the internal structure of the Transformer
Encoder components, and connections to achieve multiple types of attempts. In addition,
the processing of image patches will also try to implement different granularity strategies to
achieve better segmentation.
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