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Abstract
The deep forest presents a novel approach that yields competitive performance when com-
pared to deep neural networks. Nevertheless, there are limited studies on the application of
deep forest to time series classification (TSC) tasks, and the direct use of deep forest cannot
effectively capture the relevant characteristics of time series. For that, this paper proposes
time series cascade forest (TSCF), a model specifically designed for TSC tasks. TSCF relies
on four base classifiers, i.e., random forest, completely random forest, random shapelet for-
est, and diverse representation canonical interval forest, allowing for feature learning on the
original data from three granularities: point, subsequence, and summary statistics calculated
based on intervals. The major contribution of this work, is to define an ensemble and deep
classifier that significantly outperforms the individual classifiers and the original deep forest.
Experimental results show that TSCF outperforms other forest-based algorithms for solving
TSC problems.

Keywords Time series classification · Deep forest · Shapelet · Interval

1 Introduction

Time series is a continuous collection of data with a temporal relationship that presents
unique classification challenges compared to traditional data. In recent years, numerous
methods dedicated to time series classification (TSC) have emerged. For example, dynamic
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time warping (DTW) and its variants have been shown to be competitive similarity measures
in solving TSC problems [1–3]. Shapelets [4], discriminating and interpretable subsequences
found within time series, are generally used as the basis for decision tree node splitting, with
proven advantages in improving accuracy. Calculating summary statistics based on intervals
[5, 6] is also one of the main TSC methods, which find discriminating features on different
intervals by randomly extracting intervals in sequences and calculating various statistics.

Decision trees’ performance has made them a popular choice for classification tasks,
leading researchers to propose several forest-based TSC algorithms. Traditional methods,
such as random forest (RF) and completely random forest (CRF), consider the original time
series at the point-level and select a single attribute in the decision tree node, that is, a point in
the time series as the splitting basis. Generalized random shapelet forest (RSF) [7] randomly
selects both the training data and subsequences to construct the basic decision trees, which
focuses on feature learning at the subsequence-level. Time series forest (TSF) [5], on the other
hand, summarizes the interval statistics as input for decision trees. However, TSF only uses
three simple summary statistics: the mean; standard deviation; and slope. Canonical interval
forest (CIF) [6] combines TSF and Catch22 [8], including 25 features to sample randomly.
Diverse representation canonical interval forest (DrCIF) [9], as an extension of CIF, extracts
intervals from three representations of time series and uses 29 statistics to form a pool
of feature candidates. Nonetheless, the forest-based methods above only consider a single
granularity feature of time series, i.e., point, subsequence, or summary statistics. As such,
each algorithm overlooks time series characteristics demonstrated by other granularities,
resulting in limitations in classification accuracy.

The gcForest [10] uses forests to emulate neural network connectivity and has fewer
hyperparameters than deep neural networks (DNNs). Themodel’s structure has twomodules:
multi-grained scanning, which extracts features using varying-sized windows, and cascade
forest, a layer-by-layer processing system with two RFs and two CRFs. We conducted exper-
iments using gcForest on UCR datasets,1 but it did not outperform existing forest-based
methods. Although gcForest considers information of different granularities through sliding
windows with different sizes, it fails to fully consider the characteristics of the time series
itself, i.e., temporal order, slope information, similarity between different time series, etc.
Examining how to enhance the performance of gcForest to meet the needs of TSC tasks is a
crucial topic warranting our attention.

Considering the challenges mentioned above, our aim is to improve the forest-based
approach by embedding forest-based classifiers suitable for TSC based on the cascade struc-
ture of gcForest. This paper proposes a novel forest-based ensemble algorithm called time
series cascade forest (TSCF). TSCF integrates four base classifiers, including RF, CRF, RSF,
and DrCIF. By using them, while ensuring the diversity of the model, multi-granular feature
learning of time series is realized. Our main contributions are as follows.

• We propose a deep forest model specifically designed to solve the TSC task, which
embeds four forest-based classifiers into cascade layers to form the cascade forest.

• The model implements multi-granular feature learning by considering point-level fea-
tures, discriminative subsequences, different statistics for phase dependent intervals.

• Experiments on 113 UCR datasets show that TSCF outperforms existing forest-based
methods and is highly competitive with other baselines.

The structure of this paper is as follows. In Sect. 2 we review various categories of relevant
studies. In Sect. 3 we detail the individual classifiers in TSCF and its overall architecture. In

1 http://www.timeseriesclassification.com.
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Sect. 4 we first present and analyse experimental comparisons of TSCF and the current state-
of-the-art in TSC, then compare TSCF and its variants, and perform ablation experiments.
Finally, in Sect. 5 we summarise our conclusions and discuss future work.

2 RelatedWork

In this section, we present a non-exhaustive review of the state-of-the-arts in TSC algorithms,
grouping them as distance-based, shapelet-based, interval-based, dictionary-based, hybrid,
and deep learning methods based on our research needs.

Distance-based methods utilize various distance calculation techniques to measure the
similarity/dissimilarity between two time series. The DTW-based nearest neighbor classifier
serves as a popular baseline for comparison. For the improvement of DTW, considerations
such as the first derivative [1], imposing a penalty [3], and the local slope [2] have been
explored. There are also several other distance measures, for example, move-split-merge
(MSM) [11] transforms any time series into any other time series by three fundamental oper-
ations: move, split, andmerge. The elastic ensemble (EE) [12] integrates the nearest neighbor
classifiers based on 11 distance measures and proves that this ensemble method is better than
any single composition method and DTW. Shape dynamic time warping (shapeDTW) [13],
which enhances DTW by taking point-wise local structural information into consideration.

Shapelet-based approaches concentrate on distinctive local features of time series, which
can be categorized into two types. The first uses shapelets [4] as a basis for decision tree
node splitting. In addition to the previously mentioned RSF [7], random pairwise shapelets
forest (RPSF) [14], unlike RSF which selects one shapelet at the node for splitting, uses a
pair of shapelets from different classes to construct trees. To enhance the selection accuracy
and calculation speed of shapelets, researchers have formulated several improved methods
by using intelligent caching and exploiting a random projection technique on the symbolic
aggregate approximation representation to search shapelet candidates. To optimize time com-
plexity, the algorithm learns about shapelets in close proximity to the optimal ones [15] and
employs local fisher discriminant analysis [16]. The second type is shapelet transformation
(ST) initially proposed in [17]. Data are transformed into a new feature space by calculating
the distance between the original data and the selected k best shapelet candidates, which is
adaptive to different classifiers.

In addition to the TSF, CIF and DrCIF mentioned above, interval-based methods also
include random interval features (RIF) [18], which does not use time domain intervals but
two transformed representations of data, includingRIF_ACF for autocorrelation-transformed
data and RIF_PS for the power spectrum-transformed data. Unlike TSF, random interval
spectral ensemble (RISE) [19] only randomly selects an interval for each base classifier,
and then calculates the periodogram and auto-regression function based on the interval and
stitches them into feature vectors and then builds trees. Supervised time series forest (STSF)
[20] has supervised extraction intervals and screens the intervals that can be preserved with
Fisher scores. There are also time series bag of features (TSBF) [21], learned pattern similarity
(LPS) [22], etc.

Dictionary-based methods extracts words from a time series through a sliding window
and classifies them based on those words. Bag of symbolic Fourier approximation symbols
(BOSS) [23] transforms a time series into an unordered set of symbolic Fourier approximation
(SFA) words. Word extraction for time series classification (WEASEL) [24] proposes a
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specific feature transformation method to learn a smaller but more discriminating feature set
from time series.

Hybrid methods incorporate multiple perspectives of the time series. The hierarchical vote
collective of transformation ensembles (HIVE-COTE) [18] is a various ensemble contain-
ing five classifiers each from a different representation. Numerous hybrid methods, such as
random convolutional kernel transform (ROCKET) [25], time series combination of hetero-
geneous and integrated embeddings forest (TS-CHIEF) [26] and Catch22 [8], have also been
developed for TSC. Interested researchers could refer to [27] for a detailed survey of the
traditional method for TSC.

Deep learning, specifically DNNs, has been widely used in TSC problems. Time leNet
(t-leNet) [28] first uses a convolutional neural network with temporal convolutions for TSC.
Another effective approach is the multi-scale convolutional neural network (MCNN) [29]
that downsamples the original sequence in the multi-scale and multi-frequency domains.
Furthermore, fully convolutional neural networks (FCN), residual networks (ResNet) [30],
time warping invariant echo state networks (TWIESN) [31], and InceptionTime [32] are all
successfully applied to TSC. For a more comprehensive overview of deep learning methods
for TSC, we recommend interested researchers refer to [33].

3 Time Series Cascade Forest

In this sectionwewill elaborate TSCF in detail, starting with the problem definition, followed
by the four forest-based classifiers that build up the model, and then the overall structure and
complexity analysis. The running process of TSCF is described in Algorithms 1 and 2.

3.1 Problem Definition

Given a set of time series D = {Si }mi=1 of m instances with labels Y , where each time series
Si = {xij }nj=1 has n ordered real-valued observations and a discrete class label y from a
range of c possible values. A classifier is a function or mapping from the space of possible
inputs to a probability distribution over the class variable values. We consider the problem
of univariate and equal length time series. The goal of TSCF is to learn the class probability
vector aug = {v1, v2, v3, v4}, where v1, v2, v3, and v4 represent the prediction probability
of RF, CRF, RSF [7], and DrCIF [9], respectively. Classification accuracy is reported by
comparing the maximum value of the mean of the four class vectors of the last layer to the
true class label.

3.2 Forest-Based Classifiers

Since the combination of RF, CRF, RSF, and DrCIF enables the learning of multi-granular
features of time series from different perspectives, they are selected as the base classifiers for
constructing our TSCF. Details are described as follows.

(1) The RF in TSCF is an integration of traditional decision trees and increases the speed
of tree building through parallel techniques. For the node splitting of each decision tree,
as shown in Fig. 1a,

√
n point-level features of the time series are randomly selected.

The split attribute of the node is the smallest Gini index selected from the
√
n selected

attributes.
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Fig. 1 Interpretation of the model’s multi-granular feature learning

Gini(D) = 1 −
K∑

k=1

( |Ck |
|D|

)2

, (1)

where Ck is the subset of samples in D belonging to class k, and K is the number of
classes. Gini index allows the RF to learn distinguishable point features present in time
series.

(2) The CRF comprises totally random trees, each of which randomly selects a point-level
feature for splitting at every node as shown in Fig. 1a. Compared to the RF, it has a higher
level of randomness and does not consider the splitting criterion. We selected two forests
at the point-level. The CRF enhances the randomness of the model and both use parallel
tree building technology, which can reduce the model training time.

(3) In RSF [7], the shapelet acts as a discriminating subsequence of the time series that allows
the model to learn subsequence-level features. Suppose that the shapelet is defined as

Smp,q =
{
xmp , xmp+1, ..., x

m
p+q−1

}
, m represents the shapelet from the mth series, p is the

start position and q is the length of shapelet, where 1 ≤ p ≤ n − q + 1. For each
node of the decision tree, the length of the shapelet q and its starting point are randomly
determined. In each node, RSF randomly selects s shapelet candidates and then chooses
the one with the largest information gain as the final splitting basis as shown in Fig. 1b.

(4) The last base classifier is DrCIF [9], an interval based TSC algorithm. DrCIF extracts
intervals from three representations, including the primitive series, the first order differ-
ence series, and the periodograms of the entire series. The algorithm steps of DrCIF are
as follows: Firstly, randomly select k intervals from three representations, and the starting
point and length of each interval are randomly selected. a out of the pool of 29 feature
candidates (i.e. mean, standard-deviation, slope, median, inter-quartile range, min, max,
and Catch22) are randomly selected to calculate summary statistics for each interval.
Then, these features are concatenated into 3 · k · a length vector fi for each series Si , and
the new dataset F = { fi }mi=1 is used to build the time series tree [5], as shown in Fig. 1c.
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Fig. 2 Illustration of TSCF method. Each layer of the cascade consists of a RF, a CRF, a RSF, and a DrCIF.
Suppose there are three classes to be classified. Each forest outputs a three-dimensional class vector, which
concatenates with the original input time series as re-representation

3.3 Overall Structure

Inspired by gcForest, TSCF employs a cascade structure, as illustrated in Fig. 2. The original
gcForest contains multi-grained scanning and cascade forest. In TSCF, since the four forests
each perform feature learning on the data from three granularities, themulti-grained scanning
module is no longer needed.

The establishment process of cascade forest is shown inAlgorithm1. First, the first cascade
layer (line 1, as detailed in Algorithm 2) is built to obtain the class vectors generated by the
four forests, i.e., v1, v2, v3, and v4, and then aug = (||4i=1 vi ), where ||4i=1 is the concatenation
operation from class vector v1 to class vector v4. Then, we record the classification accuracy
obtained by this layer as pivot (line 2). The class vector aug obtained by the previous layer
is then stitched with the original time series and used as the input to the next cascade layer
(lines 4–5). The new accuracy rate of newpivot obtained at each layer is compared with
the previous pivot (lines 7–13), and if the accuracy of the two consecutive layers is no
longer improved (lines 11–12), the training will be automatically terminated to obtain the
final model. The final classification accuracy of the model is the ratio between the class
corresponding to the maximum value after averaging the last layer of class vectors and the
real labels Y .

Given an instance, each forest will generate an estimate of the class distribution by cal-
culating the percentage of training examples of different classes of related instances on the
leaf node, and then stitching together the class vectors obtained by all trees in the same forest
to calculate the average. The estimated class distribution forms a class vector, which is then
stitched with the original data vector to obtain a new feature representation and input to
the next layer for continued training. For example, suppose there are three classes, each of
the four forests will produce a three-dimensional class vector. Therefore, the next layer will
receive 12 (= 3 × 4) enhanced features.
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Algorithm 1 CascadeForestClassifier(D, Y, t, s)
Require: the training set D, labels Y, the number of trees t, and the number of shapelet candidates s
Ensure: classification accuracy pivot
1: Built the first cascade layer to obtain the class vector using Algorithm 2 aug =

ClassificationCascadeLayer(D, Y , t, s)
2: Set the reference performance pivot
3: while NumLayers < MaxLayers do
4: Concatenate aug and D as X
5: Build a cascade layer to obtain the class vector using Algorithm 2 aug =

ClassificationCascadeLayer(X , Y , t, s)
6: Set the reference performance newpivot
7: if pivot ≤ newpivot − δ then // Check on early stopping
8: Update the cascade layer
9: pivot = newpivot
10: else
11: Activate early stopping if there are two layers’ accuracy has not improved
12: break
13: end if
14: end while
15: return pivot

Algorithm 2 ClassificationCascadeLayer(X, Y, t, s)
Require: the representation X, labels Y, the number of trees t, and the number of shapelet candidates s
Ensure: class vector aug
1: v1← RandomForestClassifier(X , Y , t)
2: v2← CompletelyRandomForestClassifier(X , Y , t)
3: v3← ShapeletForestClassifier(X , Y , t, s)
4: v4← DrCIF(X , Y , t)
5: aug = (||4i=1 vi )
6: return aug

3.4 Complexity Analysis

For the proposed TSCF, the number of layers is N, and the number of decision trees in each
forest is t. For a set of time series has m instances with length n, the time complexity of RF
and CRF is O(tmn log(m)) and O(tmn), respectively. The computational cost for RSF is
O(tm2sn2 log(msn2)), where s is the number of shapelet candidates. Note that the time com-
plexity of DrCIF is O(tmn log(n)). Therefore, the computational cost of each layer in TSCF
depends on the highest time complexity of the four forests, that is O(tm2sn2 log(msn2)).
Finally, multiplied by the number of layers N, the time complexity of TSCF should be
O(Ntm2sn2 log(msn2)).

4 Experiments

In this section, we first describe the datasets and baseline methods used in our experiments,
and then outline the parameter settings before evaluating the performance of TSCF in terms of
accuracy and visualization. The source code of TSCF and more detailed experimental results
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of TSCF and other time series classification algorithms are available on our anonymous
website https://anonymous.4open.science/r/Time-series-cascade-forest-D1DB.

4.1 Datasets and Baseline Methods

Experiments are conducted on 113 of the 128 public UCR datasets that are widely used in
TSC studies. We have removed data with unequal length series or missing values, because
most approaches cannot handle these scenarios. We experiment with a 4.10 GHz Intel Core
i7-8750H PC machine with 24 Gigabytes of memory. We use the open source software tool
sktime2 and its deep learning variant sktime-dl3 that contain implementations of the majority
of the existing algorithms we have compared.

Twenty-one different baselines are compared against, which are grouped into the following
seven clusters.

• Distance-based methods employ similarity measures to quantify the distance between
two series, such as EE [12] and shapeDTW [13].

• Shapelet-based methods distinguish differences between categories by extracting dis-
criminating shapelets from time series, such as ST [17].

• Interval-based methods select one or more phase dependent intervals of the series and
then using summary measures calculated by intervals as features, such as RISE [19].

• Dictionary-based methods form frequency counts of repetition of subseries, then use the
histograms to build classifiers, such as BOSS [23] and WEASEL [24].

• Hybrid methods combine two or more of the single approaches, such as HIVE-COTE
V2 [9], ROCKET [25], TS-CHIEF [26], and Catch22 [8].

• Deep learning methods employ nerual networks to TSC tasks, such as InceptionTime
[32], FCN, MLP, and ResNet [30].

• The classifiers use forests as the basic classification structure, TSF [5], RSF [7], RPSF
[14], Proximity Forest (PF) [34], STSF [20], CIF [6], and DrCIF [9].

We compare them separately with the TSCF. The results of the HIVE-COTE V2, TS-
CHIEF, InceptionTime, and RPSF experiments were obtained directly from the official UCR
website or the literature, and other methods were re-evaluated on 113 datasets, and the results
are available on our supporting website. All experimental results are averaged over ten runs
on the test set.

4.2 Parameter Analysis

Parameter settings have an important impact on the accuracy of the model. For the proposed
TSCF, there are three factors, including the number of trees per forest t and the number of
shapelet candidates for each node in RSF s. Due to the large number of datasets, we randomly
selected 6 datasets from 113 UCR datasets with different numbers of time series instances,
series lengths, and classes for experiments, includingBME,CBF,Chinatown,DiatomSizeRe-
duction, GunPoint, and MoteStrain, evaluated by 5-fold cross-validation on the training set.
Figure 3 shows their classification accuracies across changes in t ∈ {25, 50, 75, 100, 125}
and s ∈ {5, 10, 15, 20, 25}.

2 https://github.com/sktime/sktime.
3 https://github.com/sktime/sktime-dl.
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Fig. 3 Parameter analysis

As shown in Fig. 3, we can observe different trends in different datasets, and half of these
datasets fluctuate moderately. Observing the dataset that is more sensitive to changes and
considering the impact on training time, we set the parameters t = 50 and s = 15.

4.3 Classification Performance

In this section, we demonstrate that TSCF is competitive in term of classification accuracy
contrast to state-of-the-art algorithms.

4.3.1 Compared with Forest-Based Benchmark Methods

We first compare benchmark forest-based methods, such as TSF [5], RSF [7], RPSF [14],
PF [34], CIF [6], DrCIF [9], STSF [20], and gcForest [10] with our TSCF. Figure 4 shows
the accuracy comparison between TSCF and the other 8 forest-based classifiers, and areas
below the diagonal line indicate that TSCF is better.

It is clear that TSCF shows outstanding performance. Compared with TSF, RSF, RPSF,
PF, CIF, DrCIF and STSF, TSCF performs better on 90, 94, 51, 97, 55, 71, 64 out of 113
(or 112/77) datasets, respectively. In addition, TSCF outperforms the original gcForest on 95
datasets. A more detailed version of the number of Wins/Draws/Losses is indicated by the
W/D/L in the bottom-right corner of Fig. 4.

Figure 5 shows the critical difference (CD) diagram [35, 36] over the average ranks of the
tested forest-based classificationmethods. The classifier with the lowest (best) rank lies in the
upper right corner. The group of classifiers that are not significantly different is connected by
a bar. The average ranking of TSCF is 2.7257 which is the lowest and there are no significant
difference between the TSCF, CIF, and STSF. TSCF performs significantly better thanDrCIF,
RPSF, TSF, RSF, and PF.

From the experimental results, it can be proved that the direct use of gcForest for TSC
tasks does not perform as well as existing forest-based methods, and the classifier that is
more suitable for TSC based on its cascade structure combination can significantly improve
the classification accuracy and perform better than the existing forest-based methods.
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Fig. 4 Accuracy comparison between TSCF and other forest-based classifiers

Fig. 5 CD diagram for comparisons among TSCF and other forest-based classifiers

Specific experimental results for TSCF and the 8 methods are shown in Table 1. The
average accuracy of TSCF on 113 datasets is 0.839, followed by CIF with 0.832. For the
1-to-1 comparison on a single dataset, the accuracy is improved by more than 10% on 6
datasets compared with CIF, such as the accuracy of PigAirwayP and PigCVP is increased
by 144.39% and 51.64%, respectively. The experimental results of RPSF came from their
paper [14], which was not re-evaluated because it was written in Java and took a long time to
train. The other methods are the result of re-runs, because each classifier in TSCF contains
50 trees, so the number of decision trees in several other forest-based methods is set to 200
(=50×4) for direct comparison with TSCF.

4.3.2 Compared with Distance/Shapelet/Interval/Dictionary-Based Methods

In addition to the forest-based methods, there are many traditional methods based on dis-
tance/shapelet/interval/dictionary to solve TSC problems.We compare TSCFwith six related
benchmarks. EE [12] and shapeDTW [13] are distance-based methods. Shapelet-based
method we select ST [17]. RISE [19] is interval-based approaches. The dictionary-based
methods we consider are BOSS [23] and WEASEL [24].
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Fig. 6 Accuracy comparison between TSCF and distance/shapelet/interval/dictionary-based benchmark clas-
sifiers

Fig. 7 CDdiagram for the average ranking comparison amongTSCFanddistance/shapelet/interval/dictionary-
based classifiers

The analysis in Figs. 6 and 7 reveals that TSCF performs significantly better than these
six methods. The experimental accuracy results for TSCF and other methods are available
on our anonymous website.

4.3.3 Compared with Hybrid Benchmark Methods

In this section, we try to analyze TSCFwith state-of-the-art hybrid methods. Hybrid methods
include HIVE-COTE V2 [9], ROCKET [25], TS-CHIEF [26], and Catch22 [8]. As shown
in Figs. 8 and 9, although our method is worse than HIVE-COTE V2 and TS-CHIEF, it is
competitive with ROCKET and better than Catch22. In addition, TSCF consists of only four
forest-based classifiers and each forest contains 50 trees. But, TS-CHIEF uses PF, BOSS,
and RISE as node splitting functions for 500 decision trees, which is more complex than
TSCF, taking into account distance, dictionary, and interval-based spectral features. HIVE-
COTE V2 contains four component classifiers: the dictionary based temporal dictionary
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Fig. 8 Accuracy comparison between TSCF and hybrid classifiers

Fig. 9 CD diagram for the comparison among TSCF and hybrid classifiers

Fig. 10 Accuracy comparison between TSCF and deep learning classifiers

ensemble (TDE); the interval based DrCIF; an adaptation of ROCKET and the latest version
of ST. Therefore, TSCF’s performance not exceeding the two of them is to be expected.
Since TSCF uses DrCIF as a base classifier, and the 29 summary statistics in DrCIF include
Catch22, TSCF’s classification ability is better than Catch22.

4.3.4 Compared with Deep Learning Benchmark Methods

We compared four deep learning models, which are InceptionTime [32], FCN [37], MLP
[38], and ResNet [30] with TSCF. As shown in Figs. 10 and 11, TSCF is competitive
with InceptionTime, and do better performance than FCN, MLP and ResNet. This proves
that the construction of deep forests based on the cascade structure of gcForest can obtain
performance comparable to DNNs.

4.4 Variants of TSCF

We include several variants of the proposed TSCF. For the four forest-based classifiers used
in TSCF, we conducted different combinations, including: (1) replacing DrCIF with PF; (2)
one each for RF and CRF, two for RSF; (3) one each for RF and CRF, two for DrCIF; (4)
two RSFs and two DrCIFs.
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Fig. 11 CD diagram for the comparison among TSCF and deep learning classifiers

Table 2 Experimental
comparison of the average
accuracy of TSCF and its variants
in 25 datasets

Methods Avg acc

RF, CRF, RSF, PF 0.893

RF, CRF, RSF×2 0.876

RF, CRF, DrCIF×2 0.897

RSF×2, DrCIF×2 0.894

TSCF (RF, CRF, RSF, DrCIF) 0.899

As shown in Table 2, the experiment was conducted on 25 datasets. The results showed
that TSCF has better classification performance (0.899 in average). Compared with other
combinations of the four forest-based classifiers, the accuracy of TSCF is the highest, which
validates the effectiveness of multi-granular representation learning of time series.

4.5 Ablation Study

We implement ablation studies to understand the contribution of four different base classifiers.
The settings are summarized as follows: (1) w/o RFmeans abandoning the RF classifier, only
using the other threemodels; (2)w/oCRF represents not using theCRF; (3)w/oRSF indicates
deleting the RSFmodule; (4) w/o DrCIF denotes only using RF, CRF, and RSF to constitute a
cascade layer; (5) w/o Cmeans that the output of each layer in themodel does not concatenate
the original time series, and is directly used as the input to the next layer.

Table 3 shows the average accuracy of TSCF and its ablation variants on 25 datasets,
and it turns out that all four base classifiers combined with TSCF contribute to the whole,
allowing TSCF to achieve better performance than individuals. Among them, the existence of
DrCIF improved model performance by 2.860%, and RSF by 1.011%. RF and CRF are also
indispensable roles, which can increase the diversity ofmodels and sample randomness. From
w/o C, we can conclude that after the training of each layer, it is necessary to concatenate the
output of this layer with the original time series as the input to the next layer. In this way, the
layer-by-layer classifier can further learn from the original data after obtaining the learning
results of the previous layer. Overall, all variants of the model perform slightly worse than
the full TSCF, which also proves the effectiveness of each base classifier.

4.6 Visualization

We visualized the learned representation to show that TSCF effectively captures the under-
lying structure among different classes of time series. In this section, we randomly selected
5 of the 113 UCR datasets, including Meat, UMD, Mallat, MoteStrain, and Symbols. First,
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Table 3 Ablation results of TSCF on 25 datasets

Datasets w/o RF w/o CRF w/o RSF w/o DrCIF w/o C TSCF

ArrowHead 0.731 0.695 0.726 0.693 0.742 0.721

Beef 0.780 0.780 0.767 0.720 0.747 0.780

BeetleFly 0.920 0.950 0.880 0.880 0.800 0.940

BirdChicken 0.830 0.900 0.900 0.760 0.920 0.900

BME 0.997 1.000 1.000 0.967 0.997 1.000

CBF 0.981 0.978 0.978 0.957 0.975 0.980

Chinatown 0.975 0.977 0.983 0.980 0.980 0.981

Coffee 0.993 1.000 1.000 1.000 1.000 1.000

DiatomSR 0.918 0.925 0.932 0.933 0.929 0.926

ECG200 0.830 0.838 0.870 0.818 0.848 0.850

ECGFiveD 0.995 0.994 0.994 0.971 0.958 0.997

GunPoint 0.983 0.973 0.981 0.957 0.979 0.980

Ham 0.724 0.758 0.743 0.756 0.760 0.750

ItalyPD 0.958 0.962 0.960 0.959 0.955 0.962

Lightning2 0.738 0.780 0.748 0.793 0.790 0.790

MedicalI 0.764 0.787 0.795 0.747 0.772 0.801

MoteStrain 0.924 0.924 0.912 0.898 0.866 0.923

PPOAG 0.851 0.851 0.854 0.862 0.845 0.855

PPOC 0.882 0.880 0.878 0.869 0.880 0.881

Symbols 0.964 0.961 0.952 0.937 0.853 0.961

ToeS1 0.941 0.932 0.876 0.927 0.924 0.933

ToeS2 0.926 0.915 0.883 0.912 0.906 0.920

TwoLECG 0.944 0.987 0.985 0.900 0.929 0.986

UMD 0.982 0.988 0.993 0.976 0.989 0.979

Wine 0.759 0.678 0.667 0.689 0.748 0.685

Avg acc 0.892 0.897 0.890 0.874 0.875 0.899

Avg difference −0.785% −0.223% −1.011% −2.860% −2.743% –

we use the t-SNE visual algorithm [39] to compare the learned representations. As shown in
Fig. 12, each column represents the test result of a dataset. The first row is a visualization of
the original data. The second is the representation of gcForest. The last is our method. For
gcForest and TSCF, we used the splicing class vectors of the four forests output by the last
layer as the representations learned by the model and then used them as the input of t-SNE
visualization. Figure 12 shows that TSCF can learn class embeddings with larger inter-class
distances and compact intra-classes distributions. These results also illustrate the effective-
ness of TSCF in learning data characteristics from different granularities. Then, we analyse
the learned representation of TSCF with a heatmap. Figure 13 indicates that TSCF can learn
distinguishable features among different classes.
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Fig. 12 The t-SNE visualization of original, gcForest, and TSCF (from top to bottom) representation space on
5 datasets. Different colors represent different classes in each subgraph, and each dot represents one instance

Fig. 13 The heatmap visualization of representations learned by TSCF on 5 datasets. Each column in the
subgraph represents a class in the dataset

5 Conclusion

This paper proposes TSCF, an ensemble model based on the deep forest for TSC tasks. TSCF
performs feature learning on the original time series at point-level, subsequence-level, and
the summary statistics of intervals, using four different forests to capture more sequence
information. The extensive evaluation of TSCF demonstrates its effectiveness, and visual-
ization of learned representations validates its capability to capture different granularities of
time series. Based on the framework of TSCF, other base classifiers for point, subsequence
and interval-level can be considered for multi-granular representation learning in practical
applications, such as TSF [5], RPSF [14], etc. Our future work will focus on including more
efficient base classifiers to enhance the performance of cascade forests.

While TSCF exhibits the capability to learn from time series data at various granularities,
it is constrained by the practice of concatenating the learning outcomes of the forest with
the original sequence, serving as the input for the subsequent layer. Furthermore, each layer
necessitates a reiteration of learning on the raw data, incurring a time overhead. In future
endeavors, it is imperative to explore strategies for efficiently processing data within the
cascading structure and establishing effective data transmission mechanisms between lay-
ers. This is essential to enable the classifier to consistently and comprehensively grasp the
distinctive features of the data.
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